
© 2012 Landes Bioscience.

Do not distribute.

AMPK signaling in neuronal polarization
Putting the brakes on axonal traffic of PI3-Kinase
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Neuronal polarization, the process by which neurons form
multiple dendrites and an axon from the soma, is the first
critical step in the formation and function of neural networks.
Polarization begins with the rapid extension of a single neurite
to produce an axon of impressive size and complex geometry,
while the remaining sister neurites differentiate into dendrites.
The extensive biosynthesis required to produce an axon there-
fore necessitates coordination with cellular energy status to
ensure an ample energy supply. Our recent work shows that
activity of the AMP-activated protein kinase (AMPK), the bio-
energy sensor responsible for maintaining cellular energy
homeostasis in all eukaryotic cells, plays an important role in
the initiation of axonal growth. AMPK phosphorylates the
cargo-binding light chain of the Kif5 motor protein, leading to
dissociation of the phosphatidylinositol 3-Kinase (PI3K) from
the motor complex. The mislocation of PI3K, which is normally
enriched at the axonal tip for extension and differentiation,
results in a lack of neurite specification and neuron polariza-
tion. These findings reveal a link between cellular bioenergy
homeostasis and neuron morphogenesis, and suggest a novel
cellular mechanism underlying the long-term neurological
abnormalities as a consequence of bioenergy deficiency
during early brain development.

Underlying biological functions is the ability of the cell to drive
processes against their equilibrium. In evolving this ability, cells
posses the capacity to adapt and thrive under staggeringly varied
conditions and orchestrate multicellular life. However, driving
thermodynamically unfavorable reactions does not come easily
and requires a significant input of energy. In the case of the cell,
energetic input is achieved by the hydrolysis of adenosine
triphosphate (ATP), a molecule used for the storage and transport
of cellular energy. In order for this system to function efficiently, a
reliable energy supply must exist, enabling the cell to instantly
respond to extracellular stimuli. In light of this, eukaryotic cells
have evolved AMP-activated protein kinase (AMPK). Originally
identified as a protein activated by adenosine monophosphate
(AMP) and capable of inactivating enzymes involved in lipid
synthesis, AMPK has emerged as a major regulator of energy
homeostasis in all eukaryotic cells.1

AMPK is activated in response to metabolic and environmental
stresses that deplete ATP and functions in energy homeostasis
by inhibiting ATP consuming anabolic processes, while simulta-
neously promoting ATP generating catabolic processes to produce
ATP. While common targets of AMPK include enzymes of major
metabolic processes, such as glycolysis and fatty acid oxidation,2

AMPK is also capable of affecting the transcription of proteins
involved in energy production and consumption through phos-
phorylation of various transcription factors,3 thereby enabling
AMPK to exert long-term effects on energy expenditure.

AMPK Structure and Activation

AMPK is a heterotrimeric protein that consists of an a, β and
c subunit in equal stoichiometry. The a subunit constitutes the
catalytic domain, conferring kinase activity, while the c subunit
enables AMPK to monitor cellular energy status through two
AMP/ATP binding domains, referred to as Bateman domains,
that bind AMP or ATP in a mutually exclusive manner.4-6 The
hydrolysis of ATP, needed for driving thermodynamically
unfavorable processes, results in the formation of adendosine
monophosphate (AMP). Therefore, high concentrations of AMP
serve as a signal of increased energy expenditure and promote the
binding of AMP to the Bateman domains. AMP binding causes
AMPK to undergo a conformational change, exposing an
activation loop of the a subunit, allowing phosphorylation on
Threonine172 by upstream kinases, referred to as AMPK kinases
(AMPKKs), resulting in a 50–100-fold increase in the catalytic
activity of AMPK.7 Conversely, a high concentration of intra-
cellular ATP, characteristic of ample energy reserves, promotes
ATP/Bateman domain binding and produces an antagonistic
effect on AMPK activation.1,8

AMPK in Neuronal Polarization

Unlike other eukaryotic cell types, neurons must undergo a pro-
cess of morphological polarization in order to function properly.
This process entails the selection and differentiation of multiple
dendrites and an axon from a single cell body, which is required
for neurons to send and receive information, providing the
foundation for the function of neural networks. Neuronal
polarization begins with the rapid extension of a single minor
neurite into an axon of remarkable size and complex geometry,
while the remaining sister neurites will eventually develop into
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dendrites.9-11 The scale of biosynthesis required for axonal growth
and thereby polarization, necessitates increased protein and
membrane synthesis, in addition to the intracellular delivery of
these building blocks to the growing axon tip.12 Considering the
degree of ATP consumption involved in axon formation, AMPK
is likely to be involved in the regulation of neuronal polarization.

Our recent study has demonstrated that pharmacological
activation of AMPK, mimicking energy lacking conditions,
during the transition from the symmetric stage 2 to the polarizing
stage 3, where the initial signals for axon specification are starting
to occur,13 effectively inhibits axon specification and neuronal
polarization in both cultured embryonic hippocampal neurons
and embryonic cortical brain slices.14 Mechanistically, we show
that direct phosphorylation of the kinesin light chain of the motor
protein, Kif5, results in a dissociation between the motor complex
and its PI3K cargo, thereby preventing PI3K enrichment at the
neurite tip, a key mechanism in axon selection and growth9,13

(Fig. 1A and B). Importantly, expression of a kinase dead AMPK
mutant (AMPK KD) can rescue polarity in cultured hippocampal
neurons and cortical brain slices, regardless of AICAR treatment,
indicating that AMPK upregulation, but not its basal activity,
regulates neuron polarization (Fig. 1C).14 Consistent with this

note, a recent study by Williams et al. has shown that genetic
knockout of both AMPK a1/a2 catalytic isoforms in mice had
no effect on cortical neurogenesis or polarization.15 To indicate
clinical significance, we find that brief ischemia challenge during
neuronal development causes phosphorylation of AMPK and
inhibition of neuronal polarization in cultured hippocampal
neurons.14 Similarly, expression of AMPK KD successfully
rescued polarity in ischemia treated neurons, concluding that
ischemia induced polarity inhibition is directly mediated by
AMPK.

Intriguing to this work is the fact that the serine/threonine
kinase, LKB1, the major upstream activator of AMPK in peripheral
cells,16-20 is required for successful polarization of neurons.21,22

However, despite the fact that both LKB1 and AMPK are
expressed in nervous tissue,21,23 studies have indicated that LKB1
may not be the major regulator of AMPK phosphorylation
within the brain. For example, under basal conditions, LKB1-
deficient cortical neurons show no deficit in phosphorylated
AMPK when compared with wild-type cells,21 indicating an
alternative means of AMPK phosphorylation. However, it is
possible that regulation of AMPK by LKB1 is restricted to
periods of energetic stress, when AMP binding has exposed the

Figure 1. Schematic illustration depicting the mechanism of AMPK dependent polarity inhibition. (A) Under normal energy conditions AMPK exists
in an unphosphorylated/inactive state and PI3K is transported to the neurite tip via a physical association with the kif5 cargo adaptor, KLC.
The accumulation of PI3K at a single neurite tip promotes the signaling responsible for axon initiation and growth. (B) Under energy-lacking conditions,
AMP binds to AMPK producing a conformational change in the kinase, allowing phospho-activation of AMPK by upstream kinases (AMPKK).
AMPK-caused KLC phosphorylation dissociates PI3K, resulting in a loss of PI3K from the neurite tip and an inhibition of neuronal polarization. (C) Cultured
hippocampal neurons are transfected with GFP for visualization. Control neuron shows typical single axon (left), which is missing in a neuron treated with
AMPK activator AICAR (middle). Expression of kinase dead (KD) AMPK rescues polarity in the AICAR treated neuron. Scale bar = 20 mm.
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activation loop of AMPK. It will be interesting to know whether
AMPK can be phosphorylated in LKB1-deficient neurons under
ATP-lacking conditions. In line with this, AMPK has indeed
been suggested to be activated by other upstream signaling.
Hawley et al. has shown that in rat brain slices, increases of
intracellular calcium by membrane depolarization result in
AMPK phosphorylation.24 Phosphorylation of AMPK was con-
cluded to result from CaMKK activity, as the CaMKK inhibitor,
STO-609, abolished the effect. Importantly, membrane depolari-
zation did not alter intracellular AMP ratios, indicating that
AMPK can be regulated in a Ca2+-dependent, AMP-independent
manner. Considering that Ca2+ influx is a hallmark of post-
synaptic receptor activation, the ability of AMPK to be phos-
phorylated by CaMKK may present a mechanism for coupling
synaptic activity with energy regulation.

AMPK in Neuronal Glucose Uptake

Despite the ability of AMPK to inhibit PI3K localization at the
neurite tip, AICAR treatment causes a marked increase in
phosphorylated Akt.14 This effect results directly from AMPK
activation, as introduction of the AMPK antagonist successfully
blocks AICAR-induced Akt phosphorylation. Furthermore,
addition of a PI3K inhibitor also abolishes AICAR-induced Akt
phosphorylation, indicating that the AMPK effect on Akt
activation is mediated via PI3K.14 Although the physiological
role of AMPK-dependent PI3K/Akt activation remains to be
investigated, we hypothesize that it may represent a mechanism
for stimulating ATP production. Specifically, AMPK has previ-
ously been characterized as an upstream regulator of glucose
uptake in neurons, a mechanism that involves increased

translocation of the glucose transporter, GLUT3, to the surface
membrane.25 Similarly, insulin-like growth factor 1 (IGF1) has
also been implicated in the regulation of glucose uptake in the
brain26-29 and binds to receptor tyrosine kinases that associate with
insulin receptor substrate (IRS-1), a known upstream activator of
the PI3K/Akt signaling cascade.30,31 Interestingly, AMPK has
been observed to phosphorylate IRS-1, the most upstream com-
ponent in the PI3K signaling pathway, in cell free assays and
mouse myoblast C2C12 cell lines in response to AICAR treat-
ment,32 suggesting IRS-1 as the intermediate factor linking
AMPK to PI3K/Akt activation.

Clinical Significance

The ability of AMPK to suppress neuronal polarization may
have significant relevance within a clinical context. Since neuron
polarization and appropriate axon extension are the necessary
precondition for intercellular connection and communication,
the disruption of neuronal polarity resulting from AMPK
activation should have long-lasting effects on synapse formation
and ultimately, brain function. We find that AICAR treated
neurons fail to specify an axon even after 3 d of recovery follow-
ing treatment, indicating that the AMPK effect on neuronal
polarization may persist even after energy levels return to normal.
In a similar scenario, pathological challenges occurring in early
development, such as neonatal stroke and hypoxic-ischemic
encephalopathy, that have been observed to promote AMPK
activation,33-35 also produce late-emergence cognitive deficits.36 It
will be interesting to know whether AMPK signaling is indeed
responsible for clinically observed neurological abnormalities
related to neural energy deficiency during early development.
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