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Abstract

Emission from ruminants has become one of the largest sources of anthropogenic methane

emission in China. The structure of the rumen flora has a significant effect on methane pro-

duction. To establish a more accurate prediction model for methane production, the rumen

flora should be one of the most important parameters. The objective of the present study

was to investigate the relationship among changes in rumen flora, nutrient levels, and meth-

ane production in sheep fed with the diets of different forage-to-concentration ratios, as well

as to screen for significantly different dominant genera. Nine rumen-cannulated hybrid

sheep were separated into three groups and fed three diets with forage-to-concentration

ratios of 50:50, 70:30, and 90:10. Three proportions of the diets were fed according to a 3 ×
3 incomplete Latin square, design during three periods of 15d each. The ruminal fluid was

collected for real-time polymerase chain reaction (real-time PCR), high-throughput

sequencing and in vitro rumen fermentation in a new real-time fermentation system wit.

Twenty-two genera were screened, the abundance of which varied linearly with forage-to-

concentration ratios and methane production. In addition, during the 12-hour in vitro fermen-

tation, the appearance of peak concentration was delayed by 26-27min with the different

structure of rumen bacteria. The fiber-degrading bacteria were positively correlated with this

phenomenon, but starch-degrading and protein-degrading bacteria were negative corre-

lated. These results would facilitate macro-control of rumen microorganisms and better

management of diets for improved nutrition in ruminants. In addition, our findings would help

in screening bacterial genera that are highly correlated with methane production.

Introduction

Of the total methane emission in China, the emission from ruminants was estimated to be

approximately 17%, turning them into one of the largest anthropogenic sources of methane

emission [1]. The emission of methane associated with agriculture is expected to see a
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significant increase. Therefore, new strategies were needed for reducing the emission and

improving livestock productivity, which had been extensively studied and reviewed [2].

Rumen is the main site of methane production [3], which provided a habitat for a variety of

microbes, including numerous species of bacteria, archaea, viruses, protozoa and fungi [4]. In

the anaerobic environment of the rumen, several organic compounds present could eventually

be decomposed into methane by a number of microorganisms [5]. The composition of rumi-

nal microbiome was affected by different factors, such as age, breed, general well-being of the

animal, its location as well as administration of feed and antibiotics [6–8]. Furthermore, feed-

stuffs were the main factors regulating the composition and functional patterns of ruminal

microbiome [9–11]. Among the nutritional indices of diets, protein and energy levels were the

major factors affecting the fermentation of ruminal microbiome [12]. Fibers, including hemi-

cellulose and cellulose, were the main source of energy [13], which could be degraded into

methane by the microbes present in the rumen. Leng and Nolan [14] pointed out that 80% of

the nitrogen available to ruminal bacteria came from ammonia and 20% was derived from

amino acids or oligopeptides. Therefore, the low content of ammonia promotes microorgan-

isms to degrade other nitrogen sources in a diet with high forage-to-concentration ratios (F:

C), which delays fermentation. Grovum and Leek [15] found that non-structural carbohy-

drates were degraded much faster than structural ones. Easily degradable carbohydrates pro-

vide energy and carbon sources for faster microbial fermentation and increase fermentation

rate. Methane production can be affected by the above-mentioned factors.

In the current models established for the same rumen microflora to predict methane pro-

duction, nutritional indicators had been used as parameters [16–21]. A large number of cali-

bration parameters are required for the models to adapt to plentiful situations, thereby limiting

the scope of these models. Some mechanistic models considering the role of rumen microbes

[22–23] had been established by the extrapolation of mathematical formula used by computers.

Because of high operation cost, it is difficult to apply these models to actual production sys-

tems. Therefore, the application scope of these models will be greatly expanded if some impor-

tant microorganisms can be related with the models using nutrient indicators as parameters.

Previous studies have indicated that archaea are the main microorganisms producing methane

in the rumen [24]. However, other recent studies involving high-throughput sequencing have

shown that change in methane production is irrelevant to archaea flora, but highly correlated

with bacterial flora [25]. The main function of bacteria is to break down the nutrients in the feed

into simple compounds and additional products used by animals, including hydrogen, carbon

dioxide and volatile fatty acids which are raw materials for methane synthesis [3]. To establish bet-

ter models for methane prediction with wide range of application, characteristic microorganisms

should be screened from rumen bacterial communities to serve as effective parameters.

Simple devices for in vitro fermentation have been used to establish the prediction models

[21]. However, in such cases, methane production could only be detected either at specific

time points or at the final time point, and therefore, did not reveal the overall fermentation sta-

tus well. Sun et al. [26] used a new real-time in vitro fermentation system to determine the

methane production time course when they studied the effect of cysteamine hydrochloride

and nitrate supplementation on methane production and productivity in cattle. This system

makes it possible to determine a more subtle fermentation state. Thus, in exploring the rela-

tionship between rumen microbial structure and methane production, this system may pro-

vide more detailed reference data.

We hypothesized that the real-time methane production of sheep would be highly corre-

lated with the abundance of bacteria in the rumen. The objective of this study was to investi-

gate the relationship among different structures of bacterial flora in the rumen, dietary levels,

and methane production, using the in vitro fermentation system. The genera of bacteria that
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showed high correlation with methane production were screened in order to serve as the refer-

ence for accurate prediction of methane production.

Material and methods

Ethics statement

All research involving animals was conducted according to Guide for the Care and Use of Lab-

oratory Animals which was approved by the ethics committee of Jilin Agricultural University,

P. R. China. The ethics committee of Jilin Agricultural University, P. R. China approved this

study, and the approved permit number for this study is “JLAC20171104”.

Animals and diets

A total of nine rumen-cannulated (cannulated at one year of age) hybrid sheep (Chinese

merino fine wool sheep × Dorper sheep) were selected, which was 2 years old and whose aver-

age weight was 87.83 ± 8.11kg. Randomly assigned to three groups, these sheep were separately

fed at random. Jilin Agricultural University, Changchun, China prepared Guide for the Care

and Use of Laboratory Animals which provided guidance for all animal-related procedures.

Chosen as the forage, Leymus chinensis was mixed with the concentrate in three propor-

tions of F:C including 50:50 (L), 70:30 (M) and 90:10 (H). The composition and nutrition lev-

els of the three diets based on the NRC [27] are shown in Table 1. The three diets were fed

according to the 3 × 3 incomplete Latin square design over 45d in three periods of 15d each,

including 14d of pre-feeding and the 15th day for sampling. Three distinct flora structures

were established under different treatments.

Sampling and DNA extraction

Ruminal fluid (400mL) was collected by pump and pre-warmed thermos before feeding

(07:00) and saturated with CO2. Filtrated through a double-layered gauze, the collected fluid

was used to measure the pH value to confirm the health of rumen. The fluid with the pH value

between 5.5 and 7.5 from three sheep of one group was mixed. All the samples with 10mL

were respectively stored in sterile centrifuge tubes (without any treatment) with 2mL at -80˚C

for DNA extraction. Another 300mL of ruminal fluid from each group was warmed to 39˚C

for in vitro rumen fermentation right after sampling.

Microbial genomic DNA was extracted from all ruminal fluid samples with 220mg using

the methods of Murray and Thompson [28] and Zhou et al. [29]. Agarose gel electrophoresis

was applied to confirm the successful extraction of DNA [30]. The qualified DNA continued

to be tested for real-time polymerase chain reaction (real-time PCR) and high-throughput

sequencing. A total of 9 samples for the three diets were collected and each sample was tested

twice in order to have six replicates for each diet.

Real-time PCR for total bacteria, methanogens, protozoa and anaerobic

fungi

Real-time PCR were tested on Applied Biosystems StepOne Real-time PCR System based on

the methods of Denman and McSweeney [31]. The designed primers were shown in the

Table 2. Below is the reaction system (25μL): SYBR Premix Ex Taq (RR420A, Takara) 12.5μL,

forward primer 0.5μL, reverse primer 0.5μL, DNA template 2.0μL, sterile distilled water 9.5μL.

Below is the reaction conditions: 95˚C 2min; 95˚C 5s, 60˚C 30s, 40 cycles; 95˚C 15s; 60˚C

1min; 95˚C 15s. The relative abundance of rumen microorganisms was expressed as a percent-

age or a thousandth of 16S rDNA relative to the total rumen bacteria. The formula is as follows:
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Target = 2 -(Ct target −Ct total bacteria) × 100; The Ct value is defined as the number of amplification

cycles that are passed when the fluorescence signal of the amplification product reaches a set

threshold during real-time PCR amplification.

PCR amplification of 16S rDNA, amplicon sequence and processing of

sequence data

Based on previous comparisons [34–36], 16S rDNA had V4 hyper variable regions which per-

formed PCR amplification for microbial genomic DNA extracted from ruminal fluid samples

and were adopted in the rest of the study. PCR primers which flanked bacterial 16S rDNA’s

V4 hypervariable region were designed. The forward primer with a barcode was 338F 5’-
ACTCCTACGGGAGGCAGCAG-3’ while the reverse primer referred to 806R 5’-GGACTA
CHVGGGTWTCTAAT-3’ based on the approach of Fan et al. [37]. Below is the PCR reaction

system (TransGen AP221-02, 20μL): 5×FastPfu Buffer, 2.5 mM dNTPs, Forward Primer

(5μM), Reverse Primer (5μM), FastPfu Polymerase, BSA and Template DNA and ddH2O with

4μL, 2μL, 0.8μL, 0.8μL, 0.4μL, 0.2μL and 10ng respectively were added up to 20μL totally.

Below are PCR conditions: One pre-denaturation cycle, 27 denaturation cycles, annealing,

elongation and one post-elongation cycle at 95˚C, 95˚C, 55˚C, 72˚C and 72˚C for 3min, 30s,

30s, 45s and 10min respectively. Separated on 1% garose gels, products of PCR amplicon were

Table 1. Ingredients and nutrient compositions of diets.

Item Treatments a

L M H

Ingredient (Fresh matter, g/kg)

Leymus chinensis 500.0 700.0 900.0

Corn 237.5 137.5 37.5

wheat bran 118.7 68.7 18.7

Soybean meal 95.0 55.0 15.0

Cottonseed meal 23.8 13.8 3.8

Calcium carbonate 4.0 4.0 4.0

Calcium hydrogen phosphate 5.0 5.0 5.0

Sodium chloride 6.0 6.0 6.0

Premix b 10.0 10.0 10.0

Composition c

DM (g/kg) 887.4 889.2 891.1

105˚C DM (g/kg)

CP 138.8 113.9 89.0

EE 25.7 29.7 33.6

Ash 32.8 34.6 36.3

Starch 267.1 185.8 104.6

NDF 296.2 398.6 501.0

ADF 149.6 221.4 293.1

ADL 31.8 43.1 54.5

a L, forage-to-concentrate ratio 50:50; M, forage-to-concentrate ratio 70:30; H, forage-to-concentrate ratio 90:10.
b Provided per kilogram of premix: 80,000–145,000mg of vitamin A, 20,000–39,000mg of vitamin D,�700IU of

vitamin E, 180-345mg of Cu, 190-330mg of Fe, 950–1,800mg of Zn, and 350-650mg of Mn.
c Calculated from the analyzed value of the dietary ingredients. DM, dry matter; CP, crude protein; EE, ether extract;

NDF, neutral detergent fibre; ADF, acid detergent fiber; ADL, acid detergent lignin.

https://doi.org/10.1371/journal.pone.0214777.t001
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obtained by the extraction of gels. Sequencing only adopted PCR products which were void of

contaminant bands and primer dimers by means of synthesis. Illumina MiSeq PE300 proposed

the paired-end approach which was taken for the sequencing of barcoded V4 amplicons. The

filtering of effective reads was based on the methods of [38–41]. Sequences with lower mean

phred score (20bp), equivocal bases and primer mismatching or sequence lengths below 50bp

were removed. The assembly of only the sequences which had an overlap above 10bp and no

mismatch was completed in accordance with their overlap sequence. Reads which were unable

to be assembled were abandoned. Barcoded and sequencing primers were removed from the

sequence which was assembled.

Taxonomic classification and statistical analysis

A web-based program called Usearch (version 7.0, http://drive5.com/uparse/) was applied to

carry out taxon-dependent analysis. 16S rRNA gene sequences were used for phylogenetically

consistent bacterial taxonomy according to the method of a Bayesian classifier, Ribosomal

Database Project Classifier [41]. The Silva Database (Silva_128_16s, http://www.arb-silva.de)

was compared to calculate the operational taxonomic units (OTUs) for all samples to show the

abundance of bacterial species with 97% of identity cutoff, whereas the species for which the

sum of OTUs of all the samples was more than 20 reads were retained. The richness of OTUs

for each sample was produced at the level of genus. The length of all the valid bacterial

sequences with primers was 440bp on the average. The calculation of abundance at the level of

genus was transformed according to log2 and normalized as the method of Niu et al. [42].

Inter-group OTUs were compared by the generation of a Venn diagram. The bacterial com-

munity indices adopted contained Chao and Shannon’s coverage. The diversity of bacteria was

presented by the quantity of OTUs.

In vitro rumen fermentation

The substrate was made with the feed of group M in the feeding experiment by drying and

grinding through a 0.45mm sieve. Collected from different dietary treatments during the feed-

ing experiment, the ruminal fluid was filtrated by four-layer cheesecloth and mixed with pre-

heated artificial saliva [43] at a ratio of 2:1 (buffer: ruminal fluid, v:v). The ruminal fluid

(150mL) which was buffered was dispensed into pre-warmed 200-mL incubation flasks. Two

grams of each substrate was blended with the buffered ruminal fluid in each incubation flask

which was incubated at the temperature of 39˚C for 12h in water. The production ratio of

Table 2. The primers for real-time PCR assay.

Target group Forward primer (5’-3’) Reverse primer (5’-3’) Size (bp) d

Total bacteria a CGGCAACGAGCGCA
ACCC

CCATTGTAGCACGTG
TGTAGCC

130

Methanogens b TTCGGTGGATCDCAR
AGRGC

GBARGTCGWAWCCG
TAGAATCC

140

Protozoa c GCTTTCGWTGGTAGT
GTATT

CTTGCCCTCYAATCG
TWCT

223

Anaerobic fungi a GAGGAAGTAAAAGT
CGTAACAAGGTTTC

CAAATTCACAAAGG
GTAGGATGATT

120

a Cited by Denman and McSweeney [31]
b Cited by Denman et al. [32]
c Cited by Sylvester et al. [33]
d Bp, base pairs.

https://doi.org/10.1371/journal.pone.0214777.t002
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methane was measured by real-time in vitro fermentation system (produced by Jilin Academy

of Agricultural Sciences, code Qtfxy-6), which was tested for the effluent gas discharged from

each incubation flask. The nitrogen (purity 99.99%) was passed into the incubation flask from

the bottom at the speed of 200mL/min. Methane was carried by nitrogen into an AGM10 sen-

sor (Sensors Europe GmbH, Erkrath, FRG) and the concentration of methane was measured

and recorded every 6min [26]. The fermentation was terminated by placing flasks on ice. After

opening the incubation flask, pH was measured using a PHS-3C pH meter (Shanghai INESA

Scientific Instrument Co., Ltd., China), and 2mL of incubation medium was collected for

NH3-N [44]. Another 1 mL of incubation medium was analyzed for volatile fatty acids (VFAs),

including acetic acid (AA), propionic acid (PA), and butyric acid (BA) using gas chromatogra-

phy (Agilent Technologies 7890A GC System, USA) and the method of Castro-Montoya et al.

[45]. The left fluid was dried in a forced-air oven at 60˚C for 72h and placed in sealed contain-

ers in order to analyze the in vitro dry matter digestibility (IVDMD) [46].

Experimental feeds and chemical analyses

Collected in plastic bags, the samples for diets were reserved at -20˚C. After the feeding experi-

ment, the samples were warmed at 65˚C to a fixed weight. Thereafter, a 0.45mm sieve and a

high-speed universal pulverizer were used to grind them for analysis. The filter bag technique

of ANKOM A200 (AOAC 973.18) was adopted to analyze neutral detergent fiber (NDF), acid

detergent lignin (ADL) as well as acid detergent fiber (ADF). A Kjeltec 8400 analyzer unit

(Foss, Sweden) was applied to measure the content of crude protein (CP) on the basis of the

Kjeldahl method (AOAC 984.13). In addition, a Soxhlet apparatus was used to measure the

content of ether extract (EE) based on Soxhlet extraction method (AOAC 920.85). Methods of

Horwitz et al. [46] were the foundation of all chemical analyses.

Data analysis

Sequences of good quality were deeply studied through its uploading to QIIME [39]. A com-

parison was made between valid bacterial sequences and sequences present in the Silva Data-

base which classified the abundance calculation of each taxon with the optimal choice of

classification [36]. QIIME filed the sequence length. Mothur was used for the generation of

abundance and diversity indexes. After the implementation of a pseudo-single relevancy algo-

rithm, there was 97% of OTUs identity cutoff [47–48]. For all the parameters, data was ana-

lyzed by the R-Studio software (version 7.2). Methane production was up to the approach of

Sun et al. [26]. A one-way analysis of variance (ANOVA) was carried out late in each bioassay

to compare selected taxonomic groups (abundant phyla or genera), bacterial community indi-

ces observed OTUs or methane production indices. Duncan’s test was adopted to perform the

mean comparison at the significance level of P< 0.05. Redundancy analysis (RDA) was con-

ducted to assess the association between the nutrients in the feed and the bacterial abundance

in the rumen. The relationship among bacterial abundance, methane production, peak con-

centration (Cmax) and the time to peak concentration (Tmax) was assessed by means of Pear-

son’s correlations. All the data was presented as means ± S.E. (standard error).

Results

Relative quantification of total bacteria, methanogens, protozoa and

anaerobic fungi

Firstly, the results of real-time PCR (Table 3) showed that the numbers of methanogens and

protozoa were increased with the decreasing F:C but not significantly. Conversely, the
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numbers of total bacteria and anaerobic fungi were decreased with the decreasing F:C. And

the difference of total bacteria in three groups was significant (P = 0.017), while the difference

of anaerobic fungi was not. These results exhibited that the change of F:C has extremely effect

only on the number of total bacteria but not on the other kinds of microorganism.

Analysis of DNA sequence data

After quality was controlled preliminarily, 517,492 paired-end 440-bp reads were obtained in

total. Each sample got 28,750 sequences averagely. Reads had an overall length of 2.28 giga-

bases (GB), and each sample had a mean read length of 0.13GB with 191,537, 171,125, and

154,794 raw reads in L, M and H groups respectively (Table 4). Based on 97% species similar-

ity, 132,987, 104,640 and 92,194 OTUs were separately obtained from the samples in L, M and

H groups (Table 4). Among all the samples, 708 OTUs were identified, of which 542 existing

in all the groups were known as key OTUs (Fig 1A). Key OTUs took up about 76.6% of all

OTUs, whereas 6, 5 and 11 OTUs were individually identified in groups L, M and H respec-

tively. Good’s coverage was 99.4%, 99.3% as well as 99.2% for L, M and H groups separately,

indicating the capture of dominant phylotypes by this study. The three groups were similar in

diversity (Fig 2A). The richness (P<0.01) of the rumen microbiota was related to F:C (Fig 2B).

Bacterial community structure at the levels of phylum and genus

According to the results in Fig 3, DNA sequences were distributed in different phyla. The

three groups shared 14 phyla, namely Bacteroidetes, Actinobacteria, Cyanobacteria, Chloroflexi,
Elusimicrobia, Synergistetes, Fibrobacteres, Firmicutes, Lentisphaerae, Verrucomicrobia, Proteo-
bacteria, Saccharibacteria, Spirochaetes and Tenericutes. As the main components of the 14

phyla (P<0.01) in spite of the diet, Bacteroidetes and Firmicutes occupied over 90% of all

sequences. The three groups showed differences in the bacterial richness of different phyla.

The remarkable differences of bacterial richness in five out of 14 phyla were discovered in the

three groups (Table 5). As the dominant phylum in group L, Bacteroidetes (P<0.01) accounted

for about 66.14% of the sequences. Groups M and H assigned a lower percentage (60.05% and

56.80%) of the sequences to Bacteroidetes. Ranking the second as a phylum in all the groups,

Firmicutes (P<0.01) comprised roughly of 24.13%, 27.45% and 32.01% sequences in the L, M

and H groups respectively. The proportion of Firmicutes increased with the increase of the

ratio. Moreover, the richness of Proteobacteria, Spirochaetes and Synergistetes changed with F:

C (Table 5). With the increase of the ratio, the proportion of Proteobacteria and Spirochaetes
(Table 5) decreased (P<0.01) and the proportion of Synergistetes (P< 0.01) (Table 5)

increased.

Table 3. Relative quantification of total bacteria, methanogens, protozoa and anaerobic fungi with different for-

age-to-concentrate ratios.

Item Forage-to-concentrate ratio a P-value

L M H

Methanogens, ‰ 5.47±0.14 5.32±0.11 5.19±0.09 0.257

Protozoa, % 4.37±0.13 4.17±0.10 4.13±0.13 0.369

Anaerobic fungi, ‰ 1.58±0.07 1.70±0.08 1.86±0.10 0.096

General bacterial, % 107.93±3.38 99.62±4.07 90.77±3.61 0.017

a L, forage-to-concentrate ratio 50:50; M, forage-to-concentrate ratio 70:30; H, forage-to-concentrate ratio 90:10. All

the data are presented as mean ± S.E. (standard error).

https://doi.org/10.1371/journal.pone.0214777.t003
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At the level of genus, the identification of 150 genera in all the samples was conducted

despite F:C (Fig 3). L, M and H groups had 141, 146 and 141 genera respectively and shared

130 genera, whereas Coriobacteriaceae and Gemella were special for group L (Fig 1B). 15 rich-

est genera, comprising over 78.96% of all sequences, included Prevotella, Ruminococcus, Lach-
nospira, Rikenella, Succiniclasticum, Fibrobacter, Christensenella, Saccharofermentans,
Eubacterium, Papillibacter, Quinella, Phocaeicola, Verllonella, Moryella and Fretibacterium.

The bacterial richness of 22 genera varied with the diet ratio. The abundance of 14 bacteria

increased, whereas that of eight bacteria decreased (Table 6). Significantly different among all

the groups, Lachnospira, Fibrobacter and Clostridium were not linearly related to the diet ratio.

Among the linearly changed genera, Prevotella was the predominant genus, accounting for

50.79%, 43.06% and 34.09% of the total sequences in L, M and H groups respectively.

Nutrition index in rumen and its correlation with the rumen microbiota

In terms of the RDA, our dataset changed, which was principally interpreted by the increasing

F:C (Fig 4). It suggested that 100% change in bacteria was explained by all the nutrition indices

whose order of contribution was CP > ADF > NDF> Starch > EE > ADL (Table 7). The two

sorting axes accounted for 95.48% of the changes based on this model with the first sorting

axis explaining a change of 66.37% and 29.11% for the second sorting axis. The rumen micro-

biota in group L was concentrated in the regions with high CP, starch content and low NDF

and ADF contents, whereas the rumen microbiota in group H was concentrated in the regions

with high NDF and ADF contents and low CP and starch contents. The rumen microbiota in

group M was concentrated in the regions with intermediate nutrient levels. According to the

RDA analysis, the relevance of CP accounted for 0.72 of the microbiota (P<0.01) as the main

nutrient factor affecting the structure of microbiota. Insignificant, the relevance of EE and

ADL was the lowest (R2 = 0.41, P>0.05; R2 = 0.36, P>0.05) and they were not significant.

Under the different levels of F:C, the different kinds of bacteria bacterial community were

established, which could reflect the state of the microflora in the rumen fluid at the beginning

of in vitro fermentation.

In vitro rumen fermentation characteristics, real-time methane production

and its correlation with the rumen microbiota

After 12 h fermentation, the concentrations of pH, AA and A/P were decreased greatly with

the decreasing F:C. Simultaneously, the concentrations of PA, BA, NH3-N, and IVDMD were

increased with the decreasing F:C. The greatly growth of IVDMD had led to the massive pro-

duction of VFAs (Table 8). The Cmax (P<0.01, Table 9, Fig 5) and total production (P<0.05,

Table 9) of methane decreased with the increase in F:C, whereas Tmax (P<0.01, Table 9, Fig 5)

of methane increased with the increase of F:C. At the level of phylum, Bacteroidetes,

Table 4. Raw reads and OTUs with different forage-to-concentrate ratios.

Group a Raw reads High quality reads OTUs b

L 191,537 132,987 590

M 171,125 104,640 680

H 154,794 92,194 666

Total 517,492 329,821 1,936

a L, forage-to-concentrate ratio 50:50; M, forage-to-concentrate ratio 70:30; H, forage-to-concentrate ratio 90:10.
b OTUs, operational taxonomic units.

https://doi.org/10.1371/journal.pone.0214777.t004
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Proteobacteria as well as Spirochaetae showed a positive correlation with the Cmax and total

production, and a negative correlation with Tmax (Table 10). Firmicutes and Saccharibacteria
were positively correlated with Tmax, but negatively correlated with Cmax and total production

(Table 10). At the level of genus, Prevotella, Quinella, Verllonella, Ruminobacter, Oribacterium,

Fig 1. Venn diagrams of OTUs and genera with different forage-to-concentrate ratios. OTUs, operational taxonomic units; L, forage-

to-concentrate ratio, 50:50; M, forage-to-concentrate ratio, 70:30; H, forage-to-concentrate ratio, 90:10. The number of observed OTUs

sharing� 97% nucleotide sequence identity is shown. (1A) Venn diagram showing the common and unique OTUs among the three

groups. (1B) Venn diagram showing the common and unique genera among the three groups.

https://doi.org/10.1371/journal.pone.0214777.g001

Fig 2. Chaos and Shannon indexes of OTUs with different forage-to-concentrate ratios. OTUs, operational taxonomic units; L,

forage-to-concentrate ratio, 50:50; M, forage-to-concentrate ratio, 70:30; H, forage-to-concentrate ratio, 90:10. (2A) Bacterial diversity

as determined from the Shannon index. (2B) Bacterial richness as reflected in the Chao index. ��P< 0.01.

https://doi.org/10.1371/journal.pone.0214777.g002
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Succinivibrio, Syntrophococcus and Olsenella was positively correlated with Cmax and total pro-

duction in bacterial abundance, but negatively correlated with Tmax (Table 11). Ruminococcus,
Rikenella, Succiniclasticum, Eubacterium, Papillibacter, Pseudobutyrivibrio, Butyrivibrio, Can-
didatus, Anaerotruncus and Ruminiclostridium was positively correlated with Tmax in bacterial

abundance, but negatively correlated with Cmax and total production (Table 11).

Discussion

The rumen bacterial community structure was changed significantly with the different levels

of F:C, but the numbers of methanogens, protozoa and anaerobic fungi were not changed

obviously. The in vitro fermentation has been changed significantly with the change of F:C.

And a close relationship was found between the real-time methane production and bacterial

community structure. It seems to provide a new understanding of rumen fermentation model

and methane production adjustment.

Fig 3. Phyla distribution of rumen florawith different forage-to-concentrate ratios. L, forage-to-concentrate ratio,

50:50; M, forage-to-concentrate ratio, 70:30; H, forage-to-concentrate ratio, 90:10.

https://doi.org/10.1371/journal.pone.0214777.g003

Table 5. Relative abundance of five distinct phyla (%) and Pearson’s correlations with different forage-to-concentrate ratios.

Phylum Forage-to-concentrate ratio a Pearson’s

correlation b

L M H

Bacteroidetes 66.14±2.92 60.05±3.50 56.80±3.70 -0.801��

Firmicutes 24.13±2.87 27.45±2.92 32.01±2.56 0.814��

Proteobacteria 1.70±0.13 0.77±0.07 0.59±0.03 -0.920��

Spirochaetae 3.02±0.26 2.41±0.26 0.75±0.05 -0.951��

Saccharibacteria 0.05±0.01 0.22±0.03 0.28±0.05 0.932��

a L, forage-to-concentrate ratio 50:50; M, forage-to-concentrate ratio 70:30; H, forage-to-concentrate ratio 90:10. All the data are presented as mean ± S.E. (standard

error).
b Pearson’s correlation was used to measure the relationship between two variables (linear correlation) and the R range is between [-1, +1].

��P < 0.01.

https://doi.org/10.1371/journal.pone.0214777.t005
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Firstly, the results of real-time PCR showed that the number of methanogens, protozoa and

anaerobic fungi, under the change of F:C, was changed significantly except bacterial. Archaea

was considered the producer of methane. But with the change of F:C in this study, the quantity

of archaea was stable. It showed no significant linear relationship between the structure of

archaea and methane production, which is similar to the research of Lengowski et al. [25]. The

relationship between archaea and methane production has been discussed in many studies.

Moreover, the main raw materials for methane synthesis, such as hydrogen, carbon dioxide

and VFAs, were produced by bacteria [49]. Methane synthesis was a passive behavior of

archaea to maintain rumen pressure and pH balance in the case of too high ratios of bacterial

synthesis [50–51]. Therefore, methane production was more probably related to the concen-

tration of synthetic raw materials in the rumen and the bacteria producing these materials.

The second goal of this experiment was to explore changes in the genus level of the rumen

flora with different F:C. With the increase of the ratio, the proportion of different genera

showed significant differences, revealing the effectiveness of experimental gradient design. In

Table 6. Relative abundance of 25 distinct genera (%) and Pearson’s correlations with different forage-to-concentrate ratios.

Genus Forage-to-concentrate ratio a Pearson’s

correlation b

L M H

Prevotella 50.79±2.53 43.06±4.48 34.09±4.65 -0.901��

Ruminococcus 5.03±0.49 9.18±1.34 10.33±0.76 0.902��

Lachnospira 8.48±0.77 10.63±0.91 3.34±0.41 -0.282

Rikenella 1.65±0.10 3.72±0.60 14.09±0.79 0.730�

Succiniclasticum 4.11±0.50 5.49±0.29 7.04±0.39 0.963��

Fibrobacter 2.53±0.05 2.89±0.11 1.52±0.10 -0.603

Eubacterium 0.39±0.06 0.97±0.11 0.96±0.12 0.625

Papillibacter 0.05±0.01 0.46±0.05 1.41±0.15 0.768�

Quinella 1.31±0.14 0.25±0.01 0.07±0.01 -0.819�

Verllonella 0.61±0.06 0.52±0.04 0.25±0.03 -0.933��

Fretibacterium 0.26±0.02 0.38±0.02 0.61±0.05 0.968��

Anaerovorax 0.12±0.01 0.42±0.04 0.58±0.07 0.964��

Pseudobutyrivibrio 0.04±0.01 0.27±0.02 0.77±0.03 0.976��

Butyrivibrio 0.11±0.02 0.25±0.03 0.61±0.04 0.961��

Ruminobacter 0.84±0.14 0.09±0.01 0.02±0.00 -0.686�

Selenomonas 0.13±0.01 0.15±0.02 0.61±0.09 0.734�

Lachnoclostridium 0.18±0.01 0.20±0.02 0.50±0.03 0.788�

Oribacterium 0.33±0.04 0.16±0.01 0.11±0.01 -0.832�

Syntrophococcus 0.38±0.05 0.11±0.01 0.01±0.00 -0.957��

Succinivibrio 0.22±0.03 0.18±0.01 0.13±0.01 -0.893��

Candidatus 0.05±0.00 0.19±0.02 0.24±0.04 0.926��

Clostridium 0.17±0.01 0.25±0.02 0.04±0.00 -0.631

Anaerotruncus 0.04±0.00 0.13±0.01 0.25±0.01 0.992��

Olsenella 0.33±0.01 0.06±0.01 0.02±0.00 -0.721�

Ruminiclostridium 0.06±0.01 0.09±0.00 0.20±0.01 0.858��

a L, forage-to-concentrate ratio 50:50; M, forage-to-concentrate ratio 70:30; H, forage-to-concentrate ratio 90:10. All the data are presented as mean ± S.E. (standard

error).
b Pearson’s correlation was used to measure the relationship between two variables (linear correlation) and the R range is between [-1, +1].

�P < 0.05,

��P < 0.01.

https://doi.org/10.1371/journal.pone.0214777.t006
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this study, the proportion of Prevotella showed a linearly increasing trend with the increase of

protein levels in diets, which was consistent with the results of Xu and Gordon [52]. As a

genus, Prevotella has many functions, mainly including promoting protein degradation and

assisting other strains in enhancing the utilization of fiber materials in ruminants [53]. Rumi-
nococcus, a cellulolytic bacterium [54], increased with the increasing fiber. Succinivibrio,

Fig 4. Redundancy analysis of nutrition index and the rumen microbiota with different forage-to-concentrate

ratios. L, forage-to-concentrate ratio, 50:50; M, forage-to-concentrate ratio, 70:30; H, forage-to-concentrate ratio,

90:10. CP, crude protein; ADF, acid detergent fiber; NDF, neutral detergent fiber. Two sorting axes accounted for

95.48% of the changes with the first sorting axis explaining a change of 66.37% and 29.11% for the second sorting axis.

https://doi.org/10.1371/journal.pone.0214777.g004

Table 7. Relevance of nutrition indices in the redundancy analysis a.

Item b RDA1 RDA2 R2

CP -0.4325 0.9016 0.72��

ADF 0.4867 -0.8736 0.70��

NDF 0.5225 -0.8527 0.69��

Starch -0.5321 0.8467 0.69��

EE 0.4641 0.3559 0.41

ADL 0.3482 -0.372 0.36

a RDA1 and RDA2 were the first and second contribution rate of the difference characteristic respectively, which

reflected the extent of influence of environmental factors in the form of percentage. R2 represented the coefficient of

determination of the environmental factors and the sample distribution.

��P< 0.01.
b CP, crude protein; ADF, acid detergent fiber; NDF, neutral detergent fiber; EE, ether extract; ADL, acid detergent

lignin.

https://doi.org/10.1371/journal.pone.0214777.t007
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Ruminobacter, amylophilus and Selenomonas were starch-degrading bacteria that could pro-

duce acetic acid and succinic acid during starch degradation [55]. Succinic acid was eventually

transformed to PA [56] to provide energy for microbial protein synthesis in the rumen. With

the decrease of starch content in the diets, the proportion of these three genera decreased sig-

nificantly in this experiment, indicating the change of carbohydrate fermentation substrate

from a non-structural carbohydrate to a structural carbohydrate. Butyrivibrio and Pseudobu-
tyrivibrio were carbohydrate-degrading bacteria producing butyric acid [57]. In this experi-

ment, the proportion of Butyrivibrio and Pseudobutyrivibrio decreased linearly with the

increase of starch, but increased linearly with the increase of NDF and ADF in the diets, which

showed that Butyrivibrio and Pseudobutyrivibrio were more likely to produce energy by using

structural carbohydrates. The proportion of Eubacterium with the function of degrading struc-

tural carbohydrates was similar to that of Butyrivibrio [58].

In this study, the third aim was to gain a preliminary understanding of the relationship

between nutrition levels and the diversity and richness of rumen microbiota in sheep under

various F:C. In this experiment, CP was the most important nutrient factor contributing to the

change in bacterial diversity. Bodine and Purvis [59] found that the effect of supplementation

of non-structural carbohydrate is largely determined by the level of protein in the diet. Adding

protein to the diet can improve the balance of energy and nitrogen and increase digestibility.

CP could provide nitrogen resource for the self-replication and enzyme synthesis of bacteria

[60]. ADF, NDF and starch were important nutrient factors providing carbon resource for

self-replication and energy. However, starch showed a negative correlation with bacterial

diversity compared to ADF and NDF because of its easier decomposition as a non-structural

carbohydrate. According to the studies of Kononoff and Heinrichs [61] and Drackley et al.

[62], the rumen fermentation was mainly in the AA-mode when NDF and ADF contents in

the diet were high and mainly in the PA-mode when starch content in the diet was high. The

Chao index of OTUs increased with the increase in F:C, showing more strains of bacteria were

required by the degradation of NDF and ADF to cooperate than those required by the degra-

dation of CP and starch. These were the changes of microbiota in the rumen. EE and ADL in

the diets had no significant effects on the changes in the rumen microbiota. Jenkins [63] found

that only about 8% of fat in the rumen was degraded. There might be two reasons: The

designed levels of EE and ADL content in the diets were too close to result in the similarity of

the microbial community or these nutrients were not main energy resources for bacterial

Table 8. Effect of different forage-to-concentrate ratios on in vitro fermentation.

Item a Forage-to-concentrate ratio b P-value

L M H

pH 6.66±0.09 6.84±0.10 6.95±0.11 0.048

NH3-N, mg/100mL 29.51±0.75 28.97±0.71 26.80±0.59 0.025

AA, mmol/L 47.98±0.90 49.54±0.66 51.71±1.17 0.031

PA, mmol/L 15.70±0.96 13.75±0.67 12.11±0.80 0.018

BA, mmol/L 8.64±0.18 8.04±0.16 7.95±0.26 0.049

A/P 2.93±0.14 3.40±0.13 4.02±0.16 0.004

IVDMD, % 68.04±1.91 62.16±1.14 60.51±2.15 0.016

a AA, acetate acid; PA, propionate acid; BA, butyrate acid; A/P, acetate acid/ propionate acid; IVDMD, in vitro dry

matter digestibility.
b L, forage-to-concentrate ratio 50:50; M, forage-to-concentrate ratio 70:30; H, forage-to-concentrate ratio 90:10. All

the data are presented as mean ± S.E. (standard error).

https://doi.org/10.1371/journal.pone.0214777.t008
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activity in the rumen so that bacteria were not sensitive to the low levels of EE [64]. Based on

the above results, three kinds of rumen bacterial community were proved to be successfully

established.

In this study, the final goal was to preliminarily understand the relationship between meth-

ane production and the rich and diversity of rumen microbiota in sheep under various F:C. In

the anaerobic environment of the rumen, a variety of organic compounds could eventually be

transformed to methane through decomposed by a number of microorganisms [5]. Leng and

Nolan [14] showed that 80% of the nitrogen available to ruminal bacteria came from ammonia

and 20% from amino acids or oligopeptides. With the increase of F:C, Cmax of methane was

delayed. For the diet with higher CP and starch contents, methane production could reach

Cmax more quickly, showing a significant correlation with the rumen microbiota. With lower

CP content in diet, bacteria required more time for protein decomposition to provide materi-

als for their reproduction and methane synthesis, which indicated that methane synthesis

Table 9. Cmax, Tmax and total production of methane in vitro and Pearson’s correlations with different forage-to-concentrate ratios.

Item a Forage-to-concentrate ratio b Pearson’s

correlation c

L M H

Cmax, % 0.25±0.01 0.21±0.02 0.19±0.01 -0.827��

Tmax, min 70.50±5.74 96.00±4.90 123.00±13.46 0.922��

Total production, mmol/g substrate 35.16±2.34 26.51±0.99 18.6±2.00 -0.772�

a Cmax, peak concentration; Tmax, the time to peak concentration.
b L, forage-to-concentrate ratio 50:50; M, forage-to-concentrate ratio 70:30; H, forage-to-concentrate ratio 90:10. All the data are presented as mean ± S.E. (standard

error).
c Pearson’s correlation was used to measure the relationship between two variables (linear correlation) and the R range is between [-1, +1].

�P < 0.05,

��P < 0.01.

https://doi.org/10.1371/journal.pone.0214777.t009

Fig 5. Methane production curve in vitro with different forage-to-concentrate ratios. L, forage-to-concentrate ratio,

50:50; M, forage-to-concentrate ratio, 70:30; H, forage-to-concentrate ratio, 90:10. SEM, standard error of mean; Total

gas, fermentation gas and carrier gas.

https://doi.org/10.1371/journal.pone.0214777.g005
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Table 10. Pearson’s correlations between five distinct phyla and in vitro Cmax, Tmax and total production a of methane with different forage-to-concentrate ratios.

Phylum Pearson’s correlations b

Cmax Tmax Total production

Bacteroidetes 0.627� -0.560� 0.503

Firmicutes -0.614� 0.579� -0.500

Proteobacteria 0.563� -0.727�� 0.587�

Spirochaetae 0.620� -0.732�� 0.738��

Saccharibacteria -0.594� 0.723�� -0.737��

a Cmax, peak concentration; Tmax, the time to peak concentration.
b Pearson’s correlation was used to measure the relationship between two variables (linear correlation) and the R range is between [-1, +1].

�P < 0.05,

��P < 0.01.

https://doi.org/10.1371/journal.pone.0214777.t010

Table 11. Pearson’s correlations between 25 distinct genera and in vitro Cmax, Tmax and total production a of methane with different forage-to-concentrate ratios.

Genus Pearson’s correlations a

Cmax Tmax Total production

Prevotella 0.586� -0.693�� 0.739��

Ruminococcus -0.723�� 0.652� -0.695��

Lachnospira 0.291 -0.305 0.243

Rikenella -0.566� 0.712�� -0.714��

Succiniclasticum -0.721�� 0.716�� -0.768��

Fibrobacter 0.274 -0.470 0.463

Eubacterium -0.693�� 0.652� -0.586�

Papillibacter -0.622� 0.756�� -0.722��

Quinella 0.743�� -0.723�� 0.677��

Verllonella 0.538� -0.722�� 0.727��

Fretibacterium -0.423 0.760�� -0.410

Anaerovorax -0.514 0.558� -0.509

Pseudobutyrivibrio -0.637� 0.762�� -0.754��

Butyrivibrio -0.623� 0.752�� -0.726��

Ruminobacter 0.712�� -0.694�� 0.643�

Selenomonas -0.476 0.638� -0.669��

Lachnoclostridium -0.387 0.664�� -0.660��

Oribacterium 0.699�� -0.746�� 0.689��

Succinivibrio 0.566� -0.696�� 0.644�

Syntrophococcus 0.741�� -0.757�� 0.714��

Candidatus -0.719�� 0.695�� -0.729��

Clostridium -0.463 0.431 -0.415

Anaerotruncus -0.686�� 0.765�� -0.771��

Olsenella 0.744�� -0.711�� 0.703��

Ruminiclostridium -0.606� 0.543� -0.743��

a Cmax, peak concentration; Tmax, the time to peak concentration.
b Pearson’s correlation was used to measure the relationship between two variables (linear correlation) and the R range is between [-1, +1].

�P < 0.05,

��P < 0.01.

https://doi.org/10.1371/journal.pone.0214777.t011

Structure of rumen bacteria and real-time methane production in sheep

PLOS ONE | https://doi.org/10.1371/journal.pone.0214777 May 22, 2019 15 / 20

https://doi.org/10.1371/journal.pone.0214777.t010
https://doi.org/10.1371/journal.pone.0214777.t011
https://doi.org/10.1371/journal.pone.0214777


needed to go through a “start-up” phase before the normal fermentation mode. Previous stud-

ies only found that Cmax of methane occurred at about 2 h after food intake [65–66]. The miss-

ing of the delay phenomenon could be attributed to the insufficient frequency of detection. On

the other hand, both Cmax and total production of methane with lower CP and starch contents

in the diet during fermentation were less than those in the diets with lower NDF and ADF con-

tents. It was probably because related bacteria like Prevotella and Butyrivibrio could decom-

pose nitrogen compounds to provide sufficient raw materials for the reproduction and

synthesis of methanogenic archaea [67]. As indicated by the correlation analysis, fiber-degrad-

ing bacteria were positively correlated with Tmax of methane, but negatively correlated with

Cmax and total production of methane. Compared with fiber-degrading bacteria, starch-

degrading and protein-degrading bacteria showed an opposite correlation. More readily avail-

able nitrogen and degradable carbohydrates could be preferentially used by microorganisms

[68], providing more effective support for methane synthesis. Furthermore, Cmax and Tmax of

methane could be effective parameters for predicting the type of rumen fermentation, which

however remained to be confirmed by further research.

Based on nutritional parameters, a new model of methane prediction with a wider range of

applications is being developed in accordance with the results of the present study. The genera

of bacterial, as the parameters for the prediction models, had been narrowed down. There

were significant correlations between specific bacterial at the starting of fermentation and real-

time methane production in vitro. However, the dynamic changes of bacterial at the moment

such as Tmax during the fermentation need to be explored in the following study. Additionally,

the fermentation in vivo was more complex. For instance, nitrogen cycling in ruminants

might provide bacteria with initial nitrogenous material [69]. Thus, further studies are

required to confirm the occurrence of this delay phenomenon in vivo and illustrate the

process.

Conclusions

With the change in F:C, bacterial community structure and methane production in the rumen

showed significant changes. Crude protein was the most important nutrient factor that con-

tributed to the change in bacterial diversity. Among the 150 genera identified in the rumen,

the abundance of 22 varied linearly with F:C. These genera would be further screened to serve

as effective parameters for the methane prediction model. In addition, during the 12 h in vitro
fermentation, as F:C increased, the Cmax and total production of methane decreased signifi-

cantly, and Tmax was delayed by 26–27 min. The fiber-degrading bacteria were positively cor-

related with this phenomenon, but starch-degrading and protein-degrading bacteria were

negatively correlated with it.
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