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Already during embryonic development, the heart and the lung are thoroughly connected organs. Their interdependence allows
our survival in the terrestrial environment by coupling cardiac output and gas exchange. The knowledge on developmental
processes involving stem and progenitor cells is crucial to understand the onset of human cardiopulmonary diseases. The
precise identification of various adult endogenous progenitors is still incomplete. Thus, caution should be exercised on newly
available stem cell-based treatments until specific mechanisms of action are disclosed. The objective is to provide in the nearest
future feasible and safer cell therapeutics for the complex pathological condition of human cardiopulmonary diseases. In this
paper, we highlight the significant knowledge advancement concerning stem and progenitor cells in the cardiopulmonary field:
from embryonic development to adult progenitors until early preclinical models for cardiopulmonary regeneration.

1. Development of the Cardiopulmonary
System: The Contribution of Stem and
Progenitor Cells

Adaptation to terrestrial life happened recently in our evolu-
tionary history. As a consequence of this event, the cardiac
and the pulmonary systems developed in parallel to allow
the coupling of cardiac function and gas exchange in the
lung. In mammals, the cooperation of these two systems is
already apparent during embryonic development: while the
heart tube loops and asymmetrically divides into the mature
cardiac chambers, the lung anterior endoderm protrudes into
the cardiac embryonic mesoderm. This interdependence
forms the cardiopulmonary circulation, a specialized com-
partment that connects the heart and the lungs: it receives
the cardiac output to allow gas exchange and to provide
oxygenated blood to the systemic circulation.

Cardiac morphogenesis occurs prior to lung develop-
ment [1, 2]. The embryonic heart early provides pump func-
tion that is fundamental for fetal and postnatal life. Heart
development is regulated by highly conserved tissue-specific

transcription factors, signaling molecules, and noncoding
RNAs. Central to this network are the transcription factors
Wnt, NKX2-5, GATA4, and SRF, which, together with their
target DNA elements, form an evolutionarily conserved sub-
circuit essential for development [3]. The process of looping
morphogenesis brings the venous pole ventral to the foregut
endoderm. This mesoderm-endoderm interaction is crucial
to lung development. The embryonic lung evaginates from
the anterior endoderm which will form also the trachea and
larynx. The organ’s epithelium derives from the endoderm,
while lung mesenchyme is of mesodermal origin. From the
distal region of the laryngotracheal groove [4, 5], embryonic
epithelial progenitors divide rapidly and generate sequen-
tially the primary and secondary bronchial airways and the
alveolar structures. As a consequence, the adult respiratory
tree is formed [6, 7].

The spatially and temporally coordinated development of
the embryonic heart and lung raises the possibility of a
common multipotent progenitor originating in both organs
and their physiologic connection in terrestrial mammals.
Recently, Peng et al. [8] reported a novel population of
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multipotent cardiopulmonary mesoderm progenitors (CPPs)
that arises from cardiac posterior pole prior to lung develop-
ment. Wnt2+/Gli1+/Isl1+ CPPs were identified by lineage
tracing and clonal analysis experiments and proved to gener-
ate the mesoderm lineages of the cardiac inflow tract, pulmo-
nary vascular and airway smooth muscle, lung proximal
endothelium, pericyte-like cells, and also cardiomyocytes.
The foregut endoderm that is required to connect the pulmo-
nary vasculature to the heart regulates the development of
CPPs through the Sonic Hedgehog (Shh) network. Shh
activates its effector Gli1 that is coexpressed with Wnt2 and
Isl1 in CPP cells. According to lineage-tracing experiments,
the authors observed that Hedgehog signaling is required to
direct the development of CPPs towards the lung smooth
muscle lineage and initiates the cardiopulmonary connec-
tion. The authors reported that the earliest cardiac progeni-
tors that are located in the second heart field are
characterized by the expression of Isl1. The Isl1-positive
(Isl1+) population further subdivides into Isl1+/Nkx2.5+ cells
in the ventral/medial domain and the Isl1+/Nkx2.5− subpop-
ulation in the lateral/dorsal domain. This latter subpopula-
tion, characterized only by the expression of Isl1, generates
all layers of the lung vasculature and the myocardial inflow
tract at E8.5. Specifically, Isl1+ progenitor cells generate the
ventral lung mesenchyme that connects to the cardiac inflow
tract, while Nkx2.5-positive progenitors give rise to the
myocardium close to the pulmonary vein. Wnt2-positive
progenitors, located exclusively in the posterior pole of the
developing heart at E8.5, form cells within the cardiac inflow
tract, not within the outflow tract. These cells are the ones
that move to the lung bud in its early development. Later
during embryonic development, Wnt2+ cardiac progenitor
cells generate all mesodermal lineages of the heart including
cardiomyocytes and the endocardium. Additionally, they
give rise to the pulmonary vasculature, lung pericytes, and
airway smooth muscle cells in the developing lung. There-
fore, the authors demonstrated that Wnt2+ cells represent
multipotent progenitors in the developing lung and inflow
tract of the heart. The authors also reported that the subpop-
ulation of cardiac Gli1-positive cells contributes to the
cardiac mesodermal compartment as well as the early lung
bud. Overall, the population of Wnt2+/Gli1+/Isl1+ cells
generates the majority of mesodermal cells in the cardiac
inflow tract and in the lung. Therefore, pulmonary vascular
and airway smooth muscle cells, proximal endothelium,
and pericyte-like cells derive clonally from these progenitors.
Importantly, alterations of this developmental pattern cause
congenital defects such as tetralogy of Fallot syndrome in
the newborn or persistent pulmonary hypertension. Ulti-
mately, understanding the role of cardiac mesoderm and
lung endoderm interaction during development would
provide mechanistic insights into the congenital cardiopul-
monary diseases where vascular patterning and differentia-
tion are perturbed. Furthermore, deciphering the signaling
pathways necessary for pulmonary vascular development
could potentially shed light on mechanisms involved in
vascular regeneration and remodeling in adult pulmonary
diseases. Adult cardiac diseases such as myocardial infarction
(MI) result in a massive loss of cardiomyocytes that leads to

heart failure. Successful therapies for these diseases are lack-
ing. There is an urgent need to clarify the mechanisms that
regulate heart and lung development to design effective
approaches for cardiopulmonary regeneration.

2. Adult Progenitor Cells in Human Heart and
Lung Regeneration

Cardiac and pulmonary diseases are frequent. They impact
significantly on healthcare costs. A recurring question in
biology is whether regeneration occurs in these adult organs.

In the heart, the focus is whether adult cardiomyocytes
(CMs) proliferate and to what extent. This long-debated
question raises controversies in the field. In the last decades,
human cardiomyocyte proliferation was documented, as well
as its steady state. Bergmann et al. [9] presented a study on
human CM stereology combined with quantification of geno-
mic 14C concentrations in cardiomyocyte nuclei (retrospec-
tive birth dating). They reported that, according to the
analysis of CM volume and nuclear DNA synthesis, the CM
number did not change substantially in postnatal life and
remained constant throughout the whole human life span.
Specifically, compared to both cardiac endothelial and mes-
enchymal cells, cardiomyocytes showed the highest extrapo-
lated turnover rate restricted to the first decade of life;
cardiomyocyte turnover decreased with age exponentially
and was ≤1% in adults. Mollova et al. [10] with the same tech-
nique, that is, stereology, found that most postnatally born
CMs are generated in young humans: their number increased
by 3.4-fold over the first 20 years of life, indicating that the
highest cardiac cell proliferation rate occurred in young
adults. No consensus exists on the magnitude of adult cardio-
myocyte renewal, with estimates ranging from no turnover
rate to complete cell exchange in a few year lifespan [11, 12].

Overall, the reported results suggest that the mammalian
heart possesses a measurable capacity for renewal. Impor-
tantly, intense debate exists concerning the source of the
newly generated cardiomyocytes: it is not yet clear whether
cardiomyocytes are renewed through differentiation from a
stem/progenitor population or through cell division by exist-
ing cardiomyocytes [13, 14]. Nevertheless, these two possibil-
ities are not mutually exclusive, and both represent possible
opportunities to increase cardiomyocyte generation for
cardiac regenerative therapies. In the field of cardiac regener-
ation, there is a considerable interest in whether transdiffer-
entiation events might generate new cardiomyocytes. Bone
marrow-derived cells like hematopoietic stem cells and
mesenchymal stem cells [15, 16] were thought to differentiate
to cardiac muscle and contribute to functional recovery after
MI. However, results from subsequent studies indicate that
these cell types may contribute to heart repair by indirect
paracrine mechanisms, as opposed to direct differentiation
into myocardial cells [17, 18]. The mechanism of cardiomyo-
cyte dedifferentiation might also occur. This process is
characterized by a reduction of sarcomere structures and
the expression of fetal gene markers. A significant advance-
ment in the field will be to understand how dedifferentiation
is initiated and identify the target molecules that induce these
phenotypic changes [19, 20].
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Based on the ongoing debate on the actual capacity of
the adult human heart to renew cardiomyocytes, alterna-
tive therapeutic approaches to augment endogenous regen-
eration are explored such as the administration of stem or
progenitor cells to the heart or the stimulation of endoge-
nous cardiac progenitors.

To this extent, however, a clear definition of endogenous
cardiac progenitors is necessary. The issue is still elusive and
controversial as of today.

Numerous putative adult cardiac progenitors have been
characterized by the positivity of different markers. Specifi-
cally, in 2003, Oh et al. documented a cardiac progenitor cell
based on the expression of murine Sca1 antigen [21]. This
population can be enriched for either high efflux of Hoescht
dye through an ATP-binding cassette transporter (side pop-
ulation cells) or high expression of PDGFRa. The enriched
population shows multilineage potential and differentiation
towards cardiomyocytes in vivo. In the same year, Beltrami
et al. documented an alternative cardiac progenitor charac-
terized by the expression of the receptor c-kit (CD117, Stem
Cell Factor receptor) [22]. In more recent years, Ellison et al.
[23] concluded that c-kit-positive cells are necessary and
sufficient to regenerate an acute adult myocardial injury
based on a cardiotoxic isoproterenol treatment model. In
2004, Messina et al. reported the isolation of adult cardiac
progenitors that grow in adherent spheres, named cardio-
spheres [24]. Cardiospheres are composed of a combination
of progenitor cells, cardiac myocyte-like cells, and vascular
cells. The authors suggested that these cell types are the prog-
eny of a small subset of undifferentiated cells that express
different stem cell markers such as c-kit and Sca-1.
Cardiosphere-derived cells are isolated from adult murine
and a human heart and can be expanded in vitro for thera-
peutic use. The identification of multiple progenitors and
the concomitant-limited therapeutic regeneration observed
in studies performed so far led some investigators to con-
clude that most progenitors are the same cell at different
stages of differentiation [25–29].

The adult mammalian lung is organized into two major
compartments: the airways that conduct gases and the alveoli
where gas exchange occurs. Approximately 40 different cell
types exist within the adult lung. The epithelial lineages are
the best defined. Their characterization is based on murine
lineage-tracing studies. These studies might reflect the orga-
nization of the adult human lung; however, human lung
epithelium might possess unique properties.

The steady state lung is a low cellular turnover tissue that
includes quiescent stem or progenitor cells. These cells
participate in the repair of the damaged lung [30–33]. Basal
cells are characterized by a small height compared to adjacent
luminal cells, and they are located at the basement membrane
[34]. Basal cells express the N-terminus-truncated isoform of
TRP63 (p63), cytokeratin 5 (KRT5), nerve growth factor
receptor (NGFR), and podoplanin (PDPN) [35]. These cells
are self-renewing and multipotent: they generate other basal
cells and also secretory and ciliated cells [36]. Recent studies
by Pardo-Saganta et al. [37] demonstrated that, under steady
state conditions, the basal cell population is heteroge-
neous: they express activated Notch2 intracellular domain

(Notch2ICD) and c-myb (Myb) in secretory and ciliated
cells, respectively. Basal cells are located in the murine
trachea and bronchi while in humans, they are found
more distally, in the small bronchioles.

Secretory or club cells (formerly known as Clara cells) are
dome shaped and possess secretory granules in their cyto-
plasm. Murine secretory cells are self-renewing and differen-
tiate into ciliated cells. These cells are present in the murine
trachea, bronchi and bronchioles, and throughout the human
airway epithelium. Recent studies by Tata et al. [38] indicated
that they are highly heterogeneous.

Ciliated cells are also present throughout the large and
small airways. They are characterized by multicilia on their
apical surface and are positive for the nuclear transcription
factor FoxJ1. Lineage-tracing studies document that they
are terminally differentiated cells. Ciliated cells are produced
directly from basal cells following injury. Neuroendocrine
cells are single cells or organized clusters in close contact with
nerve fibers. They are characterized by the expression calcito-
nin gene-related peptide (CALCA), chromogranin A, and
achete-scute homolog 1 (ASCL1). They are present in
murine large and small airways and are enriched at the
branch points of airways. Pulmonary neuroendocrine cells
perform multiple functions such as oxygen sensing and
mechanotransduction.

Alveolar epithelial type 2 and type 1 cells are cuboidal
surfactant-producing and gas-exchanging cells, respectively.
Recent studies through lineage-tracing analysis demon-
strated that type 2 cells maintain the homeostatic turnover
of type 1 cells and clonally generate more type 2 cells in the
adult lung [39]. The zone of transition from the bronchioles
to the alveoli is referred to as the bronchioalveolar duct junc-
tion (BADJ). Within this region, bronchioalveolar stem cells
(BASCs) are present. They were identified based on their
proliferation after bleomycin injury [40]. In humans, BASCs
have not been clearly characterized.

Interestingly, cellular plasticity is now an emerging con-
cept in the biology of multiple adult organs. Multiple studies
recently indicated that in various tissues, cellular plasticity is
a common phenomenon in the process of repair after injury
[41–43]. In the lung, evidence for plasticity derives from cell
ablation experiments. Tata et al. [44] reported that in the tra-
cheal epithelium, fully mature secretory cells dedifferentiated
into basal stem cells following diphtheria toxin-induced stem
cell ablation. Interestingly, secretory cells started to replicate
when over 80% of the basal cells were ablated by the treat-
ment. The signals that regulate cell plasticity are yet to be
defined. Tata and Rajagopal reported that transdifferentia-
tion can also occur [45]: fully differentiated neuroendocrine
cells in the small airways generate secretory cells as well as
ciliated cells following naphthalene-induced injury or after
H1N1 influenza-induced injury. Lineage-tracing experi-
ments demonstrate that epithelial stem and progenitor cells
maintain a stable identity during steady state conditions but
can display remarkable lineage plasticity following injury.
In humans, our knowledge on cellular plasticity is pre-
liminary. In vitro results demonstrate the plasticity of
human lung epithelial cells. However, the results might
not reflect the plasticity observed in living organisms.
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Further advancement of the concept of cellular plasticity
will certainly need confirmation in the next decades.

In the human heart, there is a lack of consensus on the
composition of the nonmyocyte cell population. Very inter-
estingly, a recent study by Pinto et al. revealed that fibroblasts
represent a relatively minor cell population and that endo-
thelial cells are the most abundant cell type in healthy adult
human hearts [46]. The authors used newly available genetic
trackers, flow cytometric analysis, and an unsupervised clus-
tering algorithm (SPADE, Spanning-tree Progression Analy-
sis of Density-normalized Events). The analysis showed that
approximately 65% of cardiac cells are endothelial cells, 10%
are leukocytes, and about 25% are cardiomyocytes. These
unexpected results highlight the fact that the cardiac fibro-
blast population is much smaller than previously reported
[47]. Furthermore, a comprehensive understanding of
cardiac cellular composition will guide the development of
new therapeutics to promote heart repair and regeneration.
Overall, these findings redefine the cellular composition of
the adult murine and human heart and indicate that the
endothelial cell compartment might play a potentially impor-
tant role in cardiac homeostasis, disease, and regeneration.

3. Current Stem Cell-Based Therapeutic
Approaches for Cardiopulmonary Diseases

Pulmonary arterial hypertension (PAH) is associated with
right ventricular hypertrophy or failure. This is the result of
pressure overload in the right ventricle. Current therapeutic
approaches are still experimental, and we need to be cautious
in stating their efficacy. However, potentiality exists and
current treatment options might expand in the next decades.

Overall, stem and progenitor cell therapy in cardiopul-
monary diseases demonstrates to be effective in animal
models of PAH. Mainly, these stem cell-based experimental
models lay on the observation that stem and progenitor cells
might regenerate pulmonary vasculature. Accordingly, endo-
thelial progenitor cells (EPCs) are good candidates towards
this goal: endothelial progenitors are circulating cells derived
from the bone marrow. They are able to differentiate into
mature endothelial cells to repair the vasculature. It is still
not clear how endothelial stem or progenitor cells exert their
effect when administered to the lung. Proper engraftment in
the lung tissue is thought to happen rarely. A combination of
concomitant biological mechanisms is more likely to occur,
including stem cell-induced paracrine effect due to the
release of microvesicles or exosomes. Noncoding microRNAs
are more recent players in this field. Interestingly, Spees et al.
investigated the effect of monocrotalin (MCT) on the
engraftment and differentiation of GFP-positive bone
marrow-derived cells in rodent models of PAH [48]. The
authors observed the engraftment of the administered cells
in the lungs and their differentiation into pulmonary epithe-
lial cells (Clara cells), vascular endothelial cells, and smooth
muscle cells. Furthermore, GFP-positive cells engrafted in
both the right and the left ventricles of hyperthophic rat
hearts. In the right ventricles, administered cells differenti-
ated mainly into vascular cells and cardiomyocytes. No cell
fusion events were observed between endogenous cardiac

cells and administered bone marrow-derived cells. Combina-
tion therapy including the administration of stem or progen-
itor cells together with pharmacological agents is in general
more effective. Sun et al. administered cilostazol, a phospho-
diesterase III inhibitor, together with EPCs three days after
MCT injection [49]. The authors observed reduced remodel-
ing of pulmonary resistance arteries resulting from prolifera-
tion of endothelial cells and vascular smooth muscle cells. In
general, combination therapy was more successful than EPCs
or citostazol alone in preventing vascular remodeling due to
MCF-induced PAH.

Takemiya et al. observed that intravenous administration
of mesenchymal stem cells (MSCs) in rat lungs affected by
MCT-induced PAH was not sufficient to lower pulmonary
artery pressure. However, when MSCs were delivered in
combination with prostacyclin synthase, the authors
reported a significant decrease in pulmonary artery systolic
pressure and right ventricular dilation. Notably, paracrine
effect due to cell-mediated release of soluble factors rather
than massive cell engraftment is thought to exert the
effects observed.

In the clinical condition of emphysema, the alveolar
epithelium is damaged and repair processes are unlikely to
occur. The role of all transretinoic acid (ATRA) is currently
under investigation in the therapeutic treatment of emphy-
sema. Retinoic acid is the active metabolite of vitamin A
(i.e., retinol) that is essential for multiple cellular functions
such as cell homeostasis and differentiation. Retinoic acid is
acquired from diet. However, the long-term use of oral reti-
noic acid causes side effects such as dry skin, headache,
hyperlipidemia, muscle, and bone soreness. Specifically,
Mao et al. performed a double-blind, placebo-controlled fea-
sibility trial to test the long-term administration of ATRA.
Patients affected by moderate to severe emphysema were
subjected to the standard of care plus twice-daily oral
administration of ATRA for 12 weeks [50]. The study
did not show any therapeutic effect on emphysema, and
side effects were observed. Brooks et al. tested the effect
of aerosolized ATRA in rodent models of emphysema
and demonstrated that it is feasible and represents a safer
alternative to oral retinoic acid [51].

The processes involved in lung epithelial repair are
currently unknown despite the significant advances in stem
cell research over the past decades [52–54].

Personalized medicine approaches are essential for the
treatment of cystic fibrosis. Over 1500 known mutations of
the CFTR (cystic fibrosis transmembrane conductance regu-
lator) gene exist. Each of them results in distinct functional
pathologic variables. CFTR is expressed on the surface of
plasma membranes, specifically in ciliated cells. It is a chlo-
ride channel that, when alterated, produces impaired chlo-
ride and bicarbonate secretion resulting in thicker mucus
and recurrent infections. The generation of patient-specific
in vitro models for this clinical condition is crucial. Culture
of patient-derived primary human airway or nasal epithelial
cells and their targeted differentiation may constitute a
valuable objective of therapeutic investigation in this field.
Alternatively, the differentiation of patient-specific-induced
pluripotent stem cells (iPSCs) into adult epithelial cells might
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be pursued. Patient-specific stem or progenitor cell treat-
ments in preclinical models of cystic fibrosis will thus allow
drug development in the future [55].

Notably, the current position of the COPD Foundation
(https://www.copdfoundation.org) on stem cell therapy is
cautious. The foundation warns on several clinics providing
alleged stem cell-based treatments for incurable lung dis-
eases, including chronic obstructive pulmonary disease
(COPD). FDA did not approve such treatments. Therefore,
the COPD Foundation does not recommend the use of autol-
ogous stem cell therapy for the treatment of COPD or other
lung diseases until more convincing proof of effectiveness is
provided. The COPD Foundation encourages patients to
participate in the clinical trial that tests the development
and potential benefit of this approach.

Overall, stem cell-based therapeutic approaches on
human cardiopulmonary diseases are still at their prelimi-
nary stage. We acquired valuable information of endogenous
cardiac and pulmonary stem or progenitor cells that are
distributed in different compartments of these organs. Stem
and progenitor cells may represent key protagonists of newly
available treatments. The knowledge we acquired so far,
although insufficient to guarantee an immediate therapeutic
use, warrants further studies to impact on this massive
clinical demand.

4. Reflections on Current
Therapeutic Developments

As mentioned earlier, no consensus exists so far on the
characterization of endogenous pulmonary and cardiac stem
or progenitor cells. Many authors raise the possibility that the
same cell at subsequent differentiation stages was character-
ized by different groups.

Once properly identified, specific progenitors might be
successfully employed in lineage-tracing studies to under-
stand their role in animal models of disease. Furthermore,
specific sorting of surface markers through fluorescence-
activated cell sorter (FACS) might be used to enrich candi-
date progenitor cells more homogeneously. This targeted
approach will shed light on the specific role of the sorted cells
when administered in vivo.

Administration of endothelial progenitor cells (EPCs) or
mesenchymal stromal cells (MSCs) is the emerging strategy
for the treatment of severe cardiopulmonary diseases such
as pulmonary arterial hypertension. These studies are pre-
liminary and rely mainly on preclinical animal models. MSCs
are thought to exert their effect through immunomodulatory
properties. Nevertheless, the precise mechanisms that allow
stem or progenitor cells to act in cardiopulmonary remodel-
ing are still unknown. Possibly, multiple concomitant biolog-
ical, biochemical, and biomolecular cues are involved.

Induced pluripotent stem cells (iPSCs) represent an
additional cell source. They are patient specific and might
potentially serve as a renewable source. The immediate
impact of iPSC technology does not lie in regenerative med-
icine applications but mainly in the study of the cellular
mechanisms that generate cardiopulmonary diseases. This
allows potential patient-specific drug screening and future

gene therapy, a powerful approach within the field of
personalized medicine.

On the other hand, increasing knowledge on the mecha-
nisms that control embryonic cardiopulmonary development
might highlight key molecular effectors. The same pathways
are frequently impaired at the onset of cardiopulmonary
diseases. Additionally, the recent identification of a common
progenitor cell that directs development of the cardiopulmo-
nary circulation further strengthens the connection of these
two organs.

5. Conclusions

Accumulated knowledge in preclinical models and in prelim-
inary clinical trials suggests that stem cell-based therapies
may represent potential strategies for cardiopulmonary
repair after injury. In parallel, further characterization of
endogenous stem and progenitor cells in the lung and in
the heart provides a sound scientific basis for therapeutic
use in cardiopulmonary diseases. This approach lies on the
precise identification of specific markers for each progenitor
cell type.

Remarkable advances of basic research on human cardiac
and pulmonary stem cells in the past decades have sustained
the submission of numerous investigational new drug appli-
cations for clinical trials in humans. Although the current
understanding is still limited to guarantee a safe human
application for cardiopulmonary diseases, autologous stem
and progenitor cells are emerging as key players for newly
available therapies. The nearest future will hold better
insights to develop safer and feasible therapeutic options.
This further advancement will happen only if a scientifically
sound approach leads the studies of human cardiopulmonary
diseases that still constitute an area of unmet clinical need.
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