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Abstract: Advanced Glycation End Products (AGEs) have been positively correlated with inflam-
mation in adults, while inconsistent evidence is available in children. We evaluated the association
between urinary AGEs, measured by fluorescence spectroscopy, and biomarkers of subclinical in-
flammation in 676 healthy children/adolescents (age 11.8 ± 1.6 years, M ± SD) from the Italian
cohort of the I.Family project. Urinary fluorescent AGEs were used as independent variable and
high-sensitivity C-reactive protein (hs-CRP) was the primary outcome, while other biomarkers of
inflammation were investigated as secondary outcomes. Participants with urinary AGEs above the
median of the study population showed statistically significantly higher hs-CRP levels as compared
to those below the median (hs-CRP 0.44 ± 1.1 vs. 0.24 ± 0.6 mg/dL, M ± SD p = 0.002). We found
significant positive correlations between urinary AGEs and hs-CRP (p = 0.0001), IL-15 (p = 0.001),
IP-10 (p = 0.006), and IL-1Ra (p = 0.001). At multiple regression analysis, urinary AGEs, age, and
BMI Z-score were independent variables predicting hs-CRP levels. We demonstrated for the first
time, in a large cohort of children and adolescents, that the measurement of fluorescent urinary AGEs
may represent a simple, noninvasive, and rapid technique to evaluate the association between AGEs
and biomarkers of inflammation. Our data support a role of AGEs as biomarkers of subclinical
inflammation in otherwise healthy children and adolescents.

Keywords: advanced glycation end products; urinary AGEs; inflammation; CRP; biomarkers; chil-
dren; I.Family project

1. Introduction

Advanced glycation end products (AGEs) are a heterogeneous group of compounds
resulting from a spontaneous non-enzymatic and non-selective reaction between reducing
sugars and proteins, known as a Maillard reaction [1,2]. The two major sources of human
exposure to AGEs are: endogenous AGEs, generated by abnormal glucose metabolism or
as a byproduct of lipid peroxidation, and exogenous AGEs, present in foods.

More than 20 different AGEs have been identified. They can be classified in different
groups based on their chemical structures and ability to emit fluorescence [3,4]. A recent
review proposed the following classification for the numerous AGEs identified in vivo and
in vitro [3]: (1) Fluorescent and cross-linked (fluorescent/crosslinked); (2) Nonfluorescent
and non-cross-linked (nonfluorescent/non-cross-linked); (3) Nonfluorescent protein cross-
linked; (4) Fluorescent non-cross-linked. The majority of AGEs that have been identified so
far are characterized by fluorescence in the area around an excitation wavelength of 370 nm
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and an emission of 440 nm, thus AGE-specific fluorescence has been widely used to detect
accumulation of fluorescent AGEs, such as pentosidine, in body fluids and tissues [5–9].

Small amounts of AGEs are generated in vivo as a normal consequence of metabolism,
and, in normal physiological conditions, the rapid turnover of intracellular proteins and the
action of pathways for AGE detoxification protect the tissues from high AGEs accumulation
and their subsequent chemical damage [2]. However, during aging and under pathologic
conditions, these defense systems are unable to properly prevent AGEs production [10].

Whatever their origins, AGEs bind their cell receptor (RAGE), initiating a cascade
of intracellular signals that induce the release of inflammatory cytokines and produce
higher levels of reactive oxygen species (ROS) [11]. The activation of AGE–RAGE axis
is currently considered the principal mechanism by which AGEs activate inflammatory
processes [12]. Specifically, the AGE–RAGE interaction triggers the sustained activation
of Nuclear Factor kappa B (NF-kB) which translocates from the cytoplasm to the nucleus,
stimulating gene transcription of pro-inflammatory cytokines and activation of Mitogen-
Activated Protein Kinase (MAPK) pathway, thus providing a positive feedback mechanism
to amplify the inflammatory response [13–17]. Moreover, the binding of AGEs to RAGE
increases the levels of ROS through activation of Nicotinamide Adenine Dinucleotide
Phosphate (NADPH) oxidase and mitochondrial pathways; consequently, the activity
of superoxide dismutase (SOD), catalase and, indirectly, other endogenous antioxidant
defenses are decreased [18].

To date, there is consistent experimental and pre-clinical evidence of the adverse
role of AGEs in several chronic inflammatory conditions, namely diabetic complications,
cardiovascular, kidney, and neurodegenerative diseases [12,19–21]. Furthermore, there is
growing evidence of the impact of AGEs on metabolic health and the onset of metabolic
syndrome as well as obesity [22].

Although the molecular mechanisms by which AGEs are implicated in the pathogen-
esis of a wide range of diseases are not fully elucidated, AGEs have been proposed as
a biomarker of inflammation [19]. Circulating AGEs correlate with indicators of inflam-
mation and oxidative stress in obese adults with metabolic syndrome, but similar, albeit
weaker, correlations were also evident in obese adults without metabolic syndrome [23],
suggesting that circulating AGEs may reflect the presence of subclinical inflammation even
in otherwise healthy adults. In children, the links between AGEs, and inflammation are not
well defined, with pediatric studies showing contrasting results, probably due to different
demographic and clinical characteristics, along with relatively small sample sizes [24–28].

According to a comprehensive list of inflammatory markers compiled by Calder et al. [29],
the major inflammation signals being explored in human studies are, among others, CRP and
cytokines, notably Interleukin 6 (IL-6) and Tumor necrosis factor alpha (TNF-α). In particular,
CRP is a sensitive biomarker of inflammation with a proven record of clinical use and well-
established protocols for its analysis and detection. Elevated CRP, for instance, has long been
considered as a risk indicator of cardiovascular disease [30], and increase in CRP level is also
observed in a number of metabolic disorders, including obesity [31]. Interestingly, we showed
that healthy children with higher baseline levels of high-sensitivity C-Reactive Protein (hs-
CRP) were at higher risk of developing overweight/obesity during growth [32]. Experimental
evidence suggests that AGEs may be involved in the regulation of inflammatory markers,
including CRP synthesis, via stimulation of IL-6 and IL-1b [33], or through the interaction of
AGEs with their receptor RAGE [34,35].

Despite the accumulating evidence on the role of AGEs in diverse pathological condi-
tions, there are no widely accepted analytical methods to determine the amounts of AGEs
in body fluids [3]. Different methodologies for the analysis of AGEs were proposed, each
of them presenting advantages and disadvantages. Among them, the relatively easy and
inexpensive spectrofluorimetric assay allows the quantification of fluorescent AGEs in
body fluids and would be useful as a screening test in population settings. In particular, it
has been used to test the association between urinary AGEs and metabolic syndrome [36],
and to discriminate urinary AGEs excretion over a wide range of kidney failure [37], thus
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suggesting the usefulness of this method as a rapid test for determining the association
of AGEs with related pathological conditions. The non-invasive measurement of urinary
fluorescent AGEs may be particularly appropriate for large scale studies in children and
adolescent populations.

The aim of the present study is to evaluate the association between urinary AGEs,
measured by fluorescence spectroscopy and markers of subclinical inflammation [29] in
children/adolescents of the Italian cohort of the I.Family study. The association of the
urinary fluorescent-AGEs with hs-CRP was the primary outcome of the study, while the
secondary outcomes included the association of urinary fluorescent-AGEs with other
inflammatory markers.

2. Materials and Methods
2.1. Experimental Design and Cohort

The I.Family project, which aimed to assess the determinants of eating behavior in
children and adolescents of eight European countries and related health outcomes, was
built on the IDEFICS cohort, established in 2006 and followed up in 2012–2013 [38]. Briefly,
the Italian cohort of the I.Family project was composed by 1522 children and teens who
underwent a general examination module [38]. Among them, 929 participants provided a
fasting urine sample for AGEs determination. Finally, after the exclusion of 253 participants
with incomplete dataset, 676 cases were included in the present analysis. The flow chart of
the selection process is shown in Figure 1. The study was conducted in accordance with the
Declaration of Helsinki and approved by the Ethics Committee of the local Health Authority
(ASL Avellino), and informed written parental consent was obtained for each participant.
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Figure 1. Flow chart of participants included in the final analysis.

Registration: The Pan-European IDEFICS/I.Family children cohort is registered under
ISRCTN62310987. Date assigned: 23 February 2018.

2.2. Sample Processing and Analytical Procedures

A detailed description of sample collection and analytical procedures has been pre-
viously published [39]. The fasting venous blood was collected in BD Vacutainer ® blood
collection tubes according to standard operating procedures [39]. Samples were processed
at the local survey centers and shipped to the central biorepository and to the clinical
laboratory for analysis at regular intervals. At the first visit at the study center, a collection
cup and instructions were given to the children and adolescents or their parents for the
collection of morning urine samples. The morning urine was collected at home and brought
to the study center on the same day (94% of the samples were first morning urine). No
preservative was used, but parents were instructed to cool down the urine sample in the
home fridge if the time span between collection and handing over at the study center
exceeds two hours. At the study center, urine samples were stored at − 80 ◦C on the same
day of collection.
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2.3. Inflammatory Biomarkers

Inflammatory markers were measured by ELISA using electrochemiluminescent mul-
tiplex assay (using either single or MULTI-SPOT® Assay Systems, Meso Scale Discovery-
MSD, Rockville, MD, USA) on serum samples stored at −80 ◦C. A previous method-
ological study showed an overall good reliability of this method for the measurement of
cytokines [40]. hs-CRP was measured with a single-plex assay, while Interferon gamma-
induced protein 10 (IP-10), Interleukin 15 (IL-15), Interleukin 6 (IL-6), Interleukin 8 (IL-8),
Tumor necrosis factor alpha (TNF-α), and interleukin-1 receptor antagonist (IL-1Ra) were
run together on a 6-plex assay. The combination of biomarkers for the assays were de-
cided based on the feasibility of combinations with the help of MSD customer support, as
previously described [41].

2.4. Fluorescence

Urinary fluorescent-AGEs measurements were performed on a Perkin Elmer Life-
Sciences LS 55 spectrofluorimeter. Urine samples were diluted at 1:10 in phosphate-buffered
saline, and fluorescence spectra were recorded between 400 nm and 600 nm, upon excitation
at 370 nm, at room temperature. The fluorescence intensity was measured in correspon-
dence of emission maximum centered at 440 nm and was corrected by subtracting the
background. As the urinary AGEs concentration depends on the urine volume, the rela-
tive fluorescence intensity (expressed in arbitrary units, AU) was adjusted for the urinary
creatinine concentration expressed as g/L. Urinary creatinine was measured by a colori-
metric assay based on Jaffe’s reaction (COBAS INTEGRA 400 plus, Roche Diagnostics Ltd.,
CH-6343 Rotkreuz, Switzerland).

2.5. Anthropometric and Blood Pressure Measurements

A detailed description of the anthropometric measurements in the I.Family project,
including intra- and inter-observer reliability, has been published elsewhere [42]. Briefly,
weight was determined to the nearest 0.1 kg using a body composition analyzer (Tanita BC
420 SMA, Tanita Europe GmbH, Sindelfingen, Germany) with participants in fasting status,
without shoes and with light clothing. Height was measured with a calibrated stadiometer
(Seca 225, Seca GmbH & Co., KG., Hamburg, Germany) and recorded to the nearest 0.1 cm.
BMI was calculated by dividing body weight (in kg) by height squared (in m2). Age- and
sex-specific BMI z-scores were calculated according to Cole and Lobstein [43].

Blood pressure measurement was performed during the day of the physical examina-
tion, in a quiet and warm room. Systolic BP (SBP) and diastolic BP (DBP) were measured at
the right arm while the child was in a seated position with the back supported, uncrossed
legs, feet on the floor, with the upper arm at the heart level. Children were asked to sit for at
least 5 min before the measurement, and they were advised to avoid stimulant food/drinks
and physical activity within the last 30 min before measurement. An automated oscillomet-
ric device (Welch Allyn 4200B-E2 Inc, Skaneateles Falls, NY, USA) [44] was used according
to a standardized procedure. For the choice of the appropriate cuff size, arm circumference
was measured using an inelastic tape (Seca 200, Birmingham, UK). Detailed procedures
have been previously described [45]. Two measurements were taken with 2 min intervals,
plus a further one in the case of a >5% difference in BP between the first two readings.

2.6. Medical History and Medication Use

Parents reported medication use and medical history for their children by means of an
interview based on the health and lifestyle questionnaire. Parents were specifically asked
to indicate whether their child had taken any kind of medication, including self-prescribed
drugs, vitamins, and mineral supplements, during the week before blood sample drawing.

2.7. Statistical Analysis

In the descriptive analysis, urinary AGEs concentration was reported as median
and interquartile range (IR). Normally distributed continuous variables were reported
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as Mean ± SD. Correlation analyses between continuous variables were performed us-
ing Spearman’s rho (ρ) for non-normally distributed data. The study population was
stratified into two groups, using the median of urinary AGEs concentration as cut-points.
The difference in hs-CRP between the two groups were tested with the Mann–Whitney
U-test for non-normally distributed data.

Univariate linear regression analysis was performed to study the association between
urinary AGEs as dichotomous exposure variable, and hs-CRP as an outcome variable.
hs-CRP was log-transformed to achieve normally distributed residuals. To identify possible
confounders, we included in the regression variables that could theoretically affect hs-
CRP, namely age (continuous exposure), sex (dichotomous exposure), and BMI Z-score
(continuous exposure). IBM SPSS Statistics (Version 23.0. IBM Corp., Armonk, NY, USA)
was used for the statistical analyses, and statistical significance was accepted at p-value less
than 0.05.

3. Results

In Table 1, the study population is presented according to the median of urinary
AGEs. The median urinary AGEs concentration was 27,500 AU/g creatinine (interquartile
range 11,700 AU/g creatinine). hs-CRP levels were significantly higher in participants with
urinary AGEs concentration above the median (p = 0.002), while no significant differences
between the two groups were observed with regard to sex distribution, age, anthropometric
parameters and blood pressure.

Table 1. Characteristics of the study population stratified by the median of urinary AGEs.

Below Median
(n 361)

Above Median
(n 315) p-Value

Urinary AGEs (AU) 230.4 ± 49.0 384.3 ± 123.0 0.0001

Sex (F/M %) 45.3/54.7 48.6/51.4 0.457

Age (years) 11.8 ± 1.6 11.8 ± 1.7 0.876

Height (cm) 151.3 ± 11.6 151.2 ± 11.2 0.232

Weight (kg) 50.5 ± 13.8 51.1 ± 15.0 0.578

BMI z-score 1.2 ± 1.0 1.3 ± 1.1 0.294

SBP (mm Hg) 108.0 ± 9.0 108.4 ± 9.7 0.565

DBP (mm Hg) 65.0 ± 6.4 65.4 ± 6.4 0.343

hs-CRP (mg/dL) 0.24 ± 0.6 0.44 ± 1.1 0.002 *
M ± SD; *: Mann–Whitney U-test for non-normally distributed data. Urinary AGEs: fluorescence intensity
(expressed in arbitrary units, AU) adjusted for the urinary creatinine; BMI z-score: Age- and sex-specific BMI
z-score, calculated according to Cole and Lobstein [43]; SBP: systolic blood pressure; DBP: diastolic blood pressure.

Table 2 shows the correlations between urinary AGEs and parameters of inflamma-
tion in the entire study population. At univariate analysis, statistically significant and
positive associations were observed between urinary AGEs and hs-CRP (p = 0.0001), IP-10
(p = 0.006), IL-15 (p = 0.001), and IL-1Ra (p = 0.001).
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Table 2. Correlations between the urinary advanced glycation end products (AGE)-specific fluores-
cence intensity and the investigated inflammation parameters.

Inflammation Parameters Urinary AGEs

Correlation Coefficient
(Spearman’s Rho)

p-Value
(2 Tailed)

hs-CRP 0.258 0.0001

IP-10 0.105 0.006

IL-15 0.131 0.001

IL-6 0.050 0.198

IL-8 −0.007 0.848

TNF-α 0.004 0.912

IL-1Ra 0.138 0.001
N = 676; Urinary AGEs: fluorescence intensity (expressed in arbitrary units, AU) adjusted for the urinary creatinine;
hs-CRP: high sensitivity C-reactive protein; IP-10: Interferon gamma-induced protein 10; IL-15: Interleukin 15; IL-6:
Interleukin 6; IL-8: Interleukin 8; TNF-α: Tumor necrosis factor alpha; IL-1Ra: interleukin-1 receptor antagonist.

At linear regression analysis, urinary AGEs, age, and BMI Z-score were predictors of
hs-CRP levels, with urinary AGEs concentration above the median associated with higher
hs-CRP levels (p = 0.003) (Table 3).

Table 3. Linear regression analysis model with hsCRP concentration as a dependent variable.

Dependent Variable Independent
Variables B (SE) p-Value

hsCRP(Ln) mg/dl

Sex (m/f) −0.023 (0.064) 0.719

Age (years) −0.050 (0.020) 0.011

BMI z-score 0.175 (0.030) 0.0001

Urinary AGEs
(category) 0.189 (0.064) 0.003

SE: standard error; hsCRP(Ln): high sensitivity C-reactive protein (log transformed); BMI z-score: Age- and
sex-specific BMI z-score, calculated according to Cole and Lobstein [43]; (category): category defined according to
the median of fluorescence intensity (expressed in arbitrary units, AU) adjusted for the urinary creatinine.

4. Discussion

In the present paper, we report the findings of the largest analysis of the association
between AGEs and biomarkers of inflammation in a population of free-living healthy
children and adolescents. This study is, to our knowledge, the first to demonstrate that
urinary AGE fluorescence intensity is positively associated with markers of sub-clinical
inflammation in otherwise healthy children and adolescents. Although the contribution of
AGEs to the inflammatory state has been typically observed in chronic, age-related inflam-
matory diseases [12], our findings suggest that there is potential for urinary fluorescent
AGEs as early biomarkers of subclinical inflammation in children and adolescents.

Only a few studies specifically evaluated the association of AGEs and markers of
inflammation in children and adolescents. Accacha et al. examined the association of the
AGE Nε-carboxymethyl-lysine (CML) with inflammatory markers in 88 middle school-age
children, suggesting that, at variance with studies in adults, CML was negatively associated
with IL-6 [25]. Heier et al. reported that serum methylglyoxal-derived hydroimidazolone-1
(MG-H1), an AGE compound present in serum and tissues, was positively associated
with C-reactive protein in children and adolescents with diabetes [26]. Garay-Sevilla et al.
did not find any correlation between serum CML and markers of inflammation, namely
IL-6 and TNF-α in 80 normal weight and 80 obese Mexican adolescents [27]. Corica et al.
showed that serum concentration of AGEs, measured by spectrofluorimetric detection, was
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positively associated with CRP in a pediatric cohort [28]. The relative discrepancy of the
aforementioned findings may be attributable to different factors, including different demo-
graphic and clinical characteristics, relatively small sample sizes, and different methods
used for the measurement of AGEs. Our choice to measure fluorescent AGEs in the urine
was supported by previous evidence [36,37,46,47] and was dictated by the need to identify
a non-invasive and non-expensive marker to be used in large scale population screening in
pediatric populations.

In 1998, Yanagisawa et al. measured AGE-specific fluorescence in the serum and
urine of diabetic subjects [46]. They observed a significant correlation between serum and
urinary concentration of fluorescent AGEs. There was a significant correlation between
AGE–peptide levels measured by enzyme-linked immunosorbent assay (ELISA) and levels
determined from the specific fluorescence intensity. De La Maza et al. used fluorescence
spectroscopy to evaluate urinary excretion of AGEs in diabetic and non-diabetic elderly [47].
More recently, Suehiro et al. measured urinary AGEs using a fluorescence assay in 387
Japanese adults with or without metabolic syndrome [36]. Their findings suggest that
the measurement of urinary fluorescent AGE levels may be useful as a simple test for
the screening of metabolic syndrome [36]. In 2020, Steenbeke et al. aimed to investigate
the possibilities of fluorescence spectroscopy to detect urinary AGEs in patients with
different degrees of kidney insufficiency and in healthy controls [37]. They showed that UV
fluorescence is a fast, simple, and affordable method for detecting urinary AGEs in patients
with chronic kidney diseases. Interestingly, they also observed a positive correlation
between the urinary AGE fluorescence intensity and the CRP levels, thus confirming the
role of AGEs as markers of inflammation.

Urinary excretion of AGEs may indeed reflect tissue AGEs accumulation and provide
an estimate of the recent exposure of the body to AGEs [48]. Having in mind that no
standardized method for the measurement of AGEs has been proposed so far [3], the
estimation of fluorescent AGEs in urine represents a non-invasive method to be used
for research purposes, and, in perspective, could be proposed for monitoring subclinical
inflammation in population groups, apparently free of overt disease, like healthy children
and adolescents. The discussion of the methods that have been developed to measure the
concentration of AGEs in different human fluids is far beyond the scope of this paper and
has been extensively reported elsewhere [3]. Briefly, the advantages of the measurement of
fluorescent AGEs in urine are the relative simplicity and affordability as compared to other
methods commonly used to measure AGEs such as ELISA, HPLC, and LC-MS/MS. On the
other hand, this method also presents important drawbacks. For instance, it does not allow
to identify the specific molecules responsible for the fluorescent signal, and it provides only
the quantification of fluorescent AGEs, while in the urine non-fluorescent AGEs, CML, and
MG-H1 are also present, thus possibly underestimating the amount of urinary AGEs [3].

A strength of the present study is the use of precisely standardized phenotypic mea-
surements in study participants. In fact, all measurements were conducted according to
standard operating procedures reported in detail elsewhere [49]. A limitation is the use
of a single measurement of hs-CRP and urinary AGEs. However, the biological plausi-
bility of the association between urinary AGEs excretion and inflammation is supported
by the measurement of other inflammatory biomarkers, mainly confirming the direc-
tion of the association. It also needs to be acknowledged that a potential limitation of
our study is its cross-sectional design, which does not allow the demonstration of any
pathogenetic mechanism.

5. Conclusions

The main discovery in this study is that urinary AGE fluorescence intensity is posi-
tively associated with markers of sub-clinical inflammation in otherwise healthy children
and adolescents. This method could represent a simple alternative for detecting AGEs
levels as biomarkers of different pathologies in epidemiological settings with respect to
more sophisticated ones requiring trained personnel, laboratory facilities, and financial
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resources. However, the above-described methodological limitations of the fluorescent
AGEs measurement should be kept in mind, and confirmation of the present findings with
other quantification methods would be warranted.
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