Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(Z)-3-Methyl-4-[1-(4-methylanilino)propylidene]-1-phenyl-1H-pyrazol-5(4H)-one

Naresh Sharma,^a‡ Komal M. Vyas,^b R. N. Jadeja,^b Rajni Kant^a and Vivek K. Gupta^a*

^aPost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and ^bDepartment of Chemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390 002, India Correspondence e-mail: vivek_gupta2k2@hotmail.com

Received 25 June 2013; accepted 10 July 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.130; data-to-parameter ratio = 14.8.

In the title molecule, C₂₀H₂₁N₃O, the central pyrazole ring forms dihedral angles of 4.75 (9) and 49.11 (9)°, respectively, with the phenyl and methyl-substituted benzene rings. The dihedral angle between the phenyl and benzene rings is 51.76 (8)°. The amino group and carbonyl O atom are involved in an intramolecular N-H···O hydrogen bond. In the crystal, π - π interactions are observed between benzene rings [centroid-centroid seperation = 3.892 (2) Å] and pyrazole rings [centroid–centroid seperation = 3.626(2) Å], forming chains along [111]. The H atoms of the methyl group on the *p*-tolyl substituent were refined as disordered over two sets of sites in a 0.60 (4):0.40 (4) ratio.

Related literature

For applications of pyrazole derivatives, see: Wang et al. (2005); Vyas et al. (2011). For general background to Schiffbased pyrazole derivatives, see: Kahwa et al. (1986). For related structures, see: Sharma et al. (2012); Abdel-Aziz et al. (2012).

‡ Presently posted: Govt. Degree College, Kathua, J & K, India.

3341 independent reflections

 $R_{\rm int} = 0.066$

2067 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$C_{20}H_{21}N_{3}O$	$\gamma = 104.961 \ (3)^{\circ}$
$M_r = 319.40$	$V = 852.75 (5) \text{ Å}^3$
Triclinic, P1	Z = 2
a = 8.8092 (3) Å	Mo $K\alpha$ radiation
b = 9.8629 (4) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 10.9278 (4) Å	T = 293 K
$\alpha = 105.633 \ (4)^{\circ}$	$0.30 \times 0.20 \times 0.20$ mm
$\beta = 99.971 \ (3)^{\circ}$	
Data collection	
Oxford Diffraction Xealibur	23723 measured reflection

Sapphire3 diffractometer
Absorption correction: multi-scan
(CrysAlis RED; Oxford
Diffraction, 2010)
$T_{\rm min} = 0.792$ $T_{\rm min} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	H atoms treated by a mixture of
$wR(F^2) = 0.130$	independent and constrained
S = 1.01	refinement
3341 reflections	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
225 parameters	$\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N19−H19···O5	0.92 (3)	1.82 (2)	2.656 (2)	151 (2)

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under Project No. SR/S2/CMP-47/2003. VKG is thankful to the University of Jammu, Jammu, India, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5629).

References

- Abdel-Aziz, H. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o1095-o1096.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Kahwa, I. A., Selbin, J., Hsieh, T. C.-Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179-185.
- Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Sharma, N., Vyas, K. M., Jadeja, R. N., Kant, R. & Gupta, V. K. (2012). Acta Crvst. E68, o3036.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Vyas, K. M., Jadeja, R. N., Gupta, V. K. & Surati, K. R. (2011). J. Mol. Struct. 990. 110-120.
- Wang, Y., Yang, Z.-Y. & Wang, B.-D. (2005). Transition Met. Chem. 7, 879-883.

supplementary materials

Acta Cryst. (2013). E69, o1271 [doi:10.1107/S1600536813019144]

(*Z*)-3-Methyl-4-[1-(4-methylanilino)propylidene]-1-phenyl-1*H*-pyrazol-5(4*H*)one

Naresh Sharma, Komal M. Vyas, R. N. Jadeja, Rajni Kant and Vivek K. Gupta

Comment

Over the past thirty years, extensive chemistry has surrounded the use of Schiff base ligands in inorganic chemistry. Schiff bases of pyrazolone have been playing an important part in the development of coordination chemistry (Kahwa *et al.*, 1986). Consequently, a large number of these species have been reported to be superior reagents in biological, pharmacological, clinical and analytical applications (Wang *et al.*, 2005). As part of an investigation of their crystal structures, which will provide useful information for the coordination properties of Schiff bases functioning as ligands, we report here the synthesis and molecular structure of the title compound. It was prepared as part of our on-going studies of azo dyes with possible medical applications (Vyas *et al.*, 2011). The bond distances in the title compound are comparable to the closely related structures (Abdel-Aziz *et al.*, 2012; Sharma *et al.*, 2012). The central pyrazole (N1/N2/C3/C4/C5) ring makes dihedral angles of 4.75 (9)° and 49.11 (9)°, respectively, with the phenyl (C6-C11) and methyl-substituted benzene (C12-C17) rings. The dihedral angle between the phenyl and benzene rings is 51.76 (8)°. The amino group and the carbonyl oxygen atom are involved in an intramolecular N—H···O hydrogen bond. In the crystal, $\pi \cdots \pi$ interactions are observed between the benzene rings [centroid–centroid seperation = 3.892 (2) Å, interplanar spacing = 3.474 Å, centriod shift = 1.75 Å, symmetry code: *-x,-y,-z*] and pyrazole rings [centroid–centroid seperation = 3.626 (2) Å, interplanar spacing = 3.490 Å, centriod shift = 0.98 Å, symmetry code: 1 - *x*,1 - *y*,1 - *z*] (see Fig. 2).

Experimental

An equimolar (10 mmol) ethanolic solution (50 ml) of 3-methyl-1-phenyl-4-propionyl-1*H*-pyrazol-5(4*H*)-one and *p*-toluidine was refluxed for 6 h in round bottom flask, whereupon a microcrystalline yellow precipitate appeared. The product was then isolated and recrystallized from ethanol, and then dried in vacuum to give the title compound in 80% yield. Light Yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution of the title compound.

Refinement

Atom H19 attached to N19 was located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically and were refined as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$, except for the methyl groups where $U_{iso}(H) = 1.5U_{eq}(C)$. The H atoms of the methyl group (C18) on the *p*-tolyl substituent were refined as disordered over two sets of sites in a ratio of 0.60 (4):0.40 (4).

Computing details

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO* (Oxford Diffraction, 2010); data reduction: *CrysAlis PRO* (Oxford Diffraction, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick,

2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title compound. The probability ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Figure 2

The packing arrangement of molecules viewed along the *a* axis.

(Z)-3-methyl-4-[1-(4-methylanilino)propylidene]-1-phenyl-1H-pyrazol-5(4H)-one

Crystal data	
$C_{20}H_{21}N_{3}O$	Z = 2
$M_r = 319.40$	F(000) = 340
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.244 {\rm Mg m^{-3}}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.8092 (3) Å	Cell parameters from 10378 reflections
b = 9.8629 (4) Å	$\theta = 3.5 - 29.1^{\circ}$
c = 10.9278 (4) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\alpha = 105.633 \ (4)^{\circ}$	T = 293 K
$\beta = 99.971 \ (3)^{\circ}$	Block, yellow
$\gamma = 104.961 (3)^{\circ}$	$0.30 \times 0.20 \times 0.20$ mm
V = 852.75 (5) Å ³	

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer	23723 measured reflections 3341 independent reflections
Radiation source: fine-focus sealed tube	2067 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.066$
Detector resolution: 16.1049 pixels mm ⁻¹	$\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 3.5^{\circ}$
ω scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan	$k = -12 \rightarrow 12$
(CrysAlis RED; Oxford Diffraction, 2010)	$l = -13 \rightarrow 13$
$T_{\min} = 0.792, \ T_{\max} = 1.000$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from
$wR(F^2) = 0.130$	neighbouring sites
S = 1.01	H atoms treated by a mixture of independent
3341 reflections	and constrained refinement
225 parameters	$w = 1/[\sigma^2(F_0^2) + (0.0441P)^2 + 0.3811P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.17$ e Å ⁻³
	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. *CrysAlis PRO*, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.6306 (2)	0.5996 (2)	0.37478 (17)	0.0405 (4)	
N2	0.4810(2)	0.6219 (2)	0.33572 (19)	0.0461 (5)	
C3	0.4497 (3)	0.6918 (2)	0.4430 (2)	0.0432 (5)	
C4	0.5759 (3)	0.7196 (2)	0.5581 (2)	0.0419 (5)	
C5	0.6914 (2)	0.6541 (2)	0.5090 (2)	0.0396 (5)	
05	0.82042 (18)	0.64696 (18)	0.57192 (14)	0.0524 (4)	
C6	0.6921 (2)	0.5216 (2)	0.2780 (2)	0.0382 (5)	
C7	0.6007 (3)	0.4624 (2)	0.1476 (2)	0.0458 (6)	
H7	0.4989	0.4733	0.1250	0.055*	
C8	0.6609 (3)	0.3874 (3)	0.0520(2)	0.0542 (7)	
H8	0.5989	0.3479	-0.0351	0.065*	
С9	0.8116 (3)	0.3703 (3)	0.0832 (2)	0.0537 (6)	
Н9	0.8524	0.3210	0.0180	0.064*	

C10	0.0002(2)	0.4274(2)	0.2122(2)	0.0540(6)	
	0.9002 (3)	0.4274 (5)	0.2122(2)	0.0340 (0)	
	1.0013	0.4149	0.2343	0.003°	
	0.0451 (5)	0.5029 (2)	0.3102 (2)	0.0400 (0)	
	0.9053	0.3410	0.39/1	0.055*	
C12	0.7/47 (3)	0.8304 (2)	0.9149 (2)	0.0423 (5)	
C13	0.8209 (3)	0.7326 (3)	0.9/08 (2)	0.0456 (6)	
HI3	0.8139	0.6388	0.9176	0.055*	
C14	0.8777 (3)	0.7740 (3)	1.1057 (2)	0.0510 (6)	
H14	0.9085	0.7072	1.1424	0.061*	
C15	0.8898 (3)	0.9121 (3)	1.1875 (2)	0.0517 (6)	
C16	0.8441 (3)	1.0085 (3)	1.1292 (2)	0.0558 (7)	
H16	0.8516	1.1025	1.1823	0.067*	
C17	0.7877 (3)	0.9697 (3)	0.9947 (2)	0.0517 (6)	
H17	0.7585	1.0370	0.9580	0.062*	
C18	0.9500 (4)	0.9557 (3)	1.3343 (3)	0.0825 (9)	
H18A	0.9662	1.0595	1.3739	0.124*	0.60 (4)
H18B	1.0513	0.9368	1.3558	0.124*	0.60 (4)
H18C	0.8712	0.8985	1.3671	0.124*	0.60 (4)
H18D	0.9596	0.8703	1.3573	0.124*	0.40 (4)
H18E	0.8745	0.9931	1.3754	0.124*	0.40 (4)
H18F	1.0546	1.0314	1.3641	0.124*	0.40 (4)
N19	0.7247 (2)	0.7827 (2)	0.77489 (19)	0.0468 (5)	
C20	0.5957 (3)	0.7862 (2)	0.6926 (2)	0.0419 (5)	
C21	0.4839 (3)	0.8636 (3)	0.7452 (2)	0.0489 (6)	
H21A	0.4943	0.8702	0.8366	0.059*	
H21B	0.3724	0.8056	0.6963	0.059*	
C22	0.5207 (3)	1.0205 (3)	0.7353 (3)	0.0670 (8)	
H22A	0.4515	1.0688	0.7755	0.101*	
H22B	0.5010	1.0139	0.6444	0.101*	
H22C	0.6325	1.0768	0.7798	0.101*	
C23	0.2922 (3)	0.7244 (3)	0.4309 (3)	0.0591 (7)	
H23A	0.2374	0.6964	0.3396	0.089*	
H23B	0.3132	0.8288	0.4728	0.089*	
H23C	0.2248	0.6690	0.4728	0.089*	
H19	0.778 (3)	0.728 (3)	0.727 (2)	0.063 (8)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³	
N1	0.0335 (10)	0.0496 (11)	0.0386 (11)	0.0157 (8)	0.0051 (8)	0.0155 (9)	
N2	0.0348 (10)	0.0554 (12)	0.0490 (12)	0.0162 (9)	0.0063 (9)	0.0198 (10)	
C3	0.0379 (12)	0.0441 (13)	0.0485 (14)	0.0111 (10)	0.0103 (11)	0.0193 (11)	
C4	0.0404 (12)	0.0436 (13)	0.0448 (14)	0.0127 (10)	0.0131 (10)	0.0190 (10)	
C5	0.0363 (12)	0.0430 (13)	0.0412 (13)	0.0120 (10)	0.0091 (10)	0.0180 (10)	
05	0.0453 (10)	0.0708 (11)	0.0432 (9)	0.0296 (8)	0.0055 (7)	0.0156 (8)	
C6	0.0367 (11)	0.0329 (11)	0.0433 (13)	0.0085 (9)	0.0075 (10)	0.0142 (10)	
C7	0.0403 (13)	0.0467 (13)	0.0463 (14)	0.0138 (10)	0.0027 (11)	0.0146 (11)	
C8	0.0627 (16)	0.0476 (14)	0.0434 (14)	0.0187 (12)	0.0019 (12)	0.0076 (11)	
C9	0.0622 (16)	0.0475 (14)	0.0500 (16)	0.0258 (12)	0.0136 (13)	0.0070 (12)	
C10	0.0505 (14)	0.0585 (15)	0.0548 (16)	0.0282 (12)	0.0103 (12)	0.0134 (12)	

supplementary materials

C11	0.0427 (13)	0.0518 (14)	0.0425 (14)	0.0176 (11)	0.0064 (11)	0.0149 (11)
C12	0.0387 (12)	0.0490 (14)	0.0401 (13)	0.0144 (10)	0.0150 (10)	0.0130 (11)
C13	0.0434 (13)	0.0465 (13)	0.0471 (14)	0.0162 (11)	0.0142 (11)	0.0123 (11)
C14	0.0532 (15)	0.0548 (15)	0.0489 (15)	0.0166 (12)	0.0130 (12)	0.0241 (12)
C15	0.0512 (14)	0.0589 (16)	0.0414 (14)	0.0097 (12)	0.0159 (11)	0.0163 (12)
C16	0.0648 (16)	0.0505 (15)	0.0477 (15)	0.0176 (13)	0.0186 (13)	0.0075 (12)
C17	0.0596 (15)	0.0498 (14)	0.0535 (16)	0.0228 (12)	0.0185 (12)	0.0218 (12)
C18	0.104 (3)	0.086 (2)	0.0468 (17)	0.0230 (19)	0.0128 (16)	0.0160 (15)
N19	0.0469 (12)	0.0575 (13)	0.0388 (12)	0.0236 (10)	0.0124 (9)	0.0130 (9)
C20	0.0371 (12)	0.0396 (12)	0.0506 (14)	0.0083 (10)	0.0123 (10)	0.0209 (11)
C21	0.0458 (14)	0.0519 (14)	0.0556 (15)	0.0194 (11)	0.0208 (11)	0.0201 (12)
C22	0.0748 (19)	0.0550 (16)	0.081 (2)	0.0296 (14)	0.0248 (16)	0.0261 (14)
C23	0.0425 (14)	0.0720 (17)	0.0658 (17)	0.0246 (13)	0.0106 (12)	0.0236 (14)

Geometric parameters (Å, °)

N1—C5	1.372 (3)	C14—C15	1.379 (3)
N1—N2	1.404 (2)	C14—H14	0.9300
N1—C6	1.407 (3)	C15—C16	1.381 (3)
N2—C3	1.304 (3)	C15—C18	1.502 (3)
C3—C4	1.437 (3)	C16—C17	1.379 (3)
C3—C23	1.496 (3)	C16—H16	0.9300
C4—C20	1.398 (3)	С17—Н17	0.9300
C4—C5	1.442 (3)	C18—H18A	0.9600
C5—O5	1.252 (2)	C18—H18B	0.9600
C6—C11	1.388 (3)	C18—H18C	0.9600
C6—C7	1.389 (3)	C18—H18D	0.9600
C7—C8	1.378 (3)	C18—H18E	0.9600
С7—Н7	0.9300	C18—H18F	0.9600
C8—C9	1.377 (3)	N19—C20	1.335 (3)
С8—Н8	0.9300	N19—H19	0.92 (3)
C9—C10	1.371 (3)	C20—C21	1.494 (3)
С9—Н9	0.9300	C21—C22	1.534 (3)
C10—C11	1.380 (3)	C21—H21A	0.9700
C10—H10	0.9300	C21—H21B	0.9700
C11—H11	0.9300	C22—H22A	0.9600
C12—C17	1.377 (3)	С22—Н22В	0.9600
C12—C13	1.380 (3)	С22—Н22С	0.9600
C12—N19	1.425 (3)	С23—Н23А	0.9600
C13—C14	1.380 (3)	С23—Н23В	0.9600
С13—Н13	0.9300	С23—Н23С	0.9600
C5—N1—N2	111.70 (17)	С12—С17—Н17	120.2
C5—N1—C6	129.42 (17)	С16—С17—Н17	120.2
N2—N1—C6	118.78 (17)	C15-C18-H18A	109.5
C3—N2—N1	106.56 (17)	C15-C18-H18B	109.5
N2—C3—C4	111.68 (19)	H18A—C18—H18B	109.5
N2—C3—C23	118.1 (2)	C15—C18—H18C	109.5
C4—C3—C23	130.2 (2)	H18A—C18—H18C	109.5
C20—C4—C3	133.0 (2)	H18B—C18—H18C	109.5

C20—C4—C5	122.02 (19)	C15—C18—H18D	109.5
C3—C4—C5	104.92 (19)	H18A—C18—H18D	141.1
05—C5—N1	125.9 (2)	H18B—C18—H18D	56.3
05	129.0 (2)	H18C—C18—H18D	56.3
N1-C5-C4	105.10(17)	C15—C18—H18E	109.5
$C_{11} - C_{6} - C_{7}$	119.2 (2)	H18A - C18 - H18E	56.3
$C_{11} - C_{6} - N_{1}$	121.19 (19)	H18B-C18-H18E	141.1
C7—C6—N1	119.60 (19)	H18C-C18-H18E	56.3
C8-C7-C6	120.0 (2)	H18D—C18—H18E	109.5
C8—C7—H7	120.0	C15—C18—H18F	109.5
C6—C7—H7	120.0	H18A—C18—H18F	56.3
C9—C8—C7	121.0 (2)	H18B—C18—H18F	56.3
C9—C8—H8	119.5	H18C - C18 - H18F	141.1
C7—C8—H8	119.5	H18D—C18—H18F	109.5
C10-C9-C8	118.7 (2)	H18E— $C18$ — $H18F$	109.5
C10-C9-H9	120.7	$C_{20} = N_{19} = C_{12}$	1313(2)
C8-C9-H9	120.7	$C_{20} = N_{19} = H_{19}$	101.0(2) 108.9(15)
C9-C10-C11	120.7 121.6(2)	C12 - N19 - H19	119 2 (15)
C9-C10-H10	119.2	N19—C20—C4	119.2(10) 116.9(2)
$C_{11} - C_{10} - H_{10}$	119.2	N19 - C20 - C21	1201(2)
C10-C11-C6	119.2	C4-C20-C21	120.1(2) 122.9(2)
C10-C11-H11	120.3	C_{20} C_{21} C_{22}	122.9(2) 112.1(2)
C6-C11-H11	120.3	$C_{20} = C_{21} = H_{21A}$	109.2
C17 - C12 - C13	119 5 (2)	$C_{22} = C_{21} = H_{21A}$	109.2
C17 - C12 - N19	123 6 (2)	C_{20} C_{21} H_{21R}	109.2
C13 - C12 - N19	116.8 (2)	$C_{22} = C_{21} = H_{21B}$	109.2
C14 - C13 - C12	110.0(2) 119.9(2)	$H_{21}A = C_{21} = H_{21}B$	107.9
C14-C13-H13	120.0	C_{21} C_{22} H_{22A}	107.5
C12—C13—H13	120.0	$C_{21} = C_{22} = H_{22}R$	109.5
C15 - C14 - C13	121.6 (2)	H22A-C22-H22B	109.5
C15—C14—H14	119.2	C_{21} C_{22} H_{22} C_{23} H_{22} H	109.5
C13—C14—H14	119.2	$H_{22}A = C_{22} = H_{22}C$	109.5
C14-C15-C16	117.5 (2)	H22B - C22 - H22C	109.5
C14-C15-C18	121 2 (2)	$C_3 - C_{23} - H_{23A}$	109.5
C16-C15-C18	121.2(2) 121.4(2)	C_3 — C_{23} — H_{23B}	109.5
C17 - C16 - C15	121.4(2) 122.0(2)	$H_{23}A = C_{23} = H_{23}B$	109.5
C17 - C16 - H16	119.0	C_{3} C_{23} $H_{23}C_{3}$	109.5
C_{15} C_{16} H_{16}	119.0	$H_{23}A = C_{23} = H_{23}C$	109.5
C_{12} C_{17} C_{16}	119.6 (2)	H23R_C23_H23C	109.5
012-017-010	119.0 (2)	11250-025-11250	107.5
C5—N1—N2—C3	1.3 (2)	C8—C9—C10—C11	-1.0 (4)
C6—N1—N2—C3	178.00 (18)	C9—C10—C11—C6	0.2 (4)
N1—N2—C3—C4	0.1 (2)	C7—C6—C11—C10	0.6 (3)
N1—N2—C3—C23	-177.35 (19)	N1-C6-C11-C10	-179.1 (2)
N2-C3-C4-C20	-178.3 (2)	C17—C12—C13—C14	0.8 (3)
C23—C3—C4—C20	-1.3 (4)	N19—C12—C13—C14	177.1 (2)
N2—C3—C4—C5	-1.3 (2)	C12—C13—C14—C15	0.0 (4)
C23—C3—C4—C5	175.7 (2)	C13—C14—C15—C16	-0.5 (4)
N2—N1—C5—O5	178.3 (2)	C13—C14—C15—C18	179.4 (2)

C6-N1-C5-05	20(4)	C14 - C15 - C16 - C17	0.3(4)
	2.0(4)		170 ((2)
N2-N1-C5-C4	-2.0(2)	C18-C15-C16-C17	-1/9.6(2)
C6—N1—C5—C4	-178.31 (19)	C13—C12—C17—C16	-1.1 (3)
C20—C4—C5—O5	-1.0 (3)	N19—C12—C17—C16	-177.1 (2)
C3—C4—C5—O5	-178.4 (2)	C15-C16-C17-C12	0.5 (4)
C20—C4—C5—N1	179.35 (19)	C17—C12—N19—C20	-51.1 (4)
C3-C4-C5-N1	1.9 (2)	C13-C12-N19-C20	132.8 (3)
C5—N1—C6—C11	-7.2 (3)	C12—N19—C20—C4	-175.5 (2)
N2-N1-C6-C11	176.70 (19)	C12—N19—C20—C21	6.7 (4)
C5—N1—C6—C7	173.0 (2)	C3—C4—C20—N19	174.6 (2)
N2—N1—C6—C7	-3.1 (3)	C5-C4-C20-N19	-2.0 (3)
C11—C6—C7—C8	-0.6 (3)	C3—C4—C20—C21	-7.6 (4)
N1—C6—C7—C8	179.2 (2)	C5—C4—C20—C21	175.8 (2)
C6—C7—C8—C9	-0.2 (4)	N19—C20—C21—C22	98.8 (3)
C7—C8—C9—C10	1.0 (4)	C4—C20—C21—C22	-78.8 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
N19—H19…O5	0.92 (3)	1.82 (2)	2.656 (2)	151 (2)