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Fluorescence-enhanced optical imaging using near-infrared (NIR) light developed for in vivomolecular targeting and reporting of
cancer provides promising opportunities for diagnostic imaging. The current state of the art of NIR fluorescence-enhanced optical
tomography is reviewed in the context of the principle of fluorescence, the different measurement schemes employed, and the
mathematical tools established to tomographically reconstruct the fluorescence optical properties in various tissue domains. Finally,
we discuss the recent advances in forward modeling and distributed memory parallel computation to provide robust, accurate, and
fast fluorescence-enhanced optical tomography.

1. Introduction

Over the past two decades, there has been a considerable
interest in the use of near-infrared (NIR) light for deep tissue
imaging. Briefly, NIR optical imaging takes advantage of the
wavelength range of around 650–900 nm, wherein the major
tissue chromophores such as hemoglobin, lipid, and water
exhibit their lowest absorption coefficients [1]. Additionally,
the interference from tissue autofluorescence is minimized in
this wavelength regime, which can further enhance optical
imaging contrast [2]. NIR optical imaging is based on the
principle of launching NIR light onto the tissue surface
and detecting the scattered and attenuated NIR signal. The
normal tissues are differentiated from the diseased tissues
based on the inherent differences (termed as endogenous
contrast) in the optical properties (in terms of absorption and
scattering coefficient) of the tissue medium, thus providing
physiological information about the tissue. For example, the
clinical application ofNIR optical imaging technique towards
breast cancer diagnosis is based on the intrinsic absorp-
tion contrast originating from the tumor angiogenesis and
the hypervascularization of tumor periphery [3]. However,
the angiogenesis-mediated absorption contrast approaches
cannot effectively detect the early cancer and assessment

of sentinel lymph node staging, metastatic spread, and
multifocality of breast disease [4]. By the use of exogenous
NIR fluorochromes and reporter probes, NIR optical imaging
technique can overcome these limitations.

Fluorescence-enhanced optical imaging involves the use
of fluorescent contrast agents in order to enhance the
optical contrast between normal and diseased tissues. In
fluorescence-enhanced optical imaging process, when NIR
light at the excitation wavelength is launched onto the tissue
surface, the photons propagate into the tissues, during which
they are minimally absorbed and preferentially scattered.
Upon encountering a fluorescent molecule, the photons
excite the fluorescent molecules from their ground state to
a higher orbital level. After residing at the higher energy
orbital for a period defined as the fluorescence lifetime, the
fluorescentmolecule emits fluorescent signal of greater wave-
length than the incident NIR light. The quantum efficiency
of the fluorescent emission (𝜙) is the fraction of excited dye
molecules, or activated fluorophores, which relax radiatively.
The emitted fluorescent signal along with the perturbed
excitation signal propagates in the tissue, before they are
detected at the tissue surface. Fluorescence-enhanced optical
imaging can potentially offer a high specificity and sensitivity
in detecting the early cancer and assessment of sentinel lymph
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Figure 1: Different measurement approaches in optical imaging: (a) continuous wave, (b) time-domain photonmigration, and (c) frequency-
domain photon migration.

node staging, metastatic spread, and multifocality of breast
disease and provide information about the environment
of the fluorophore molecules as well as their location by
appropriate analysis of reemitted fluorescence signal.

Many fluorescence optical imaging techniques are avail-
able for imaging surface (∼1mm) and subsurface (∼4mm)
fluorescent events (microscopic and macroscopic imaging
modalities with respect to the resulting resolution). The
microscopic fluorescence imaging techniques mainly consist
of confocal reflectance imaging, multiphoton microscopy,
and multiphoton laser scanning microscopy [5]. Owing to
the restricted field of view (less than 1mm in diameter),
the microscopic imaging techniques are the most inefficient
means to image the small size tissue. Macroscopic fluo-
rescence reflectance imaging (FRI) techniques offer simple
photographic methods, in which an array is used for point
delivering of laser energy and point collecting of generated
fluorescence; or an expanded excitation beam is employed
for area illumination and an array detector or an area
detector (CCD or CMOS camera) is used for capturing the
generated fluorescence on whole small animal or the large
size tissue [6, 7]. Appropriate combination of filters is gener-
ally introduced to separate the generated fluorescence from
strong background excitation light [2, 8]. FRI technique has
several limitations, including nonuniformity of the expanded
excitation beam, incapability to quantify the fluorochrome,
and low imaging quality contaminated by intrinsic light from
different tissue layers. Hence, this technique is suitable for
imaging of superficial structure andmay engender feint if one
has not accounted for nonlinear effect dependence on lesion
depth and tissue optical properties [9]. In order to resolve
and quantify fluorochromes deeper into tissue, tomographic
approaches are necessary.This review is focused on themath-
ematical tools developed towards two-/three-dimensional
(2D/3D) fluorescence-enhanced optical tomography.

2. Measurement Approaches

In general, diffuse (nonfluorescence) or fluorescence-en-
hanced optical imaging is performed using one of the three
measurement approaches: (i) the continuous wave (CW)
domain, (ii) the time-domain photon migration (TDPM),

and (iii) the frequency-domain photon migration (FDPM)
(see Figure 1) [10, 11].

2.1. Continuous Wave-Based Measurement Approach. In a
CW-based measurement approach, the incident excitation
energy from a source (i.e., source intensity) is constant over
timescale of milliseconds or modulated at low frequency
(a few kHz) and the reemitted fluorescence energy from
exogenous agents is likewise constant (see Figure 1(a)). As the
excitation light travels through the absorption and scattering
medium, it is exponentially attenuated with respect to the
incident light. The amount of fluorescence generated from a
fluorochrome within the tissue is proportional to the product
of the fluorochrome concentration, quantum efficiency, and
the local excitation fluence. The propagation of NIR light
through tissue is well described by diffusion equation derived
from the radiative transport equation [12, 13]. Coupled
diffusion equations are employed in order to predict the
fluorescence light generation and propagation in tissue, and
the equations are given by

∇ ⋅ (𝐷𝑥 ( ⃗𝑟) ∇Φ𝑥 ( ⃗𝑟)) − (𝜇𝑎𝑥𝑖 + 𝜇𝑎𝑥𝑓) ( ⃗𝑟) Φ𝑥 (⇀𝑟 )
= −𝑆𝑥 (⇀𝑟 ) ,

∇ ⋅ 𝐷𝑚 (⇀𝑟 )∇Φ𝑚 (⇀𝑟 ) − (𝜇𝑎𝑚𝑖 + 𝜇𝑎𝑚𝑓) (⇀𝑟 )Φ𝑚 (⇀𝑟 )
= 𝜙𝜇𝑎𝑥𝑓 (⇀𝑟 )Φ𝑥 (⇀𝑟 ) ,

(1)

where Φ represents the fluence and 𝜇𝑎 is the absorption
coefficient (cm−1), where the subscripts 𝑥 and𝑚 correspond
to excitation and emission wavelength, respectively, and the
subscripts 𝑖 and𝑓 denote the chromophores (i.e., the endoge-
nous chromophores in tissues) and fluorophores or exoge-
nous fluorescing agents, respectively; 𝑆𝑥 is the excitation
photon source; ⃗𝑟 is the positional vector at a given point. The
excitation fluence, Φ𝑥, couples the diffusion equations (1).
The optical diffusion coefficients at the excitation wavelength𝐷𝑥 and emission wavelength𝐷𝑚 are given by

𝐷𝑥,𝑚 ( ⃗𝑟) = 13 [𝜇𝑎𝑥,𝑚 ( ⃗𝑟) + 𝜇𝑠𝑥,𝑚 ( ⃗𝑟)] , (2)

where 𝜇𝑠 is the reduced optical scattering coefficient (cm−1).
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The CW-based measurement approach is relatively sim-
ple and requires an inexpensive instrumentation setup.
However, this method cannot image the fluorescence decay
kinetics (lifetime) nor resolve the scattering and absorption
properties of tissue [9].These limitations can be overcome by
using time-dependent measurement approaches (TDPM and
FDPM) as described below.

2.2. Time-Domain Based Measurement Approach. In a time-
domain based measurement approach, ultrafast (with dura-
tion range from picosecond to femtosecond) laser pulses
are employed to illuminate the tissue and the generated
fluorescent signals are detected by a streak camera, time-
gated CCD camera, or time-correlated single photon count-
ing device. When a light pulse is launched onto the tissue, its
profile will be broadened with nanosecond “time-of-flight”
(see Figure 1(b)). The generated fluorescence pulse before
being recorded is further broadened owing to the lifetime
of the fluorochrome and latterly its propagation inside the
scattering tissue. As a result, the recorded fluorescence can
be regarded as a function of time at different locations within
tissue. In TDPM measured approach, the coupled diffusion
equations describing the generation and propagation of a
fluorescent wave can be written as [14–17]

∇ ⋅ (𝐷𝑥∇Φ𝑥 ( ⃗𝑟, 𝑡))
− (𝜇𝑎𝑥𝑖 + 𝜇𝑎𝑥𝑓) ( ⃗𝑟) Φ𝑥 (⇀𝑟 , 𝑡) = 1𝑐𝑥

𝜕Φ𝑥 (⇀𝑟 , 𝑡)𝜕𝑡
− 𝑆𝑥 (⇀𝑟 , 𝑡) ,

1𝑐𝑚
𝜕Φ𝑚 (𝑟, 𝑡)𝜕𝑡 − ∇ ⋅ 𝐷𝑚 ( ⃗𝑟) ∇Φ𝑚 (𝑟, 𝑡)
+ (𝜇𝑎𝑚𝑖 + 𝜇𝑎𝑚𝑓) ( ⃗𝑟) Φ𝑚 (𝑟, 𝑡)
− 𝜙𝜇𝑎𝑥𝑓 ( ⃗𝑟)𝜏 ∫𝑡

0
exp[−(𝑡 − 𝑡)𝜏 ]Φ𝑥 (𝑟, 𝑡) 𝑑𝑡 = 0,

(3)

where 𝑐𝑥 and 𝑐𝑚 represent the velocity of light at excitation
and emission wavelengths (cm/sec), respectively; 𝑡 and 𝑡
denote the photon traveling time (sec) in the tissue and𝜙 represents the quantum efficiency. The coupled diffusion
equations above assume that fluorochrome exhibits first-
order single-exponential fluorescent decay kinetics with a
constant fluorescence lifetime 𝜏. In the case of multiexponen-
tial decay kinetics and reabsorption, a similar fluorescence
photon density equation can be derived by incorporating the
average fluorescence lifetime [18].

In comparison to the CW-based approach, TDPM
approach is capable of discriminating the fluorescence decay
kinetics from the changes in fluorochrome concentration.
On the downside, the signal-to-noise ratio (SNR) of TDPM
approach suffers significantly and the cost and complexity of
the instrumentation are relatively high [9].

2.3. Frequency-Domain BasedMeasurementApproach. In a fre-
quency-domain based measurement approach, a modulated-
intensity light source at radio frequencies ranging from 30
to 200MHz is employed [2, 19]. FDPM is directly related
to TDPM through the Fourier transform. As the intensity-
modulated light propagates through the high scattering
tissue, it becomes amplitude attenuated and phase-shifted
relative to the incident light. Before reaching detectors,
the generated fluorescence is further attenuated and phase-
shifted owing to the quantum efficiency, lifetime of the
fluorochrome, and absorption and scattering properties of
the intervening tissue (Figure 1(c)). In FDPM, the coupled
diffusion equations for light propagation at a given modula-
tion frequency of light are given by [14–16]

− ∇ ⋅ [𝐷𝑥 (⇀𝑟 )∇Φ𝑥 ( ⃗𝑟, 𝜔)]
+ [(𝜇𝑎𝑥𝑖 + 𝜇𝑎𝑥𝑓) ( ⃗𝑟) + 𝑖𝜔𝑐𝑥 ]Φ𝑥 ( ⃗𝑟, 𝜔) = 𝑆𝑥 ( ⃗𝑟) ,

− ∇ ⋅ [𝐷𝑚 ( ⃗𝑟) ∇Φ𝑚 ( ⃗𝑟, 𝜔)]
+ [(𝜇𝑎𝑚𝑖 + 𝜇𝑎𝑚𝑓) ( ⃗𝑟) + 𝑖𝜔𝑐𝑚 ]Φ𝑚 (⇀𝑟 , 𝜔)
= 𝜙𝜇𝑎𝑥𝑓 11 − 𝑖𝜔𝜏Φ𝑥 (⇀𝑟 , 𝜔) ,

(4)

where 𝜔 corresponds to the modulation frequency of prop-
agating light. The fluence at excitation and emission wave-
length is given by Φ𝑥 = 𝐼AC,𝑥 exp(𝑖𝜃𝑥) and Φ𝑚 = 𝐼AC,𝑚(𝑖𝜃𝑚),
respectively, where 𝐼AC is the amplitude and 𝜃 is the phase
shift at excitation and emission wavelengths, respectively.

The FDPM-based instrumentation can be operated in a
non-light-tight environment due to the fact that the ampli-
tude of the detected fluorescence is insensitive to the ambient
light [20]. FDPM-based approach can also discriminate fluo-
rescence decay kinetics (similar to TDPM-based approach).
In addition, FDPM approach has an added advantage of
considerably high SNR with respect to TDPM approaches,
due to steady-state measurements of a time-dependent light
propagation process [21, 22]. This approach also retains the
signal dependency on fluorescence lifetime (as in TDPM),
which is otherwise missing in CW-based approach.

2.4. Boundary Conditions. The light propagation models
using either of the measurement approaches can be solved
by applying appropriate boundary conditions in the finite
medium. The three major boundary conditions include (i)
the partial current boundary condition, (ii) the extrapolated
boundary condition, and (iii) the zero-boundary condition.

2.4.1. Partial Current Boundary Condition. The partial cur-
rent boundary condition, which is representative of the real
physical system, states that the photon leaving the tissue
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surface never returns, and the Fresnel reflections at the air-
tissue interface are determined using a reflection parameter
[23]. The boundary condition is given by

Φ𝑥,𝑚 ( ⃗𝑟, 𝑤; ⃗𝑟, 𝑡) + 2𝛾𝐷𝑥,𝑚 ( ⃗𝑟) 𝜕Φ𝑥,𝑚 ( ⃗𝑟, 𝑤; ⃗𝑟, 𝑡)𝜕�⃗� = 0, (5)

where 𝛾 is the index-mismatch parameter, which is a function
of the effective refractive index at the boundary surface; �⃗� is
the unit surface vector normal to the imaging plane; 𝜔 and 𝑡
correspond to the frequency and time domain, respectively.

2.4.2. Extrapolated Boundary Condition. The extrapolated
boundary condition is a simplified form of the partial current
boundary condition [13, 24, 25] and can be implemented by
setting the fluence rate to zero at an extrapolated boundary
located at a distance, 𝑧𝑏, outside the domain:

Φ𝑥,𝑚 ( ⃗𝑟, 𝑤; ⃗𝑟, 𝑡) = 0 at 𝑧 = 𝑧𝑏. (6)

An approximate value for 𝑧𝑏 was estimated to include the
Fresnel reflection at the surface and is given in terms of the
index-mismatch parameter and diffusion coefficient as [26]

𝑧𝑏 = 2𝛾𝐷𝑥,𝑚 ( ⃗𝑟) . (7)

2.4.3. Zero Fluence Boundary Condition. In the zero fluence
boundary condition, the fluence at and outside the boundary
is set to zero:

Φ𝑥,𝑚 ( ⃗𝑟, 𝑤; ⃗𝑟, 𝑡) = 0 at 𝑧 = 0. (8)

This is a simpler boundary condition mathematically and it
is good approximation for biological tissues, but it does not
accurately represent the real physical system [13, 26].

3. Mathematical Tools in Fluorescence-
Enhanced Optical Tomography

The coupled diffusion equations are used along with one
of the boundary conditions above, in order to solve for the
parameter of interest. The optical tomography problem is
solved in three steps. As a first step, the interior optical
propertymapof the tissuemedium is assumedknown and the
coupled diffusion equations are solved for the fluence at either
wavelength (termed as forward problem). As a second step,
the fluence obtained from the forward model is compared to
the acquired boundary surface measurements (experimental
or simulated), in order to validate the light propagation
model employed for fluorescence-enhanced optical tomog-
raphy; in other words, model validation is performed on
known phantoms. As a third and final step, the acquired
boundary surface measurements are used along with the
coupled diffusion equations in order to estimate the interior
optical property map (termed as inverse problem); in other
words, inversions are performed assuming that the phantom
properties are unknown. In an actual experimental study
containing unknown phantoms, the acquired boundary sur-
face measurements are used along with the light propagation

model in order to solve the inverse problem (i.e., third
step) directly. Details of the forward and inverse problem in
fluorescence-enhanced optical tomography are described in
the following sections.

3.1. Forward Problem. In the forward problem of fluores-
cence-enhanced optical tomography, one may assume that
the optical properties of the entire tissue medium are known
in order to predict the boundary surface measurements (in
either of the threemeasurement approaches described in ear-
lier sections). The fluence governed by the coupled diffusion
equations can be estimated using empirical, analytical, and
numericalmethods as described in the following subsections.

3.1.1. Empirical Method. In the empirical method, the entire
domain is generally discretized into cubic elements (3D) or
square elements (2D) and each element corresponds to a
weight. Many investigators have utilized model systems to
empirically measure the weights. For instance, Fantini et al.
[27] have studied the variations of themeasured signals when
a small point-like absorbing target was introduced into an
otherwise homogenous medium. By moving the small target
to each element, a set of weights for a particular source-
detector pair was generated empirically. In the case of a semi-
infinite medium, this set of weights takes up the shape of
a banana function. The multiplication of the weights with
the optical properties (assumed known) of the entire tissue
medium in turn provides the fluence values. To date, empir-
ical methods have not been implemented for fluorescence-
enhanced optical tomography studies. However, these meth-
ods provide more realistic predication of the fluence and
have potential for their application in fluorescence-enhanced
optical tomography studies.

3.1.2. Analytical Method. In CW and FDPM domains, the
coupled diffusion equations can be reduced to their related
Helmholtz equations by making suitable assumptions and
approximations, such as the Born or Rytov approximation
[28]. Using Green’s function theorem, one can easily obtain
an integral expression for the emission fluence:

Φ𝑚 ( ⃗𝑟𝑠, ⃗𝑟𝑑)
= ∫
Ω
𝐺𝑓 ( ⃗𝑟𝑑, ⃗𝑟) 𝜙𝜇𝑎𝑥𝑓 ( ⃗𝑟)𝐷𝑚 ( ⃗𝑟) (1 − 𝑖𝜔𝜏)Φ𝑥 ( ⃗𝑟, ⃗𝑟𝑠) 𝑑Ω,

(9)

where Ω is the volume of integration, ⃗𝑟𝑑 and ⃗𝑟𝑠 are the
location of point detector and source, respectively, and ⃗𝑟 is
the point location in the region of interest. For an infinite
geometry, Green’s function is 𝐺𝑓( ⃗𝑟𝑑, ⃗𝑟) = exp(𝑖𝑘𝑚|⇀𝑟 𝑑 −⃗𝑟|)/4𝜋| ⃗𝑟𝑑 − ⃗𝑟|, where 𝑘𝑚 is the wave number. For the regular
boundaries, such as slab or semi-infinite geometry, Green’s
function can also be derived analytically by using an angular
spectrum algorithm [29] or a plane-wave expansion [30].
Although empirical and analytical methods are direct and
fast, they are applicable for regular boundaries. For arbitrary
boundary shapes, it is difficult to incorporate these irregular
shapes into the solution of the coupled equations analytically,
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and hence numerical methods (such as the finite difference
method, the finite element method, or the boundary element
method) are employed at the cost of computation speed.

3.1.3. Numerical Methods

(1) Finite Difference Method. In the finite difference method
(FDM), the entire domain is discretized into square (2D) or
cubic (3D) elements, respectively, and each node of every
element is assumed a known parameter. The mesh is finely
resolved in order to minimize the discretization error at the
cost of increasing dimensionality of the problem. Hence, the
forward problem becomes computationally intense in the
case of large 3D domain. This problem can be overcome by
using multigrid finite difference methods over single grid
method [31–34]. In the multigrid FDM, several sizes of gird
are employed simultaneously, such as using a coarse grid to
provide an initial guess to the solution on successive finer
grids. The process is continued until the desired resolution
is reached. Not only is the multigrid method faster than
the single grid method, but also the method reduces the
discretization errors, while maintaining the resolution of the
reconstructed image [31, 35].

(2) Finite Element Method.The finite element method (FEM)
[36–38] is suitable for any geometry involving the dis-
cretization of the entire domain into triangle elements (2D)
or tetrahedral, pyramidal, and hexahedral elements (3D).
However, unlike the finite difference methods, FEM can be
employed on curvilinear domains, such as the physiological
tissue shapes, which minimizes the discretization errors and
reduces the computational time in the inverse problem upon
appropriate coding [36–39]. Typically, the finite element
method is formulated using the Galerkin approximation,
where the second-order coupled diffusion equations are
converted to first-order differential equations. The solutions
of these first-order differential equations are in turn approx-
imated as a linear function in space within each finite
element. The challenges are in generating a finite element
mesh for an irregular object with complex internal structure
and developing a robust, efficient 3D meshing technique.
An adaptive finite element method has been proposed, in
which the maps of the forward/adjoint variables and the
unknown parameters are discretized separately in adaptively
refined meshes, enabling computationally efficiency during
tomographic reconstructions [40, 41].

In both the finite difference and finite element method,
discretization of the mesh plays a significant role in minimiz-
ingmodelmismatch errors (difference between experimental
measurements and predicted measurements obtained from
the forward model) and eventually impacting the quality and
accuracy of image reconstructions.

(3) Boundary Element Method. In the boundary element
method (BEM), the entire domain is divided into a finite
number of spatially coherent 3D regions, each ofwhich can be
regarded as homogeneous. One only needs to discretize the
boundaries of these subdomains into nodes and 2D elements.
Imposing the constraints of compatibility and equilibrium

on shared boundaries between subdomains, one can employ
analytical solutions inside each subdomain. In comparison to
FEM, BEM requires significantly fewer nodes and elements
and is subject to less discretization error. In experimental
fluorescence-enhanced optical imaging studies, BEM gave
more accurate and stable solutions of the excitation and
emission equations (i.e., forward problem) in comparison
to the solutions using FEM [42, 43]. The forward problem
offers a unique solution of the coupled diffusion equations.
By employing the forward model of the coupled diffusion
equation and the experimentally measured data on boundary
surface, we can solve the inverse problem, giving rise to 3D
tomographic reconstructions.

3.2. Inversion Problem. Unlike the forward problem, the
inverse problem of fluorescence-enhanced optical tomogra-
phy is a complicated problem to be solved. Herein, sparse
boundary surface measurements obtained experimentally
for 3D tissue phantom domain are used to reconstruct the
unknown parameters or optical properties at every point of
the entire 3D domain. Typically, the number of unknowns
(optical properties) is significantly greater than the total
number of boundary surface measurements, and the inverse
problem is underdetermined. Hence, the solutions are “ill-
posed” which means that the solution is nonunique and
unstable, especially in the presence ofmeasurement error that
is actually acquired in themeasurement set.There are various
iterative approaches available to solve the inverse problem in
optical tomography, which can mainly be categorized as (i)
singular value decomposition method, (ii) algebraic recon-
struction technique, (iii) Newton’s optimization method,
(iv) Bayesian reconstruction techniques, and (v) conjugate
gradient method.

3.2.1. Singular Value Decomposition Method. The singular
value decomposition (SVD) can be directly derived from
the theory of linear algebra. By use of SVD approach, the
weight matrix 𝑊 obtained by solving the coupled diffusion
equations, using analytical solution or empirical method
described above, can be decomposed into three matrixes 𝑈,𝑆, and 𝑉. The columns of matrix 𝑈 represent the detection-
space modes of 𝑊 and are orthogonal, 𝑆 is a diagonal
matrix, and the columns of matrix 𝑉 represent the image-
space modes of𝑊 and are orthogonal. Since matrix𝑊must
be square before performing inversion operation, one first
simply pads thismatrixwith rows of zeros or columns of zeros
and then inverses the matrix𝑊 according to

𝑊 = 𝑈 ⋅ diag (𝑠𝑗) ⋅ 𝑉𝑇,
𝑊−1 = (𝑉𝑇)−1 ⋅ diag (𝑠𝑗)−1 ⋅ 𝑈−1,
𝑊−1 = 𝑉 ⋅ diag( 1𝑠𝑗) ⋅ 𝑈𝑇.

(10)

If the matrix is singular, the corresponding eigenvalue 𝑠𝑗
equals zero and 1/𝑠𝑗 can be set to zero. Using a smoothing
algorithm, that is, 𝑠𝑗 → 𝑠𝑗 + 𝜎/𝑠𝑗, where herein 𝜎 is a free
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parameter and can be optimized empirically, one can improve
the quality of image reconstructions. SVD method has been
employed for reconstructing the distributions of fluorescing
agent in small animals (mice) using CW measurements [44,
45]. The SVD approach involves the computation of the
matrix inversion leading to long computing times in case of
large 3D tissue geometries/volumes.Therefore, this approach
is limited to small tissue geometries, small animals, or in cases
where lower-resolution conditions are sufficient.

3.2.2. Algebraic ReconstructionTechnique. The algebraic recon-
struction technique (ART) and its generations are widely
used to solve the linear system of equations. In order to
locate the solution, an initial guess of solution is first made in
hyperplanes with𝑁 dimension.This initial guess is projected
onto the first line of the hyperplanes. The resulting point
on the first line is reprojected onto the second line, and so
on, until the 𝑁th line. These 𝑁’s movements constitute one
iteration, then projecting back onto the first line and so forth.
If there exists a unique solution, the iteration will always
converge to that point.The prediction of emission fluenceΦ𝑚
is as follows:

Φ𝑚 = 𝑊𝑋, (11)

where 𝑋 denotes unknown optical properties and the
unknown parameters can be updated as follows:

𝑋𝑗
𝑘+1

= 𝑋𝑗
𝑘
+ 𝜂 ⋅ Φexp 𝑡 − ∑𝑁mesh

𝑙=1
𝑊𝑘𝑙𝑋𝑙𝑘∑𝑁mesh

𝑙=1

𝑊𝑘𝑙2 ⋅ 𝑊𝑘𝑗, (12)

where 𝑙, 𝑗 = 1, . . . , 𝑁mesh and 𝑁mesh represents the total
number of elements in the 2D and 3D domain of interest;𝑘 = 1, . . . , 𝑁source ⋅ 𝑁detector ⋅ 𝑁iteration;𝑁source and𝑁detector are
the number of sources and detectors, respectively;𝑁iteration is
the number of iterations; Φexp 𝑡 represents the experimental
fluence. The relaxation parameter 𝜂 is introduced in order
to reduce the effect of noise in ART reconstruction and this
parameter can bemade as a function of iteration number.The
iterative procedure continues as a loop, until convergence is
obtained. A simultaneous iterative reconstruction technique
(SIRT) involves moving the starting point to the 𝑁 lines,
respectively, and the obtained 𝑁 solutions are averaged as
a new input. SIRT offers an improved image quality in
comparison to the images obtained using the ART but at the
expense of a relatively slow convergence.

The ART and SIRT have been widely employed in
fluorescence-enhanced optical tomography studies [39, 46–
53]. Intes et al. [54] proposed a method to enhance conver-
gence rate by selecting appropriate projection access order in
ART. In comparison to the SVD method, the ART method
allows imposition of hard constraints on the reconstructed
optical parameters (e.g., absorption coefficient can be set to
zero for a negative value) and hence greatly improves the
quality of image reconstructions.

3.2.3. Newton’s Optimization Approaches. The inverse prob-
lem can be solved by the method of least squares. Here,

we define the error function as the sum of square of errors
between the measured Φ𝑖exp 𝑡 and the calculated Φ𝑖𝑚 value of
fluence, at detector 𝑖 = 1, . . . ,𝑀:

𝐹 (𝑋) = 𝑀∑
𝑖=1

[Φ𝑖exp 𝑡 − Φ𝑖𝑚]2 = 𝑀∑
𝑖=1

[𝑓𝑖 (𝑋)]2 , (13)

where 𝑀 = 𝑁source ∗ 𝑁detector (i.e., total number of source-
detector pairs) and 𝑓𝑖 refers to a residual of the difference
between the measured value and the calculated value. The
gradients of the error function with respect to the property,𝑋, and Taylor’s expansion of function 𝐹 around a small
perturbation of optical property, Δ𝑋, yield the function𝑌(Δ𝑋), which is minimized:

𝑌 (Δ𝑋) = 𝐹 (𝑋 + Δ𝑋) − 𝐹 (𝑋)
= 2𝐽𝑇𝑓 (𝑋) ⋅ Δ𝑋 + 2
⋅ Δ𝑋𝑇 [𝐽𝑇𝐽 + 𝑀∑

𝑖=1

𝑓𝑖 (𝑋) ∇2𝑓𝑖 (𝑋)] ⋅ Δ𝑋,
(14)

where 𝐽 is a Jacobian matrix, given by 𝜕(ΔΦ𝑖)/𝜕𝑋𝑗. If the
second term on the right-hand side of (14) is neglected,
the equation represents first-order Newton’s method and its
minimization leads to Gauss-Newton’s method:

∇𝑌 (Δ𝑋) ⇒ 0 = 𝐽𝑇𝐽 ⋅ Δ𝑋 + 𝐽𝑇𝑓 (𝑋) ,
𝐽𝑇𝐽 ⋅ Δ𝑋 = −𝐽𝑇𝑓 (𝑋) . (15)

In first-order Newton’s method and Gauss-Newton’s method,
the solution is not stable. To stabilize the solution of the
inverse problem and make it more tolerant to measurement
error, one of the following optimization approaches is typi-
cally used.

(i) Levenberg-Marquardt Algorithm. Regularization approach-
es play an important role in the development of algorithms,
such as Levenberg-Marquardt algorithm. By introducing a
regularization parameter 𝜆 in Gauss-Newton’s method, the
Levenberg-Marquardt algorithm of optimization becomes

[𝐽𝑇𝐽 + 𝜆𝐼] ⋅ Δ𝑋 = −𝐽𝑇𝑓 (𝑋) . (16)

The choice of the regularization parameter is generally
arbitrary or through a priori information. Regularization
results in a more stable solution to the inverse problem
and also improved tolerance to measurement error. The
Levenberg-Marquardt algorithm performs poorly in a large
residual problem and hence is limited to a small residual
problem. Truncated Newton’s method was proposed in order
to overcome this limitation.

(ii) Gradient-Based Truncated Newton’s Method. Roy and
Sevick-Muraca [55] developed a gradient-based truncated
Newton’s method by retaining the second term on the right-
hand side of (14) and setting the gradient of function 𝑌(Δ𝑋)
to zeros. The equation can be written as

[𝐽𝑇𝐽 + 𝑀∑
𝑖=1

𝑓𝑖 (𝑋) ∇2𝑓𝑖 (𝑋)] ⋅ Δ𝑋 = −𝐽𝑇𝑓 (𝑋) . (17)
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For the large residual problem, truncated Newton’s method
is more robust than Gauss-Newton’s and the Levenberg-
Marquardt algorithms. This method has demonstrated the
feasibility to reconstruct fluorescence lifetime and absorption
coefficient in 3D and slab geometries, using simulated data
(containing noise, such that it mimics experimental data)
[56]. Roy et al. also proposed gradient-based truncated
Newton’s method along with the penalty/modified barrier
function to minimize the objective function for the large-
scale problem, called PMBF/CONTN (penalty barrier func-
tion with simple bounds constrained), and this method
has been demonstrated for fluorescence-enhanced FDPM
tomography [57, 58].

(iii) Active Constrained Truncated Newton Method. Follow-
ing truncated Newton’s method, Roy and Sevick-Muraca
developed an active constrained truncated Newton’s method
for simple-bound optical tomography, which requires less
computational time and storage resource [59]. Based on
the physics of the problem, the recovered parameter of
fluorescent optical properties (e.g., absorption coefficient
or fluorescence lifetime) in fluorescence-enhanced optical
tomographymust be positive. In the first iteration, the optical
property map is recovered and the parameter estimates will
be plus and minus a small bounding parameter, if they lie
between an upper and lower bounds. The estimated parame-
ter in first iteration severs as an input for next iteration, and
the process continues until convergence is reached.The reso-
lution and the performance of tomographic imaging depend
on the bounding parameter. Simulated studies verified that
active constrained truncated Newton’s method may offer a
more logical approach than unconstrained optimization for
reconstruction of fluorescence optical properties on large 3D
tissue phantom containing contrast agents [59].

3.2.4. Bayesian Reconstruction Techniques. Eppstein and
coworkers proposed a novel Bayesian reconstruction tech-
nique, called the Approximate Extended Kalman Filter
(AEKF) algorithm, by using actual measurement error statis-
tics to govern the choice of varying regularization parameters
[34, 60]. Here, Newton’s solution is formulated as

Δ𝑋 = [[𝐽𝑇 (𝑄 + 𝑅)−1 𝐽 + 𝑃−1𝑥𝑥 ]−1 ⋅ 𝐽𝑇 (𝑄 + 𝑅)−1]
⋅ 𝑓 (𝑋) , (18)

where 𝑄 represents the system noise covariance resulting
from the inherent model mismatch between the forward
model and actual physics of the problem; 𝑅 denotes the
covariance of the measurement error; and 𝑃𝑥𝑥 is the recur-
sively updated error covariance of the unknown parameters𝑋, which is estimated from the measurement error, 𝑓(𝑋).
In 3D fluorescence-enhanced optical tomography, the AEKF
approach has been employed for reconstruction of the fluo-
rescence absorption coefficients [19, 60–66] and fluorescence
lifetime [67] using FDPM-based measurements.

An APPRIZE (Automatic Progressive Parameter-Reduc-
ing Inverse Zonation and Estimation) algorithm is a com-
bination of the AEKF and [68] and a data-driven zonation

(DDZ) technique, which is used for accelerating the conver-
gence. By using cluster analysis and random field union, the
spatially adjacent voxels with the similarly updated estimates
are merged into larger stochastic parameter “zones.” Thus,
the number of unknown parameters, 𝑋, decreases in a data-
driven fashion. This APPRIZE algorithm has been used for
3D tomographic reconstruction studies in simulated and
experimental slab phantoms, demonstrating the effectiveness
of DDZ [61, 68]. Compared to the traditional Newton
iterativemethod, the AEKFmethod and its combinationwith
DDZ technique are more accurate and orders of magnitude
faster way.

3.2.5. ConjugateGradient Techniques. ANewton-likemethod
poses an insurmountable computational burden as the
dimension of problem region becomes large. Therefore, it
is reasonable to consider gradient-based algorithms, such as
conjugate gradient descent (CGD) [69]. Here, the objective
function Ψ is defined as

Ψ = 12
𝑁source∑
𝑖=1

𝑁detector∑
𝑗=1

(Φ𝑖,𝑗exp 𝑡 − Φ𝑖,𝑗𝑚𝜎𝑖,𝑗 )
2

(19)

resulting in a total number of measurements𝑀 = 𝑁source ×𝑁detector. Equation (19) can be denoted in vector form as

Ψ = 12 (Φ⃗exp 𝑡 − Φ⃗𝑚)𝑇 𝑅−2 (Φ⃗exp 𝑡 − Φ⃗𝑚) = 12 �⃗�𝑇�⃗�, (20)

where Φ𝑖,𝑗exp 𝑡 corresponds to the 𝑗th experimental measure-
ment from 𝑖th source with standard derivation, 𝜎𝑖,𝑗; 𝑏𝑖,𝑗 =𝜎−1𝑖,𝑗 (Φ𝑖,𝑗exp 𝑡 − Φ𝑖,𝑗𝑚 ) is the residual data for this source-detector
pair (𝑖, 𝑗); and 𝑅 is the data-space correlation matrix having
the following form:

𝑅 = diag (𝜎1,1, 𝜎1,2, . . . , 𝜎𝑁source ,1, . . . , 𝜎𝑁source ,𝑁detector) . (21)

In order to solve the optimization problem, the 𝑘th compo-
nent of the objective function’s gradient is written as

𝜕Ψ𝜕𝑥𝑘 =
𝑁source∑
𝑖=1

𝑁detector∑
𝑗=1

(Φ𝑖,𝑗exp 𝑡 − Φ𝑖,𝑗𝑚𝜎2𝑖,𝑗 )(𝜕Φ𝑖,𝑗𝑚𝜕𝑥𝑘 ) (22)

whose vector form is

�⃗� = −𝑀∑
𝑖=1

𝐽𝑖𝑇�⃗�𝑗 = −𝐽𝑇�⃗�, (23)

where Jacobianmatrix, 𝐽, has the size of𝑀×𝑁𝑇 and𝑁𝑇 is the
number of unknown coefficients of the optical properties. In
order to find the minimum of the objective function, that is,𝜕Ψ/𝜕𝑥𝑘, a set of conjugate search directions is generated and a
one-dimensional line minimization along the current search
direction is performed at each iteration step. CGD method
has been employed for 2D/3D studies on phantoms [70–
73]. In comparison to the Newton-type method, the gradient
method only needs to compute the gradient �⃗� according to
(23), avoiding the construction and inversion.
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4. Conclusions

This review is limited to the frequently utilized approaches
of the coupled diffusion equations in modeling the excitation
and emission light propagation in tissues and the absorption
of fluorescent agents (not fluorescence lifetime due to the fact
that there are few contrast agents designed with “tuneable”
lifetimes) in the inversion imaging. The diffusion equation
is an approximation of the radiative transfer equation (RTE)
despite its known inaccuracy in high absorption domains
[74–77]. Large reconstruction localization errors and artifacts
from diffusion equation-based reconstruction significantly
affect the acquisition of quantitative biological information
[78, 79].There have been a few attempts to use theRTE and/or
its high-order approximations but with low implementation
efficiencies [80–82]. Because of the tremendous computa-
tion dimension in the RTE simulation, distributed memory
parallel computation is needed. Traditional solutions have
included central processing unit (CPU) based moderately
parallel system with shared memory access (multiprocessor
and multicore implementation). However, the large-scale
distributed parallel systems are limited by data transformer
between nodes. More recently, the parallel architecture of
graphics processing units (GPU) has been utilized for the
acceleration of general purpose computations for the solu-
tion of sparse linear system [83]. With these advances in
improving computation efficiency, more accurate and fast
fluorescence-enhanced optical tomography will become pos-
sible, and this will accelerate its clinical translation.
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