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Background: Both gastric bypass (GB) and duodenal switch with sleeve gastrectomy (DS) have been widely used as bariatric
surgeries, and DS appears to be superior to GB. The aim of this study was to better understand the mechanisms leading to
body weight loss by comparing these two procedures in experimental models of rats.

Methods: Animals were subjected to GB, DS or laparotomy (controls), and monitored by an open-circuit indirect calorimeter
composed of comprehensive laboratory animal monitoring system and adiabatic bomb calorimeter.

Results: Body weight loss was greater after DS than GB. Food intake was reduced after DS but not GB. Energy expenditure
was increased after either GB or DS. Fecal energy content was increased after DS but not GB.

Conclusion: GB induced body weight loss by increasing energy expenditure, whereas DS induced greater body weight loss
by reducing food intake, increasing energy expenditure and causing malabsorption in rat models.
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Introduction

Various bariatric surgical procedures, such as gastric banding,
gastric bypass (GB) and duodenal switch with sleeve gastrectomy
(DS), have been developed in order to reduce food intake and/or
lead to malabsorption [1]. GB was invented by Dr. Edward Mason
as a bariatric surgery in 1965, and later it was converted to Roux-
en-Y procedure which was created by Dr. Cesar Roux already in
1897. Recently, a laparoscopic mini-GB procedure has been
shown to be regarded as a simpler and safer alternative to
laparoscopic Roux-en-Y with similar efficacy at 5 or 10 year
experience [2]. However, the different procedures have shown
different efficacy in individual patients, and the underlying
mechanisms are not yet clear. Therefore, it is a challenge to
select the most effective bariatric procedure for individual patients.

Various rat models of bariatric surgery have been developed in
order to understand the underlying physiological mechanisms of
different surgical procedures. There have been many studies in the
literature reporting the surgical procedures (such as Roux-en-Y) in
rats that are made as same as they are used in humans [3,4].
However, there is a significant difference in the anatomy and
physiology of the gastrointestinal tract between rats and humans,
which should be kept in mind when creating the surgical models in
rats and translating findings from animals and humans. For
instance, the rat stomach consists of antrum, fundus (also called
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corpus) and rumen (forestomach), while the human stomach is
divided into antrum, body and fundus (Fig 1A, E). The rat
jejunum represents almost 90% of the small intestine, the human
jejunum about 40% [5]. Unlike humans, rats are nonemetic (not
vomiting) and has no gallbladder. The Roux-en-Y reconstruction
was initially created to prevent post-gastrectomy bile vomiting in
patients [6]. Apparently, it is not necessary to create the Roux-en-
Y reconstruction in rats that are subjected to GB [7-9]. The
duodenal switch procedure was originally created as a surgical
solution for primary bile reflux gastritis and/or to decrease
postoperative symptoms after distal gastrectomy and gastroduo-
denostomy [10]. In patients, the operation usually consists of a
75% longitudinal gastrectomy (the so-called sleeve gastrectomy),
creation of an alimentary limb approximately 50% of total small
bowel length (i.e. bypassing jejunum), a common channel length of
100 cm, and cholecystectomy. In the present study using rats, GB
was performed without the Roux-en-Y reconstruction and the
postsurgical anatomy was similar to mini-GB on humans, and DS
was performed according to the rat anatomy (Fig 1A-H) [11].
GB is the most common procedure because of relatively high
efficacy and safety, whereas DS seems to be even more effective,
particularly in super-obese patients [12]. Both GB and DS are
believed to cause restriction in food intake and malabsorption by
decreasing stomach size and bypassing part of the small intestine.
In patients, DS is superior to GB in body weight loss as well as in
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Figure 1. Schematic drawing of anatomy. The gastrointestinal tract of human (A-D) and rat (E-H) before (A, E) and after Roux-en-Y gastric
bypass (GB) (B, F), mini-GB (C, G), and duodenal switch (D, H). Glandular stomach is indicated by grid gray and jejunum by light grid gray. The rumen
of rat stomach is non-glandular (white area). Note: In A, E, percentages mean % of small intestine, e.g. in E, jejunum is 90% of total small intestine in
rats based on [11]; in F, rat Roux-en-Y GB [3], and in G, Mini-GB used in the present study.

doi:10.1371/journal.pone.0072896.g001

improvement of comorbidities such as diabetes, hypertension and
dyslipidemia [12-18]. Mechanisms underlying the postoperative
weight loss and possible regain remain unclear. Whether this is
due to biological or behavioral factors is one of the major debates
[19]. The aim of the present study was to compare the
postoperative effects of GB vs.DS on eating behavior and energy
expenditure in rat models.

Materials and Methods

Animals and Experimental Design

Adult rats (male, Sprague-Dawley, 6-12 months of age) were
purchased from Taconic M&B, Skensved, Denmark and housed in
ventilated cages in a specific pathogen free environment with room
temperature of 22°C, 40-60% relative humidity and 12 hr day/
night cycle with 1 hr dusk/dawn. The rats had free access to tap
water and standard rat pellet food (RM1 801002, Scanbur BK AS,
Sweden). In our previous studies, we have reported that the male
rats gained body weight mainly as a result of continuous expansion
of the fat compartment after puberty (8 weeks of age with 200 g
body weight), and that the male rats that were fed a high-fat diet
starting at 5 weeks of age gained body weight up to ~650 g at
40 weeks of age as a result of increased fat mass [7,8]. In the
present study, normal adult male rats (~600 g body weight) were
chosen after considerations of the small difference in body weight
(~650 g vs. ~600 g induced by high-fat diet) and the experimental
efforts in terms of time-consuming and financial expense (Fig 2A).
Furthermore, the body weight development of naive rats reaches a
plateau (58020 g) at 40 weeks of age, and laparotomy performed
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at 13 weeks of age did not affect the development of body weight
(Fig 2A).

Thirty-four rats, at 587.0£8.1 g body weight, were randomly
divided into experimental (GB and DS) as well as control groups
(laparotomy, LAP): GB (14 rats), DS (7 rats), and LAP (13 rats).
The body weight was not different between the groups before
surgery (p = 0.276). Because of markedly loss of body weight after
DS, the group of DS rats, together with age-matched group of
laparotomized rats (LAPps, 7 rats), were followed up only for
8 weeks, while GB rats and the rest of laparotomized rats (LAPgg,
6 rats) were followed up for 14 weeks. In consideration of the
“3Rs” for the human use of animals (i.e., reducing the number of
animals while achieving the scientific purposes of the experiment),
rats that had been used for studies of the effects of individual
surgical procedures were re-used [8,20]. The study was approved
by the Norwegian National Animal Research Authority (For-
soksdyrutvalget, FDU).

Surgery

All operations were performed under general anesthesia with
isofluran (4% for induction and 2% for maintenance) (Baxter
Medical AB, Kista, Sweden). Buprenorphine (0.05 mg/kg) (Scher-
ing-Plough Europe, Brussels, Belgium) was administrated as an
analgesic agent subcutaneously immediately during surgery. LAP
was performed through a middle-line incision with gentle
manipulation of viscera. A rat model of Roux-en-Y GB procedure
has been described by Stylopoulos and his colleagues [3]. Gastric
pouch in that rat model was created at the site of rumen which
does not exist in humans (Iig 1F). In the present study, GB was
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Figure 2. Body weight. Naive rats (data from Taconic), rats that
underwent laparotomy (LAP) at 13 weeks (LAP) and rats that have had
high-fat since 5 weeks of age (data from [31]) (A). Rats after gastric
bypass (GB), duodenal switch (DS) and laparotomy (LAP) (B). Data are
expressed as means * SEM. **: p<<0.01, ***: p<<0.001 between LAP vs.
GB or DS.

doi:10.1371/journal.pone.0072896.9g002

performed by anastomosing the distal esophagus to the proximal
jejunum about 2-3 cm distal to the Treitz ligament in an end-to-
side manner (Fig 1G) as described previously [7,8]. DS was
achieved in two stages. The two-stage procedure has been
recommended in patients because the single-stage procedure
increases the risk of postoperative complications and staged DS
may avoid biliopancreatic diversion in some patients [21]. In the
present study, sleeve gastrectomy was performed by resecting
approximately 90% of the rumen and 70% of the glandular
stomach along the greater curvature. Three months later,
duodenal switch was achieved by creating biliopancreatic limb,
alimentary limb (bypassing jejunum) and common channel length
of 5 cm (Fig 1H). The duration of surgical time was 30-60 min for
GB or DS. In all surgeries performed in the present study, proper
aseptic surgical techniques were applied, and therefore, neither
prophylactic nor postoperative antibiotics were used. This was
done according to the guidelines and recommendations by the
Federation of European Laboratory Animal Science Associations
(FELASA 2008) and the guide for the care and use of laboratory
animals by the Committee of USA National Research Council
(2010). After recovering from anesthesia, the animals were placed
2—4 per cage throughout the study period.
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Measurements of Eating Behavior and Energy

Expenditure Parameters

These were monitored by the Comprehensive Laboratory
Animal Monitoring System (CLAMS, Columbus Instruments
International, Columbus, OH, USA) 2-3 weeks after GB, DS or
LAP and 14 weeks after GB, 8 weeks after DS or 8-14 weeks after
LAP. The CLAMS is composed of a 4-chamber indirect
calorimeter designed for the continuous monitoring of individual
rats from each chamber. The eating data was generated by
monitoring all feed balances every 0.5 s. In CLAMS program used
in the present study, the end of an eating event (meal) was when
the balance was stable for more than 10 s and a minimum of
0.05 g was eaten. The eating parameters during daytime and
nighttime (12 hr each time) for each rat included: accumulated
food intake (g or kcal), number of meals, meal size (g/meal), meal
duration (min/meal), intermeal interval (min), rate of eating (g/
min), and satiety ratio (min/g). The intermeal interval was defined
as the interval in minutes between two meals. The rate of eating
was calculated by dividing meal size by meal duration. The satiety
ratio, an index of non-eating time produced by each gram of food
consumed, was calculated as intermeal interval divided by meal
size [22]. The volume of Oy consumption (VOy mL/kg/hr) and
the volume of COy production (VCOy mL/kg/hr) were measured
by an air sample withdrawn every 5 min from each chamber
through the gas dryer. The energy expenditure (kcal/hr) was
calculated according to equation: (3.815+1.232 RER) x VO,
where the respiratory exchange ratio (RER) was obtained by
VCO, divided by VOo. In order for rats to acclimate to CLAMS,
they were placed in these metabolic chambers for 24 hr one week
before the first CLAMS monitoring. For the measurement of
eating and metabolic parameters, the rats were placed in the
CLAMS for 48 hr. In order to minimalize possible effect of stress,
only data from the last 24 hr in CLAMS were used for the
analysis. An analysis of eating pattern in control rats over a time
period from day 1 and 21 showed no significant differences in any
parameters, indicating that the animals had acclimated to CLAMS
(Table S1). The rats have had free access to standard rat powder
food (RM1 811004, Scanbur BK AS, Sweden) and tap water while
they were in CLAMS. The total metabolizable energy was
2.57 kcal/g for both the pellet food (RM1 811002) and the powder
food (RM1 811004).

Determination of Fecal Energy Density

Feces were collected while the rats were placed in CLAMS
chambers and dried for 72 hr at 60°C. The energy density was
determined by means of an adiabatic bomb calorimeter (IKA-
Calorimeter C 5000, IKA-Werke GmbH & Co. KG, Staufen,

Germany).

Determination of Plasma Levels of Cytokines

Blood was drawn from the abdominal aorta under the
anesthesia just before the animals were killed, and plasma was
stored at —80°C: until determination of levels of cytokines. The
multiplex cytokine assay was used (Cat no:171-K1002M, Bio-plex
Pro Rat Cytokine Th1/Th2 12-plex Panel; Bio-Rad Laboratories,
Hercules, CA, USA). It contained the following analytics: IL-1a,
IL-1B, IL-2, 114, IL-5, IL-6, IL-10, IL-13, granulocyte-macro-
phage colony stimulating factor (GM-CSF), interferon gamma
(IFNY), and tumor necrosis factor alpha (TNFa).

Statistical Analysis

The values were expressed as means = SEM. Two-tailed
independent-samples #test or Mann Whitney U test was
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Figure 3. Food intake. Total food intake (kcal/rat) (A,B) and relative food intake (kcal/100 g body weight) (C,D) during day- and night-time. Short-
term after surgery: 3 weeks after gastric bypass (GB), 2 weeks after duodenal switch (DS) or 2-3 weeks after lapatoromy (LAP). Long-term after
surgery: 14 weeks after GB, 8 weeks after DS or 8-14 weeks after LAP. Data are expressed as means * SEM. *: p<<0.05, **: p<<0.01, ns: not significant

between LAP (n=13) vs. GB (n=8) or DS (n=5).
doi:10.1371/journal.pone.0072896.9003

performed for two-group comparisons. ANOVA followed by
Bonferroni test was performed for multiple comparisons. Homo-
geneity of regression assumption test and ANCOVA were
performed for analysis of energy expenditure. SPSS version 19.0
(SPSS Inc. Chicago, IL, USA) was used. A p-value of <0.05 was
considered statistically significant.

Results

Mortality
No one died after LAP alone, 6 after GB, and 2 after DS due to
surgical complications, trauma and learning curve factors.

Body Weight

LAP alone did not reduce body weight during the study period
(maximum 14 weeks). GB caused approximately 20% weight loss
throughout the study period (14 weeks). DS induced approxi-
mately 50% weight loss within 8 weeks (Fig 2B).
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Food Intake and Eating Behavior

In comparison with LAP, GB increased daytime (but not
nighttime) food intake (expressed as either kcal/rat or kcal/100 g
body weight) at 3 weeks, and had no effects afterwards (14 weeks
postoperatively). In contrast, DS reduced nighttime (but not
daytime) food intake (kcal/rat at both 2 and 8 weeks or kcal/100 g
body weight at 2 weeks). The food intake (kcal/100 g) at 8 weeks
was not reduced because of markedly loss of the body weight after
DS (Fig 3).

GB was without effects neither on satiety ratio (min/g) nor rate
of eating (g/min), whereas DS increased satiety ratio during
nighttime, and decreased rate of eating during both daytime and
nighttime at 2 weeks and 8 weeks postoperatively (Fig 4)
(Tables 1,2).

Energy Expenditure

Age-matched control rats that underwent LAP only were
included for comparisons because metabolic parameters are age-
dependent [23,24]. GB increased nighttime energy expenditure
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Figure 4. Eating behavior. Satiety ratio (min/g) (A,B) and rate of eating (g/min) (C,D) during day- and night-time. Short-term after surgery:
3 weeks after gastric bypass (GB), 2 weeks after duodenal switch (DS) or 2-3 weeks after lapatoromy (LAP). Long-term after surgery: 14 weeks after
GB, 8 weeks after DS or 8-14 weeks after LAP. Data are expressed as means * SEM. ***: p<<0.001, ns: not significant between LAP (n=13) vs. GB

(n=8) or DS (n=5).
doi:10.1371/journal.pone.0072896.9g004

(kcal/hr/100 g body weight) at 3 weeks and daytime energy
expenditure at 14 weeks postoperatively (Fig 5A, C) (Tables 3, 4).
RER was unchanged after GB. DS increased daytime energy
expenditure both at 2 and 8 weeks as well as nighttime energy
expenditure at 8 weeks postoperatively (Fig 5B, D) (Tables 3, 4).
RER tended to be reduced during nighttime at 2 weeks after DS
(p=0.051) (Table 3).

Analysis of the homogeneity of regression slopes indicated that
there was positive correlation between the body weight and energy
expenditure (kcal/hr) particularly in LAPpg rats and similar
regression slopes between LAP and GB or DS (p>0.05) (Fig S1).
ANCOVA showed that there was no significant difference in
adjusted energy expenditure between LAP and GB or DS (p>0.05)
(Fig S2).

Fecal Energy Density

There was no change in the fecal energy density after GB. DS
had severe diarrhea within 2 weeks postoperatively, so that it was
difficult to collect the fecal samples. At 2 months, the solid feces
were collected and the energy density was increased (Fig 6).
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Plasma Levels of Cytokines
There was no difference between LAP wvs. GB or DS in the
plasma levels of the 11 cytokines measured (Table S2).

Discussion

The present study shows that the rat models provide results that
are in accordance with results from clinical series in patients , i.e.
greater weight loss by DS than GB [17,18,25]. Furthermore, the
results of the present study show different postsurgical effects of
GB vs. DS in terms of food intake, eating rate, energy expenditure
and absorption.

It is a common dogma that to reduce size of stomach by surgery
would lead to early satiety and consequently reduce food intake.
Regardless of difference in surgical procedure, either GB or DS
reduces stomach size and bypasses part of the small intestine
(duodenum and most of the jejunum). Previously, we have found
that the food intake was independent on the size of stomach by
comparing gastrectomy and GB in rat models [9]. In clinical
studies, the size of pouch after GB was found not to correlate with
weight loss outcome in patients [25,26]. In our previous and the

September 2013 | Volume 8 | Issue 9 | 72896



Table 1. Eating behavior.

Gastric Bypass vs. Duodenal Switch

Parameter LAP GB DS
Day Food Intake (g) 4.08+0.3 5.69+0.68* 3.67+0.31%
Food Intake (g/100g body weight) 0.7+0.06 1.14*0.13** 0.93+0.11
Food intake (kcal) 10.5%0.76 14.62+1.74% 9.42+0.80"
Food intake (kcal/100g body weight) 1.83*0.14 2.93+0.33%* 2.39+0.28
Number of meals 12.15+0.97 18.29+2.48* 16.6+0.92
Meal size (g/meal) 0.35+0.03 0.32+0.02 0.22+0.021*
Meal size (kcal/meal) 0.91+0.08 0.82+0.05 0.57+0.05*
Meal duration (min) 13.5+1.39 17.96+2.82 34.47+329% 11T
Meal duration (min/meal) 1.14+0.1 0.98+0.08 2.13+0.29%, 1T
Intermeal interval (min) 57.5*x4.42 40.37+5.38% 39.38+2.04
Satiety ratio (min/g) 171.89+15.81 127.93£16.63 182.34=18.24
Rate of eating (g/min) 0.32+0.03 0.33+0.02 0.110.07%** 11T
Night Food Intake (g) 16.45+0.69 15.58+1.72 4.96+0.70%**, 1T
Food Intake (g/100g body weight) 2.86+0.15 3.11+0.30 1.24+0.19%* 1T
Food intake (kcal) 4228+1.77 40.05+4.41 12.76+1.81% TTT
Food intake (kcal/100g body weight) 7.35+0.39 7.98+0.78 3.1920.50%*, T
Number of meals 34.38+3.92 31.71%£3.01 24.40+3.85
Meal size (g/meal) 0.57*0.09 0.51*0.07 0.21+0.03*
Meal size (kcal/meal) 1.47*0.22 1.30*0.17 0.55+0.08*
Meal duration (min) 5421+4.54 56.25*5.13 5321+9.39
Meal duration (min/meal) 1.88*0.36 1.82*0.18 2.20*0.28
Intermeal interval (min) 22.6*+3.08 21.36+1.97 29.43+5.57
Satiety ratio (min/g) 40+1.86 44.64+5.41 145.51+31.17%%, 17T
Rate of eating (g/min) 0.32+0.02 0.30*0.06 0.10i0.01***,ﬁ

doi:10.1371/journal.pone.0072896.t001

present studies, GB did reduce body weight but not food intake in
rats [7-9]. Behavior of rats is mostly driven on instincts, while
behavior of humans is much more complicated. In fact, there is
still an open question: “Does GB reduce food intake in humans?”.
A recent review shows that large and persistent alterations in
macronutrient intake after GB have not generally been reported,
and when the changes do occur, they are either transient or
relatively modest. The authors argue for more direct measures of
food intake in human studies that are similar to those used in
animal studies [27]. Food intake in patients is also affected by
following the “postoperative instruction” to achieve the best
possible conditions for weight reduction and to minimize side-
effects like gastro-esophageal reflux and dumping syndrome which
unlikely occur in rats. Recently, a human study of eating behavior
and meal pattern following GB was still performed by manually
weighing differences to determine food and water intake and by
the Three-Factor Eating Questionnaire to evaluate eating
behavior [28]. However, in that human study, the food intake
was not reported, but ad libitum meal size was reduced while
number of meals per day was increased, and hunger and satiety
scores did not change after GB, which are in line with our findings
in rats following GB [8]. Methods with more direct measures of
food intake (and food-selection and taste-related behavior) for
humans are needed in order to facilitate translation between
findings from animal models and clinical research [27].

PLOS ONE | www.plosone.org

Parameters during day- and night-time at 3 weeks after gastric bypass (GB), 2 weeks after duodenal switch (DS) and 2-3 weeks after laparotomy (LAP). Data are
expressed as means = SEM. *: p<0.05, **: p<<0.01, ***: p<0.001 between LAP vs. GB or DS. ©: p<0.05, 7: p<0.01, T': p<0.001 between GB vs. DS.

Unlike GB, DS does reduce the food intake. Previously, we have
shown that food intake was reduced by duodenal switch alone but
not by sleeve gastrectomy alone by comparing sleeve gastrectomy
only vs. duodenal switch without sleeve gastrectomy in rats [20]. In
the present study, DS markedly reduced food intake and increased
satiety ratio particularly during nighttime. The rate of eating has
also impacts on body weight. It has been reported that there is a
correlation between rate of eating and body weight or body mass
index (BMI) [29,30]. Previously, we have shown that high-fat-diet-
induced obesity was associated with increased rate of eating,
increased size of meals, but not with daily calories intake [31]. In
the present study, DS decreased the eating rate during both day-
and night-time.

Mechanisms underlying postoperative weight loss and possible
regain remain unclear. A major point of controversy is whether
this is due to biological or behavioral factors [19,32]. We and
others have shown that GB increased the energy expenditure in
rats and mice, which could be one of the mechanisms explaining
the physiologic basis of weight loss after this procedure [8,33,34].
The increased resting energy expenditure in the animal models
after GB 1is in accordance with some, but not all, reports in
humans. The discrepancies in the clinical studies may include the
heterogeneity of patient populations and measurements of energy
expenditure for a limited time using portable metabolic carts
under artificial rather than “free-living” conditions [35]. Nerve-
less, resting energy expenditure has been suggested to be a
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therapeutic target for obesity [32,36]. In the present study, we
further showed that the increased energy expenditure took place
only during nighttime (relevant to active energy expenditure)
shortly after GB (weeks) and switched to daytime (resting energy
expenditure) after months, whereas the energy expenditure was
increased during daytime shortly after DS and during both day-
and night-time months after DS.

The most extensively used method for calculation of energy
expenditure is dividing Oy consumption by body weight or body
surface area [37]. In the present study, the energy expenditure was
calculated by taking into account both Oy consumption and CO,
production, and expressed as kcal/hr/rat, kcal/hr/100 g body
weight, and kcal/hr/cm? body surface. Dividing the energy
expenditure by body weight does not take into account differences
in body composition, and therefore, the fat-free mass or lean body
mass (as denominator) has often been used in both human and
mouse studies. However, this could be inappropriate because
brown fat can be the most metabolically active tissue in the body
[37]. ANCOVA has been suggested to be appropriate method for
analysis of the mouse energy expenditure, but it cannot be used
when the samples sizes are small [37,38]. In rat studies, ANCOVA
has not been used with the exception of a few reports including our
previous study of ileal interposition associated with sleeve
gastrectomy [5,39]. The reasons for not widely use of ANCOVA
than ANOVA in rat studies might be less statistical power when
sample size 1s small and nonlinear relationship between covariate

PLOS ONE | www.plosone.org

Table 2. Eating behavior.
Parameter LAP GB DS
Day Food Intake (g) 3.97*0.51 3.71%0.85 3.42+0.50
Food Intake (g/100g body weight) 0.66+0.09 0.72+0.19 1.22+0.21
Food intake (kcal) 10.19%1.32 9.54+2.18 8.78+1.29
Food intake (kcal/100g body weight) 1.71*£0.24 1.85+0.48 3.14+0.54
Number of meals 10.92+1.29 11.25+1.81 18.60+4.50
Meal size (g/meal) 0.4+0.06 0.34+0.06 0.23+0.05
Meal size (kcal/meal) 1.03x0.17 0.86+0.15 0.59+0.12
Meal duration (min) 13.54%1.74 13.89+3.86 37.17+6.92%%, 111
Meal duration (min/meal) 1.37£0.22 1.23+0.22 2.34+0.45
Intermeal interval (min) 68.39+7.92 73.6816.91 50.16%17.90
Satiety ratio (min/g) 200.34+27.9 252.16+57.01 203.50+32.22
Rate of eating (g/min) 0.31£0.03 0.29:0.02 0.10£0.07***
Night Food Intake (g) 14.15+0.71 13.00+0.38 6.43+0.96%**, 1T
Food Intake (g/100g body weight) 2.3*0.1 2.45+0.10 2.20+0.26
Food intake (kcal) 36.35+1.82 33.42+0.98 16.52+2.46%*x 11T
Food intake (kcal/100g body weight) 5.92+0.25 6.29+0.26 5.65+0.68
Number of meals 26.92+2.76 26.50+3.69 34.20*7.13
Meal size (g/meal) 0.59+0.06 0.58+0.09 0.24+0.07*%,"
Meal size (kcal/meal) 1.52+0.15 1.48+0.23 0.61+0.19%,"
Meal duration (min) 50.66+4.57 56.36+2.96 70.58+5.38*
Meal duration (min/meal) 2.01+0.18 2.53+0.47 2.39+0.44
Intermeal interval (min) 27.78*3.84 2791411 21.49+4.03
Satiety ratio (min/g) 46.78+2.4 49.20+1.56 108.1817.98**+ 1T
Rate of eating (g/min) 0.3+0.02 0.24+0.02 0.09i0.01***,ﬁ
Parameters during day- and night-time at 14 weeks after gastric bypass (GB), 8 weeks after duodenal switch (DS) and 8-14 weeks after laparotomy (LAP). Data are
expressed as mean * SEM. *: p<<0.05, **: p<<0.01, ***: p<<0.001 between LAP vs. GB or DS. i p<0.05, : p<0.01, it p<0.001 between GB vs. DS.
doi:10.1371/journal.pone.0072896.t002

(s) and dependent variable. Another reason may be that
ANCOVA is best used with quasi-experimental data, such as
genetically-modified mice [37] or humans [40,41]. The results of
the present study showed that there were highly correlation
between the body weight and the energy expenditure (kcal/hr/rat)
in control LAP rats, and significant increases in the energy
expenditure (kcal/hr and/or kcal/hr/100 g body weight) after GB
or DS (by ANOVA). However, ANCOVA showed no significant
difference in the energy expenditure (kcal/hr) between LAP and
GB or DS. The difference in terms of p values by ANOVA us.
ANCOVA (ie. testing the body-weight independent differences)
can be interpreted as that GB or DS increases the energy
expenditure (possible cause) while reducing the body weight
(effect), which is at odds with the positive correlation between the
body weight and the energy expenditure in control animals (LAP).

Both GB and DS are designed for restriction and malabsorption
by creating the alimentary limb. However, DS, but not GB, caused
diarrhea shortly after surgery (2 weeks) and malabsorption
(measured at 2 months postoperatively) in rats, which is in line
with observations in patients [42].

It should be noticed that in the present study, neither
prophylactic nor postoperative antibiotics were used and none of
the 11 plasmas cytokines measured was changed after surgery,
indicating no or little impact of microflora and inflammation on
the eating behavior and the body weight changes. Recently, a
mouse study showed that specific alterations in the gut microbiota
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Figure 5. Energy expenditure during day- and night-time. Short-term after surgery: 3 weeks after gastric bypass (GB), 2 weeks after duodenal
switch (DS) or 2-3 weeks after laparotomy (LAP). Long-term after surgery: 14 weeks after GB, 8 weeks after DS or 8-14 weeks after LAP. Data are
expressed as means = SEM. *: p<<0.05, **: p<<0.01, ***: p<<0.001, ns: not significant between LAP¢g (n=7) vs. GB (n=8) or LAPps (n=6) vs. DS (n=5).

doi:10.1371/journal.pone.0072896.g005

contributed to the beneficial effect of bariatric surgery on energy
balance [43]. Whether GB or DS alters the gut microbiota and
consequently leads to the weight loss via same or different
pathways might be of interest for future study.

There are several limitations of the present study. 1) The rats
used were not obese. Whether or not the postsurgical effects of
these two procedures are different between normal and obese rats
that are induced by high-fat diet or developed spontancously (e.g.
Zucker, Otsuka Long-Evans Tokushima Fatty, Obese SHR, or
Wistar Ottawa Karlsburg W rats), and which animal model of
obesity best mimics the obese humans in response to the bariatric
surgery could be the subjects for further research. 2) GB procedure
used in rats was not exactly the same as it was applied in humans.
Fig 1 shows different procedures of GB. A laparoscopic mini-
gastric bypass procedure (which is similar with one used in the
present study) has been shown to be regarded as a simpler and
safer alternative to laparoscopic Roux-en-Y procedure with similar
efficacy at 5 or 10 year experience [2,44]. It may be of interest to
compare different GB procedures in the future, if there is any

PLOS ONE | www.plosone.org

clinical relevancy. 3) Although the size of gastric pouch after GB
does not correlate with weight loss outcome in patients [25,26], it
cannot be excluded whether lack of the pouch in GB has impact
on food intake, satiety and eating behavior. 4) The differences
between rats and humans are not only in terms of the GI anatomy
but also the responses to surgery. For instance, sleeve gastrectomy
only (without duodenal switch) works in some patients but not in
rats [20,45]. It may be of interest to directly compare the effects of
sleeve only us. sleeve with duodenal switch (one or two-staged) in
the future.

In general, research in patients is directly clinical relevant.
However, studies in animals provide much greater latitude in
control and experimental manipulation of the system, and
ultimately help to reveal the underlying mechanisms and to
adopt the protocols and methods that are tested in animals to
humans [46]. Research using animal models is an excellent way
of developing and learning bariatric surgical techniques as well as
understanding the postsurgical physiology [47]. Taken the data
from the previous and the present studies together, the
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Table 3. Metabolism.

Gastric Bypass vs. Duodenal Switch

3 weeks after surgery

2 weeks after surgery

Parameter LAPGg GB LAPps DS
Day Energy expenditure (kcal/hr) 2.08+0.03 1.93+0.06 2.08+0.07 1.66+0.12%*
Energy expenditure (kcal/hr/100g body  0.36%0.01 0.390.01 0.360.01 0.41£0.01**
weight)
Energy expenditure (kcal/hr/cm? body 0.0030.0001 0.004:0.0001 0.003:0.0001 0.004-0.0002
surface)
RER 0.94+0.01 0.93+0.02 1.02+0.03 0.96+0.03
VO, 726.68+15.56 779.91£23.26 705.18*18.00 823.91+31.49**
VCO, 682.50+12.08 727.85+23.54 717.08+26.45 791.69+26.59
Night Energy expenditure (kcal/hr) 1.75+0.14 1.85+0.10 2.45+0.08 1.66+0.10%**
Energy expenditure (kcal/hr/100g body  0.30%0.02 0.37*0.02* 0.42+0.01 0.410.02
weight)
Energy expenditure (kcal/hr/cm? body 0.003£0.0002 0.003£0.0002 0.0040.0001 0.0040.0002*
surface)
RER 1.00%0.01 1.01£0.03 1.07£0.03 0.97+0.04
VO, 600.02*+36.70 737.88+£43.20% 820.65*+20.88 823.94%35.51
VCO, 594.19+37.54 735.07+35.39% 877.73+35.71 803.06+49.36

LAPps vs. DS.

appropriately designed rat models provide significant insights into
the mechanisms of bariatric surgery which explain well the

doi:10.1371/journal.pone.0072896.t003

Parameters during day- and night-time at 3 weeks after gastric bypass (GB) and the age-matched laparotomy-operated group (LAPgg), and at 2 weeks after duodenal
switch (DS) and the age-matched laparotomy-operated group (LAPps). Data are expressed as means + SEM. *: p<<0.05, **: p<<0.01, ***: p<<0.001 between LAPgg vs. GB or

expenditure, whereas DS induces greater body weight loss by
reducing food intake, increasing energy expenditure and causing

clinical observations, e.g. that DS is superior to GB in body malabsorption.
weight loss. The results of the present study may suggest further
that GB induces body weight loss by increasing energy
Table 4. Metabolism.
14 weeks after surgery 8 weeks after surgery
Parameter LAPggs GB LAPps DS
Day Energy expenditure (kcal/hr) 1.92+0.08 1.90+0.05 2.10+0.06 1.27+0.07%**
Energy expenditure (kcal/hr/100g  0.31+0.01 0.360.01** 0.34%0.01 0.4410.01***
body weight)
Energy expenditure (kcal/hr/cm?  0.003+0.0001 0.003-0.0000* 0.0030.0000 0.003:0.0001
body surface)
RER 0.98+0.03 0.91£0.05 0.99+0.03 0.98+0.01
VO, 622.25+27.61 720.95+14.41%* 681.99+13.62 873.32£2535%*
VCO, 605.31+17.73 652.48+25.93 675.60+23.89 853.15+25.17***
Night Energy expenditure (kcal/hr) 1.48+0.11 1.60+0.10 245%+0.12 1.34£0.01%**
Energy expenditure (kcal/hr/100g  0.24+0.02 0.300.02 0.400.01 0.460.02%**
body weight)
Energy expenditure (kcal/hr/cm?  0.002+0.0002 0.003+0.0002 0.004+0.0001 0.0040.0001*
body surface)
RER 0.97+0.06 1.04+0.05 1.06+0.03 0.990.03
VO, 475.14%+36.56 598.36+45.29 778.37%16.51 919.50+28.99**
VCO, 487.63*+35.15 609.64+55.95 825.43+27.97 906.74+39.86

LAPps vs. DS.

PLOS ONE |

doi:10.1371/journal.pone.0072896.t004

www.plosone.org

Parameters during day- and nighttime at 14 weeks after gastric bypass (GB) and the age-matched laparotomy-operated group (LAPgg), and at 8 weeks after duodenal
switch (DS) and the age-matched laparotomy-operated group (LAPps). Data are expressed as means = SEM. *: p<<0.05, **: p<<0.01, ***: p<<0.001 between LAPgg vs. GB or
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Figure 6. Fecal energy density. Three weeks after gastric bypass (GB) or laparotomy (LAPgg) (A) and eight weeks after duodenal switch (DS) or
laparotomy (LAPps) (B). Data are expressed as mean = SEM. **: p<<0.01, ns: not significant between LAPg (n=7) vs. GB (n=8) or LAPps (n=6) vs. DS
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Supporting Information

Figure S1 Scatterplot of energy expenditure against
body weight. LAPqy ;. ps: laparotomy as control for GB or
DS; GS: gastric bypass; DS: Duodenal switch.

(TTF)

Figure S2 Adjust energy expenditure by ANCOVA.
LAPGg o ps: laparotomy as control for GB or DS; GS: gastric
bypass; DS: Duodenal switch. Means = SEM.

(TIF)

Table S1 CLAMS measurements of normal rats. Data at
day 1 and 21 one week after 24 hours training with CLAMS cage
are expressed as means = SEM. ns: not significant between day 1
vs. day 21.

DOC)

Table S2 Plasma levels of cytokines. Data of rats after
gastric bypass (GB) and duodenal switch (DS) compared with the
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