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Ecosystems are complex systems of various physical, biological, and chemical processes.
Since ecosystem dynamics are composed of a mixture of different levels of stochasticity and
nonlinearity, handling these data is a challenge for existing methods of time series–based
causal inferences. Here, we show that, by harnessing contemporary machine learning
approaches, the concept of Granger causality can be effectively extended to the analysis of
complex ecosystem time series and bridge the gap between dynamical and statistical
approaches. The central idea is to use an ensemble of fast and highly predictive artificial
neural networks to select a minimal set of variables that maximizes the prediction of a given
variable. It enables decomposition of the relationship among variables through quantifying
the contribution of an individual variable to the overall predictive performance. We show
how our approach, EcohNet, can improve interaction network inference for a mesocosm
experiment and simulated ecosystems. The application of the method to a long-term lake
monitoring dataset yielded interpretable results on the drivers causing cyanobacteria
blooms, which is a serious threat to ecological integrity and ecosystem services. Since perfor-
mance of EcohNet is enhanced by its predictive capabilities, it also provides an optimized
forecasting of overall components in ecosystems. EcohNet could be used to analyze complex
and hybrid multivariate time series in many scientific areas not limited to ecosystems.
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Various systems in the world, from cells, organisms, ecosystems, and our own societies, are
complex and driven by many interacting components. An attempt to infer relationships
among the components as a causal network is an important step in understanding their
mechanistic basis. Great efforts have been made to infer such networks from time series
(1, 2). In particular, methods that can overcome the limitations of classical methods (3, 4),
such as convergent cross mapping (CCM) (5), which is suitable for systems under the
influence of dynamic processes, and a combination of the Peter–Clark algorithm and the
Momentary Conditional Independence test (PCMCI) (6), which is suitable for stochastic
systems, have been proposed and are becoming widely used.
However, there is a problem when attempting to apply the existing time series–based

causal analyses to ecosystems. Ecosystems are complex systems of various physical, biological,
and chemical processes (7). Meteorological variables such as temperature and precipitation
are under the influence of atmospheric and oceanic fluid dynamics (8). Recent studies
showed that these Earth system dynamics are well captured as stochastic processes, and
approaches based on statistical causal analysis are effective in elucidating their relationships
(2, 6, 9). In contrast, the density and abundance of organisms often show strong nonlinear
dynamics, driven by interactions between organisms. This motivates the application and
success of approaches based on nonlinear dynamical systems (5, 10–12). Some chemicals
control ecological dynamics as essential resources and are produced by organismal activities;
as well, they are under the control of global geochemical cycles (13). These processes
influence each other, but it is through rather weak causal couplings, and the dynamics of any
one process may not become dominant (5, 14–17). Methods for revealing causal relation-
ships among ecosystem components from time series data need to be robust to dynamical
complexity, that is, the different levels of stochasticity and nonlinearity. However, the
assumptions of most methods do not satisfy this requirement (1, 18).
In this paper, we introduce a method called EcohNet. It is based on the ensemble pre-

diction of neural networks (19–21) that can seamlessly handle stochastic/deterministic and
linear/nonlinear dynamics (22). Therefore, it is expected to be robust to dynamical com-
plexity. The ensemble prediction is used to decompose relationships among variables in
terms of predictability (23). Here, the contribution of one variable to predictive perfor-
mance can be evaluated apart from that of the other variables, as in the concepts of partial
correlation and conditional independence. It is expected that, even if some variables are
driven by a strong driver, weak relationships among variables can be detected separately
from the effect of the driver without special treatments (24–27).
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Although various methods have been proposed and used for
descriptive purposes, the relevance of their application to actual
ecosystem monitoring data has not been seriously examined. How
well can interactions between ecosystem components be captured
as causal relationships in EcohNet? What advantages does it
have over conventional methods used for causal analysis? To
answer these questions, we performed benchmarking with data
from long-term observation of an aquatic mesocosm, as well as a
simulated dataset to test robustness to different dynamical com-
plexities (equilibrium, equilibrium forced by an external oscillator,
and intrinsic oscillatory dynamics, as well as different magnitudes
of noise) under two interaction types (food web and random
interaction) and three observational conditions (different data size,
sampling interval, and the presence of unobserved species). In
addition to the performance criteria for network inference, we
focused on susceptibility to the often-problematic interaction
topologies such as chain relationships (e.g., in a three-species food
chain X Y Z, a causal relationship may be identified between
X and Z) and fan-out relationships (e.g., in a one-predator-two-
prey-relationship X Z!Y, a causal relationship may be identi-
fied between X and Y) (5, 24, 28). We then applied our method

to a long-term lake monitoring dataset that includes heteroge-
neous components such as meteorological, chemical, and biologi-
cal variables, and interpreted the results. Here, we mainly focused
on how EcohNet provides insight on the drivers of cyanobacteria
blooms, which are often a serious threat to ecological integrity and
ecosystem services (29), but also we show how well the detection
of unrealistic causal relationships such as those from biological to
meteorological variables was avoided.

EcohNet

EcohNet combines a type of recurrent neural network (RNN),
called an echo state network (ESN) (19, 20, 30), with a progres-
sive selection of variables (31) (Fig. 1; see Materials and Methods
for details). Initially, a target variable is selected (Fig. 1A). Then,
N ESNs are generated, and the ensemble predictive performance
(prediction skill) of one time step ahead is evaluated when the
past state of the target itself is given as an input of ESNs (Fig. 1 B
and C). As the result, we obtain a distribution of prediction skills
(illustrated by a gray mountain shape in Fig. 1B). In the next step,
we choose a second variable other than the target variable one by
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Fig. 1. Graphical explanation of EcohNet. EcohNet is illustrated in four steps: target variable selection (A), progressive selection of predictive variables
(B), evaluation of prediction skill (C), and evaluation of unique prediction skill (D). See main text and Materials and Methods for the explanation.

2 of 10 https://doi.org/10.1073/pnas.2204405119 pnas.org



one and adopt the one that improves the prediction skill the
most. Here, N ESNs are generated for each pair of variables. If
the prediction skill does not improve, no further new variables are
adopted. This process is repeated for variables that have not yet
been selected, as long as new variables are adopted. As a result of
the above process, a set of variables Ω that maximizes the predic-
tion skill for the target variable is obtained. Then, Ω is used to
evaluate the unique prediction skill, which represents the unique
contribution of each variable in Ω to the overall prediction skill
(Fig. 1D). If Ω = fX ,Y g and the target variable is X , for
each variable (here, X and Y ), we evaluate how much the

prediction changes when one variable is excluded from it (e.g.,

Ω
ð�Y Þ

= fX g). For example, when denoting the prediction skill

for Ω and Ω
ð�Y Þ

as ρΩ and ρ
Ω
ð�Y Þ , respectively, the unique con-

tribution of Y on X is ρY!X = ρΩ � ρ
Ω
ð�Y Þ . In this stage, a vari-

able is removed from Ω if ρΩ � ρ
Ω
ð�Y Þ ≤ 0. By performing the

above procedure with all variables as targets in turn, a prediction
skill–based causal network is obtained for the entire system.

To show how EcohNet works, we explain what would be Ω
for X in three representative relationships of the three variables
X, Y, and Z. First, we assume a transitive relationship

A F
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Fig. 2. Benchmarking results. (A–E) Actual (blue) and inferred (red) network of EcohNet and conventional approaches (CCM, PCM, Spearman rank correla-
tion, and LIMITS) for mesocosm data (DIN and SRP stand for total dissolved inorganic nitrogen and soluble reactive phosphorus, respectively). The numbers
of true positives (TP) and false positives (FP) are shown above the panel. (F) The value of evaluation criteria for mesocosm data. (G and H) Two performance
criteria (ROC-AUC and F1 score) for the food web models. Here, O is intrinsic oscillation, E is equilibrium, and EO is equilibrium forced by an external oscilla-
tor, and the suffixes S and L indicate small and large noise magnitude, respectively (SI Appendix, section D2 includes simulation parameter values). In the
box plot, white lines indicate the median, box edges indicate the first and third quartile values, and whiskers indicate maximum and minimum values. Black
circles indicate the median value of EcohNet. In G and H, the result of LIMITS should be carefully interpreted, because it assumes an LV equation used to
generate the benchmark data. (I) Cumulative number of incorrectly identified links in chain relationships (for 6 × 100 = 600 time series in total). (J) Cumula-
tive number of incorrectly identified links in fan-out relationships (for 6 × 100 = 600 time series in total).
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(Z!Y!X and Z!X; SI Appendix, Fig. S1A). Here, in addition
to ρX!X , both ρY!X and ρZ!X are nonzero, corresponding to
the direct relationship Y!X and Z!X. In a chain relationship
(Z!Y!X; SI Appendix, Fig. S1B), the direct relationship
Z!X is removed. In this case, the contribution of Z on X is
always mediated by Y. Thus, if all else is equal, only ρY!X and
ρX!X are expected to have nonzero values. In a fan-out rela-
tionship (X Z!Y; SI Appendix, Fig. S1C), the direct relation-
ship Y!X is removed. In this case, both X and Y have a direct
relationship with Z but remain disconnected from each other.
X and Y share dynamic imprint of Z that may contribute to
predict X from Y, but it is simply involved in the direct influ-
ence of X on Z. Thus, if all else is equal, only ρX!X and ρZ!X
are expected to have nonzero values. The importance of evalu-
ating the unique prediction skill is highlighted by another rep-
resentative example (SI Appendix, Fig. S2). In this case, both Z1

and Z2 have a fan-out relationship with X and Y (X Z1!Y,
and X Z2!Y). As explained in Runge (1), a simple forward
stepwise algorithm would select Y first, followed by Z1 and Z2,
because Y can have a larger individual contribution than either
Z1 or Z2. However, evaluation of the unique prediction skill
can remove Y from Ω, since the contribution of Y is included
in the union of the contribution of Z1 and Z2, and thus
ρY!X = ρΩ � ρ

Ω
ð�Y Þ ≤ 0.

Conventional Approaches

We selected a correlation-based method (Spearman rank corre-
lation), two equation-free methods from nonlinear time series
analysis [CCM (5) and partial cross-mapping (PCM) (28)] and
an equation-based learning interactions from microbial time
series (LIMITS) method (32) as the conventional approaches
for comparison with EcohNet (SI Appendix, section A includes
the details of the implementations), and compared them using
the evaluation criteria of a binary classification task (SI
Appendix, Fig. S3). CCM and PCM are intended to detect

causality in dynamical systems and are therefore comparative to
EcohNet. Since there are several different implementations for
CCM, we tested three representative approaches preliminary
(SI Appendix, section A2). PCM is an extension of CCM that
accounts for direct causality between two variables conditional
on indirect causation through a third variable. Thus, PCM
implements an idea similar to the unique prediction skill of
EcohNet. LIMITS infers the strength of ecological interactions
directly rather than the causal relationships among variables. In
the benchmark using simulation data, the results of LIMITS
should be carefully interpreted because there is the advantage
that the basic process is consistent; that is, it assumes a
Lotka–Volterra (LV) equation used to generate the data. In
other words, it contains more prior knowledge than the other
methods. Applying it to relationships of all ecosystem compo-
nents such as chemical and meteorological variables exceeds its
scope of application. Although it is frequently pointed out that
correlation does not signal the presence of interaction, we con-
sidered Spearman rank correlation as a baseline.

Results

Benchmarking. When applied to the data from a long-term
mesocosm experiment (33), EcohNet identified 11 out of 13
interacting pairs of components, with three false positives, and
was superior to conventional methods (Fig. 2 A–D). It outper-
formed other methods in all evaluation criteria (Fig. 2E). The
results were not sensitive to different parameter values that might
affect the performance of ESNs, except when the forgetting factor
λ was very close to one (SI Appendix, section B). A benchmark
with datasets generated by food web models (SI Appendix, Fig.
S4) also supported the superiority of our method. The area under
the curve of a receiver–operator characteristic curve (ROC-AUC)
and F1 score of EcohNet outperformed CCM, PCM, and Spear-
man rank correlation, except for ROC-AUC of CCM in OS ,L in
which the signal of interaction was considered to be strong (Fig. 2

A B

C D

Fig. 3. Values of accuracy (A), sensitivity (B), specificity (C), and number of inferred links (D) for the food web models. Since connectance was fixed at 0.33
when generating an interaction matrix, the number of links detected should ideally be a constant value (since the number of species was fixed at eight, aver-
age number of links was (82 � 8)*0.33 = 18). In the box plot, white lines indicate the median, box edges indicate the first and third quartile values, and
whiskers indicate maximum and minimum values. Black circles indicate the median value of EcohNet.
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G and H). Performance of CCM was largely reduced in ES ,L and
EOS ,L. PCM performed better than CCM in ES ,L, but it was
reduced in EOS ,L. CCM was better than PCM in EOS ,L, poten-
tially because of the use of seasonal surrogate method. Perfor-
mance of Spearman rank correlation was comparable to other
methods only in ES ,L. LIMITS outperformed EcohNet in OS ,L,
especially in ROC-AUC. Its high applicability to cases of intrinsic
oscillations has been reported in a previous study (34). It is also
worth noting that EcohNet’s performance was comparable to
LIMITS in most cases, despite not explicitly assuming underlying
LV processes.
Although accuracy of EcohNet, CCM, and PCM was consis-

tent among OS ,L, ES ,L, and EOS ,L except for PCM for EOS ,L,
there were large variations in sensitivity and specificity for CCM
and PCM (Fig. 3 A–C). The number of detected links varied
depending on the simulation conditions (Fig. 3D). This suggests
that the fundamental sensitivity of the methods used to detect
interactions is affected by dynamic complexity. In comparison,
performance of EcohNet was relatively stable, and its sensitivity,
specificity, and the number of links detected were not greatly
affected by the simulation conditions. Our benchmarking also
showed that false positives due to chain and fan-out relationships
were best suppressed in EcohNet (Fig. 2 I and J).
The above conclusions did not change significantly based on

different dataset sizes (SI Appendix, Figs. S5 and S6), sampling
intervals (SI Appendix, Figs. S7–S10), and the presence of
unobserved species (SI Appendix, Fig. S11) that we tested.

While these results are based on food web models where the
interactions are bidirectional, the superiority of EcohNet was
shown also in a random interaction model where the interac-
tions were unidirectional and the detectability of directional
interactions were evaluated (SI Appendix, Fig. S12; SI Appendix,
section C includes the evaluation of directional interactions in
the food web models).

Phytoplankton Dynamics in a Real Ecosystem. We applied
EcohNet to a time series (Lake Kasumigaura Long-term Monitor-
ing Dataset) to examine the top-down and bottom-up causal
factors of phytoplankton community composition (Fig. 4A). The
causal network was naturally organized in a top-down structure
with temperature at the top, and temperature had the most num-
bers of interaction links across multiple trophic levels. EcohNet
showed that each of seven dominant phytoplankton groups were
determined by different factors, and those networks were complex.
Four out of seven phytoplankton groups (all three cyanobacteria
and Thalassiosiraceae) were forced by NO3-N. We also
detected the top-down control of rotifers and calanoids on
not only diatoms but also cyanobacteria (Rotifers!Nitzschia,
Rotifers!Oscillatoriales, Calanoida!Microcystis, Clanoida!
Thalassiosiraceae, Cyclopoida!Aulacoseira), while large and small
cladocerans did not influence dominant phytoplankton groups. In
contrast, three bottom-up links from phytoplankton to zooplankton
(Nitzschia!Rotifers, Oscillatoriales!Cyclopoida, Fragilaria!
Small cladocera) were also detected. Importantly, in addition to the
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Fig. 4. Analysis of Lake Kasumigaura Long-term Monitoring Dataset. (A) Causal network obtained by EcohNet. We removed causal links with a prediction
skill of less than 0.002 (23 out of 70 links were removed). The magnitude of the prediction skill is indicated by both the thickness and color of arrows. Seven
dominant phytoplankton groups were underlined. (B) We identified causal relationships including meteorological variables (wind speed, precipitation, and
temperature) and examined how well unrealistic causal links (i.e., organisms/chemicals to meteorological variables) were avoided while the effects of meteo-
rological variables were detected. (C) Ratio of causal links larger than the threshold level (x axis) is shown for all links (solid lines) and unrealistic links
(dashed lines). Inset shows the ratio of the unrealistic links to all links. The faster the unrealistic/all ratio converges to zero, the smaller the unique prediction
skill of unrealistic causal links, and the easier it is to remove unrealistic links while retaining more reliable links.
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effects of environmental variables and zooplankton, we identified
three interactions among dominant phytoplankton groups
(Nostocales !Oscillatoriales, Oscillatoriales!Aulacoseira, and
Fragilaria!Microcystis).
An additional analysis of the direction of causation between

meteorological and other components showed that the total
number of unrealistic causalities was lowest in PCM, followed
by EcohNet and CCM in that order (Fig. 4B). For the causal
links with the meteorological variables as factors, EcohNet
detected an equal number of links as PCM for temperature and
precipitation and found more links for wind speed. Moreover,
unrealistic causal links were likely to be detected as strong
links in CCM and PCM, but appeared only as weak links in
EcohNet (Fig. 4C).

Discussion

We developed and evaluated the effectiveness of a method,
EcohNet, that utilizes ensemble predictions of online ESNs. In
short, our method encompasses the scope of Granger causality
(3) and nonlinear time series analysis (35), and implements a
framework for decomposing relationships among variables in
terms of predictability (23). Although ESNs have been applied
to causal analysis (36–38), we developed a reliable method of
causal network inference by integrating adaptive online ESNs
(20) into an ensemble machine learning framework. In addition
to its applicability to nonlinear dynamics, our approach is not
affected by the reliability of nonlinear prediction methods for
the dynamics of a given system (39), which differs from previ-
ous approaches (5, 26, 28, 34, 40, 41). As we have confirmed
(Fig. 2 E–G), performance of CCM and PCM, which rely on a
specific nonlinear forecasting method (state space reconstruc-
tion and simplex projection), was sensitive to the differences in
dynamic complexity (42, 43), although they performed better
than the Spearman rank correlation coefficient. Another advan-
tage of our method is its capability to decompose relationships
among variables; we confirmed that false positives due to chain
and fan-out relationships were best suppressed in EcohNet
followed by PCM (Fig. 2 E and F). This result is plausible
because PCM also address both relationships (28).
EcohNet has two prominent features. First, it was robust in

its ability to detect links and has relatively stable sensitivity and
specificity (Fig. 3). This robustness is important because it
means that the error rate of an inferred network is consistently
controlled by the regularization scheme irrespective of the
dynamics. For example, comparison of the connectivity of
ecological networks from several sites would be difficult if the
method applied was sensitive to dynamical complexity (16).
Second, we confirmed that EcohNet can identify causation
between meteorological and other components while filtering
out the unrealistic direction of causalities (Fig. 4 B and C) (18).
The unrealistic causal links were likely to be detected only as
weak links in EcohNet. Because of observational noise and
other factors, it is hard to completely avoid detecting unrealistic
causalities. Therefore, it is a desirable feature that detection of
unrealistic causal relationships can be avoided depending on
the threshold setting. Among the rest of the methods, PCM
had stable sensitivity and specificity and suppressed the detec-
tion of unrealistic links. On the other hand, its overall perfor-
mance (Fig. 2 G and H) was no better than CCM. One reason
would be the absence of the evaluation step of the convergence
of a prediction skill in PCM, whereas, in CCM, this step helps
to discount the predictability of the target variable itself. In
EcohNet, it is considered as ρX!X .

EcohNet revealed that temperature determined nutrient
dynamics, phytoplankton, and zooplankton communities in Lake
Kasumigaura. This result is similar to Tanentzap et al. (44) that
demonstrates strong direct and indirect impacts of temperature on
phytoplankton and zooplankton. Quantifying the causal effects of
temperature is an important advantage of EcohNet. CCM failed
to distinguish causal relationships from seasonality-driven synchro-
nization, leading to misidentification of causality (45). Likewise,
previous work on Lake Kasumigaura did not detect the causal
effects of temperature on phytoplankton and zooplankton (25).
Our results suggest that temperature may determine the whole
food web structure of Lake Kasumigaura.

Clearly, each of seven dominant phytoplankton groups were
determined by different factors (Fig. 4). Some studies reported
that phytoplankton species or genera have unique physiological
and ecological features and thus respond differently to environ-
mental factors and grazing (46, 47). These differences can result
in dynamic changes in phytoplankton community composition,
since it is reported that the dominant phytoplankton group
changed temporally in Lake Kasumigaura (48–50). NO3-N
determined four out of seven phytoplankton groups. This is
consistent with previous work on Lake Kasumigaura showing
that nitrogen limits phytoplankton primary production (25).
Not only diatoms but also cyanobacteria were influenced by
rotifers, calanoids, and cyclopods. Although our analysis did
not identify whether these are direct predation or indirect
effects, it is known that some copepods can ingest and shorten
the filament size of cyanobacteria, and rotifers can graze or uti-
lize decomposed cyanobacteria (51, 52). Our results suggest
that these zooplankton groups might have an important role in
the food web of shallow hypereutrophic lakes.

We identified significant interactions among dominant phy-
toplankton groups. It has been reported that phytoplankton
groups may have compensatory responses to environmental fac-
tors (53). One possible mechanism for the interaction between
Nostocales and Oscillatoriales could be nitrogen availability,
because N2-fixing cyanobacteria, including Nostocales, compete
with non-N2-fixing bacteria, including Oscillatoriales (54).
Another mechanism could be light availability. Mixing regimes
determined by climatic factors like heat exchange and wind
action affect competition for light between phytoplankton spe-
cies (e.g., buoyant cyanobacteria and sinking diatoms), and
shading by cyanobacteria blooms also influences other phyto-
plankton (55). As pointed out in Freeman et al. (47), previous
studies have not incorporated these interactions in models for
identifying species-specific factors. Explicitly including not only
environmental factors and grazing impacts but also community
interactions in complex systems is another advantage of
EcohNet.

As well as predicting the flow of causation, EcohNet ena-
bles cyanobacteria bloom forecasts for a lake (SI Appendix,
Figs. S13 and S14). The application of EcohNet to long-term
monitoring data can be a useful tool for lake management.
Harmful cyanobacteria blooms are a serious threat to ecologi-
cal integrity and ecosystem services, despite management
efforts, and climate change is predicted to promote the occur-
rence and severity of cyanobacterial blooms (56). As show
here, the system is complex, and, therefore, identifying the
drivers causing cyanobacteria blooms and forecasting these
blooms using EcohNet are critically important for water qual-
ity management (29).

There are two developmental directions that we did not fully
address in this paper. First, in this paper, we did not consider
the possibility of synergistic effects of two or more variables
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that may contribute more to the prediction than simple addi-
tion of their effect. We recognize the importance of such non-
additivity (57), and considering that a further extension of our
methodology, for example, evaluating the combinatorial effect
of removing multiple variables, could address this issue. Sec-
ond, we did not consider data-dependent parameter fitting of
ESN recursive least squares (ESN-RLS). It may be true that
optimal settings of parameters would maximize the perfor-
mance of EcohNet’s network inference. Guiding principles for
such a setup would be to use autocorrelation to determine the
forgetting coefficient λ (58), and to determine parameters to
maximize the predictability of the time series (59). However,
we have demonstrated the benefits of EcohNet well enough
without these further optimizations.
The development of frameworks to facilitate time series–

based causal analysis would advance the field of ecology in the
coming decades, where advanced techniques for ecosystem
monitoring (60–64) will lead to unprecedented increases in
dataset size (7, 65, 66). Such analysis could promote studies to
estimate the effects of global environmental change on biologi-
cal communities (27), prevent regime shifts that lead to cata-
strophic impacts on biodiversity (67), and support efficient
management of biological resources (68). Further development
by applying EcohNet to time series of high-frequency data,
such as sensor data, could lead to real-time, near-term forecast-
ing to prepare for or preempt future impairment of ecological
functions and services. It is expected that, with integration into
active hypothesis testing, these studies will aid the development
of predictive and manipulative ecology in the 21st century.

Materials and Methods

ESN-RLS. An ESN (19, 21) implements a type of reservoir computing that
uses a RNN as a dynamical reservoir (an internal structure which is made up
of individual, nonlinear units, and can store information). ESNs can skillfully
reconstruct and predict time series from different nonlinear dynamical sys-
tems (69–75). It has been demonstrated that ESNs can track the temporal
evolution of time series better than backpropagation-based artificial neural
networks (71).

In an ESN, an input signal induces a nonlinear response to the dynamical res-
ervoir RNN, and the reservoir states are converted to an output signal by linear
weights (Fig. 1C). Here, for a multivariate time series of n variables
X = fxsgs=1,2,:::,n and xs = ðxs1,xs2,:::Þ, we assume that XΩðtÞ = fx-tgω∈Ω is
the input at time t specified by a set of indicesΩ ⊂ f1, 2,…, ng, and xi ∈ X is
a target variable to which an ESN is trained to output its one-step-ahead predic-
tion. Following the typical implementation, we defined an ESN by three matrices
and one function. The matrices are 1) the input weight matrix, Win ∈ Rnres×nin ; 2)
the reservoir weight matrix, Wres ∈ Rnres×nres ; and 3) the output vector,
Wout ∈ Rnres , where nin and nres are the number of nodes in the input layer
(number of elements in Ω) and dynamical reservoir, respectively. The state
update equations for an ESN are as follows:

zðtÞ = fðWinXΩðtÞ + Wreszðt � 1ÞÞ, [1]
yðtÞ = WoutðtÞzðtÞ: [2]

Here, zðtÞ is a vector of neural states in the dynamical reservoir, yðtÞ is the
output of an ESN as the prediction of xiðt + 1Þ, and fðzÞ = tanhz is a neural
activation function. The neural connections of an ESN are randomly generated,
except for the output weights Wout . Here, Wout is sequentially updated by the
RLS method. This defines an online implementation of ESN, namely, ESN-RLS,
which is robust to the nonstationary dynamics and easily applicable to predictive
purposes (20).

RLS is widely used in linear signal processing and has the desirable feature
of fast convergence (76). It incorporates the error history of a system into the cal-
culation of the present error compensation. The recursive updating rule of RLS
forWout is as follows:

vðtÞ = xiðtÞ � yðt � 1Þ, [3]

gðtÞ = Pðt � 1ÞzðtÞ
λ + zðtÞT Pðt � 1ÞzðtÞ , [4]

PðtÞ = λ�1½Pðt � 1Þ � gðtÞzTðtÞPðt � 1Þ�, [5]

WoutðtÞ = Woutðt � 1Þ + vðtÞgTðtÞ: [6]
Here, λ is the forgetting factor, which determines the effect of past errors on the

update, vðtÞ ∈ R is the output error at time t when applying the weight matrix
before the update, gðtÞ ∈ Rnres is the gain vector, and PðtÞ ∈ Rnres×nres is the inverse
of the self-correlation matrix of zðkÞ ðk = 1, 2,…, tÞ weighted by the forgetting
factor. This update can be repeated multiple times at each time step, and we define
the number of iterations as τ. We set the initial conditions of the update rule as

Pð0Þ = δ�1I, [7]
Woutð0Þ = O, [8]

where I is an nres � nres identity matrix, O is a zero vector of length nres , and �
is the regularization factor. We also set the initial reservoir state as zð0ÞO.

This algorithm minimizes the following cost function, which is a weighted
sum of the output errors at time k = ð1, 2,…, tÞ when applying the output
weight matrixWout at time t with a regularization term:

ERLSðtÞ = 1
2
∑t

k=1λ
t�k‖xiðkÞ � WoutðtÞzðk � 1Þ‖2 + δ

2
λt‖Wout‖2: [9]

Here, ‖ � ‖ represents the L2 norm.

Parameterization of ESN-RLS. The parameter values were set according to the
standard recommendation for parameterization of the ESN and RLS (20, 21, 76–78)
(Table 1 and SI Appendix, section B). The elements of Win are randomly drawn
from a uniform distribution between�0:1 and 0:1. We scale the spectral radius of
Wres by ρ0 after it is generated by randomly drawing its elements from a uniform
distribution between �1 and 1 (with probability 0:1, and otherwise zero). The
number of nodes in the dynamic reservoir nres is 32, which is smaller than that of a
typical ESN. This is intended to reduce computation time. Also, this number is
related to the memory capacity of the reservoir (20), and the number of nodes
must be scaled to the time series length. In this sense, a large number of nodes
was not needed in this study. In our benchmark using aquatic microcosm data, we
examined the stability of the results for four representative parameters
(ρ0, λ, τ, δ) that may affect the performance of ESNs (SI Appendix, Fig. S16).

Progressive Selection of Input Variables. For a target variable xi (corre-
sponding to X in Fig. 1A), we used a progressive selection to obtain the set of
variables Ωxi that minimizes the prediction skill for xi (fX, Yg in Fig. 1B). For
this purpose, we first define the prediction skill in this paper as

ρΩxi
= ρ

�
xi, yðXΩxi jESNjÞ

�
= e�‖xi�yðX

Ωxi jESNjÞ‖: [10]

Here, xi is the time series of target variable (blue lines in Fig. 1C), and
yðXΩxi jESNjÞ represents the prediction of xi given a set of variables XΩxi and an
ESN indexed by j (yellow lines in Fig. 1C). Practically, we calculated the predic-
tion skill after truncating the first 20% of the time series. This is intended to
remove the effect of initial condition (zð0Þ, Pð0Þ, andWoutð0Þ).

To prevent the results from being dependent on a particular network, the
evaluation of prediction skill is done by an ensemble of N ESNs. This allows us
to account for the estimation error in prediction skill and ensures more reliable
variable selection. Moreover, to avoid overfitting, the input is replaced by a zero
vector with a fixed probability at each time. This means that we eventually use
the following equation to update the reservoir state instead of Eq. 1:

zðtÞ = f
�
WinηXΩðtÞ + Wreszðt � 1Þ

�
, [11]

where η is a random number that is one with probability 0.5 and zero otherwise.
The progressive selection of variables proceeds as follows. First, the set of

indices of input variables to predict variable xi is initialized to Iactive = fig to
account for the predictability inherent in the target variable itself (first step in
Fig. 1B). Correspondingly, the set of indices of the rest of the variables is initial-
ized to Iinactive = fjgj≠i. Then, N ESNs are generated to perform predictions of xi
by setting Ωxi = Iactive (Fig. 1C). This returns a distribution of prediction skills
FT=0 (T indicates the step of variable selection). To select the next variable to be
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added, for each index jðhÞ in Iinactive, I
ðhÞ
test = IactivefjðhÞg are generated, where the

suffix h indicates that jðhÞ is the h th element of Iinactive, and then, for each I
ðhÞ
test , N

ESNs are generated to obtain predictions of xi by setting Ωxi = IðhÞtest (second
step in Fig. 1B). Among the distribution of the prediction skills for h, one
that has the highest median value (h = h�) is set as FT+1 (second step in
Fig. 1B). The criterion used to accept FT+1 as Ωxi = Iðh

�Þ
test is that the median of

FT+1 is larger than q × 100% of values in FT , formally written as
fρ ∈ FT jρ > medianðFT+1Þg=N < q, where fρ ∈ FjQg is the number of ρ in
F that satisfies the condition Q. If the criterion is satisfied, we replace FT by FT+1,
Iactive by I

ðh�Þ
test , Iinactive by Iinactive fjðh

�Þg (removing jðh
�Þ from Iinactive), and incre-

ment T by one, and proceed to the next step only if Iinactive ≠ fg; otherwise, the
procedure is stopped (third step in Fig. 1B) with returningΩxi = Iactive as the set
of the indices of optimal variables that maximizes the prediction of xi.

The number of ESNs generated for each evaluation, N, is related to the stabil-
ity of the results. If N is small, the variability in results from trial to trial may be
large, especially for weak causality. In this paper, we set N = 10,000 for real-
world data, to obtain stable results, and N = 5,000 for simulation datasets, to
reduce the time required for evaluation. The threshold value for accepting a new
variable, q, was set to 0.48 throughout this paper. The closer the number is to
0.5, the more likely it is that weak links will remain. Therefore, instead of increas-
ing the sensitivity (true positive rate), there is a possibility of decreasing the spe-
cificity (increasing the false positive rate). In this paper, the value is set close to
0.5, taking into account the evaluation by ROC-AUC.

Calculation of Unique Prediction Skill. Unique prediction skill quantifies
the unique contribution of a single variable to the overall prediction skill (Fig.
1D). For each j ∈Ωxi , the unique prediction skill is defined as

ρxj!xi = medianðFΩxi
Þ � medianðF

Ω
ð�jÞ
xi

Þ: [12]

Here, FΩ is the distribution of prediction skill forΩ, and

Ωð�jÞxi = Ωxi fjg, [13]

that is, Ωð�jÞxi is obtained by removing j from Ωxi . FΩxi
and F

Ω
ð�jÞ
xi

are again cal-

culated by N ESNs. ρxj!xi represents how xj uniquely contributes to the predic-
tion of xj (illustrated as the difference of the positions of two distributions in Fig.
1D). We identify ρxj!xi as the indicator of causal influence from xj to xi. In this

step, Ω
ð�jÞ
xi such that ρxj!xi ≤ 0 is removed from Ωxi , and we set ρxj!xi = 0

as well as other variables that are not included inΩxi.

Dataset. We benchmarked our method using both experimental and simula-
tion data (SI Appendix, section D) and then applied it to a long-term monitoring
dataset from a lake ecosystem. One of the benchmarking datasets was from
a real ecological system, which was obtained by long-term observation of a mes-
ocosm (33). The other datasets were obtained by simulations of two ecological
models, namely food web and random interaction models (all simulation condi-
tions are listed in SI Appendix, Table S1), and allowed us to examine how the

dynamic complexity of a time series affects identification of causal relationships,
and how the effects of two types of interaction topologies (chain and fan-out rela-
tionships) can cause false positives.

Lake Kasumigaura Long-Term Monitoring Dataset. We applied the Ecoh-
Net to the long-term monitoring data from Lake Kasumigaura, a hypereutrophic
lake. Lake Kasumigaura is the second largest lake in Japan (167.7 km2) and is
shallow (mean depth: ∼4 m; maximum depth: 7.4 m). The National Institute for
Environmental Studies has been conducting monthly monitoring in Lake Kasumi-
gaura since 1976 and publishing the long-term data on the Lake Kasumigaura
Database. In this lake, cyanobacteria blooms occur and disappear repeatedly, and
the dominant cyanobacteria group changes. Phytoplankton communities can
interact with many components, such as temperature, nutrients, and zooplankton,
and are complex and dynamic. Using EcohNet, we quantified the causal relation-
ships among environmental variables, seven dominant phytoplankton groups
(three cyanobacteria [Microcystis, Nostocales, Oscillatoriales] and four diatoms
[Thalassiosiraceae, Aulacoseira, Fragilaria, and Nitzschia), and zooplankton, and
examined the interactions among these phytoplankton groups.

We analyzed the monitoring data at the center of Takahamairi Bay (Station 3),
which is shallow (ca. 3.2 m) and the most eutrophic site with cyanobacteria
blooms. Phytoplankton biovolume data were obtained from Takamura and Naka-
gawa (79). For zooplankton, we used the abundance data of five functional
groups: large cladocerans (>1.0 mm), small cladocerans (<1.0 mm), rotifers,
adult calanoids, and adult cyclopoids (25). Zooplankton data were obtained from
Takamura et al. (80). Our key environmental variables were surface water temper-
ature, soluble reactive phosphorus (PO4-P), and nitrate nitrogen (NO3-N) from the
Lake Kasumigaura Database (81). We also included 30-d moving averages of
wind speed and precipitation, which were collected from the Tsukuba-Tateno
Meteorological Station of the Japan Meteorological Agency (https://www.jma.go.
jp/jma/menu/menureport.html). Since CCM, PCM, and LIMITS require taking con-
secutive time lags of observed variables, we analyzed data from April 1996 to
March 2019 (276 mo). There were no missing data for any variables during this
time interval. All time series were square-root transformed and normalized to
have a mean zero and variance of one to adjust for rapid increases in some phyto-
plankton species.

Evaluation. We evaluated the performance of EcohNet and conventional meth-
ods (SI Appendix, section A) in detecting interactions, using the evaluation criteria
of a binary classification task, namely, ROC-AUC, F1 score, accuracy, sensitivity,
and specificity (SI Appendix, Fig. S3). Since accuracy is affected by the degree of
connectance, we considered ROC-AUC and F1 score as criteria for overall perfor-
mance. We specifically considered prediction skill (EcohNet, CCM, and PCM),
correlation coefficient (Spearman rank correlation), and interaction coefficient
(LIMITS) as classifiers to identify interactions. We adjusted the sparsity of the
Spearman rank correlation matrix based on the P value; that is, we made the cor-
relation matrix sparse by replacing elements with P > 0:01 with zero. In the
same manner, we set the threshold P value of CCM as 0.05 (SI Appendix, section
A2). For PCM, following the author implementation (28), we used the value of
prediction skill instead of the P value and set the threshold as 0.2. For LIMITS, as
in EcohNet, the sparsity of an interaction matrix depends on the forward stepwise
algorithm. Here, the threshold value for the improvement of prediction error (SI
Appendix, section A4) was set as zero; that is, a new variable is added if it at least
improves the prediction.

In predator–prey relationships, species affect each other directly, whereas, in a
causal relationship, a relationship between species may only be detected in one
direction, due to a difference in the time dependence of each effect (5, 24, 25).
Therefore, in this paper, when evaluating EcohNet, CCM, and PCM for the long-
term mesocosm experiment and the food web models using the evaluation crite-
ria of the binary classification task, we consider the ability to detect interacting
pairs (pairs where at least one has a direct influence on the other). Specifically,
we symmetrized the matrices of the prediction skill of EcohNet, CCM, and PCM so
that aij, aji maxðjaijj,jaijjÞ before evaluation, and evaluated the performance of
prediction skill as a classifier in detecting elements for which i < j and whose val-
ues are nonzero in the actual interaction matrix. The matrix of Spearman rank cor-
relation, which is originally symmetric, was evaluated in the same manner. For
the random interaction model, we considered the ability of EcohNet, CCM, and
PCM to detect direct influences. Specifically, we tested the presence of influence

Table 1. Parameters of ESN-RLS

Description Value

Connectance of Win 1
Range of values in Win [�0.1, 0.1]
Number of nodes in Wres (nres) 32
Connectance of Wres 0.1
Range of values in Wres [�1, 1]
Spectral radius of Wres (ρ0) 0.95*
Forgetting factor (λ) 0.95*
Number of iterations of RLS updates (τ) 8*
Regularization factor (δ) 0.001*

*For these parameters, we tested the impact on EcohNet’s performance with
different values. The tested values are τ ∈ f2,4,6,8,10g, λ ∈ f0:8,0:9,0:95,0:98,0:995g,
δ ∈ f0:0001,0:001,0:01,0:1g, and ρ0 ∈ f0:7,0:8,0:9,0:95,0:98g.
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from one species to another (corresponding to a nonzero aij in the interaction
matrix) when there are causal links from the former to the latter. For LIMITS, we
evaluated the performance of detecting nonzero components of the interaction
matrix directly in all cases, according to its original definition.

Data, Materials, and Software Availability. We used Mathematica 12.3
and 13.1 for our analysis. The computer codes and data used for the analysis
can be downloaded from GitHub(82).
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