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	   Abstract: Background: Constraint-based metabolic network models have been widely used in pheno-
typic prediction and metabolic engineering design. In recent years, researchers have attempted to im-
prove prediction accuracy by integrating regulatory information and multiple types of “omics” data 
into this constraint-based model. The transcriptome is the most commonly used data type in integra-
tion, and a large number of FBA (flux balance analysis)-based integrated algorithms have been devel-
oped. 
Methods and Results: We mapped the Kcat values to the tree structure of GO terms and found that the 
Kcat values under the same GO term have a higher similarity. Based on this observation, we developed 
a new method, called iMTBGO, to predict metabolic flux distributions by constraining reaction 
boundaries based on gene expression ratios normalized by marker genes under the same GO term. We 
applied this method to previously published data and compared the prediction results with other meta-
bolic flux analysis methods which also utilize gene expression data. The prediction errors of iMTBGO 
for both growth rates and fluxes in the central metabolic pathways were smaller than those of earlier 
published methods. 
Conclusion: Considering the fact that reaction rates are not only determined by genes/expression lev-
els, but also by the specific activities of enzymes, the iMTBGO method allows us to make more pre-
cise predictions of metabolic fluxes by using expression values normalized based on GO. 

A R T I C L E  H I S T O R Y 

Received: March 06, 2019 
Revised: May 14, 2019 
Accepted: June 12, 2019 
 
DOI: 
10.2174/1389202920666190626155130 

Keywords: Transcriptome, gene ontology, metabolic network, constraint-based model, turnover number, flux balance analysis. 

1. INTRODUCTION 

 Flux balance analysis is a constraint-based method that 
uses the metabolic network and an objective function to ob-
tain the optimal flux distribution [1]. It has been successfully 
used to predict the metabolic phenotypes of gene knockout 
strains [2-4], as well as growth rates and metabolite produc-
tion levels [5-7]. In recent years, many researchers have tried 
to integrate multiple types of “omics” data to improve the 
predictive power of metabolic models or to define some new 
restrictive boundaries to narrow the feasible solution space. 
In these approaches, the integration of data on regulation or 
“omics” data is the most common means. The transcriptome 
is the most commonly used data type in integration, and a 
large number of FBA-based integrated algorithms have been 
developed. Transcriptome has been integrated into con-
straint-based models in three ways. Firstly, this has been 
done by setting an apriori threshold to judge the gene expres-
sion state [8, 9]. For example, GIMME [8] directly removes 
the reactions for which the expression values are lower than 
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the pre-set threshold. Secondly, one can calculate the relative 
expression thresholds to determine the gene expression sta-
tus. This approach usually classifies the reactions into high 
or low expression and treats these as part of additional con-
straints or an objective function [10-13]. For the classifica-
tion of high- and low expressions, there are generally two 
cases. One involves ranking the expression value. For exam-
ple, EXAMO [11] ranks the expression levels of all genes 
from high to low, with the top 15% being defined as highly 
expressed genes and the last 15% being defined as the low 
expressing genes. Then, these high expression reactions and 
low expression reactions are treated as a new objective func-
tion. Another approach is to determine the state of gene ex-
pression by differential expression analysis of expression 
profiles, such as MADE [12] and Adam [13]. The last ap-
proach involves directly introducing transcriptome data into 
the objective function [14-17] or the constraints [18]. 
 Several of these methods result in a reaction with a low 
expression level but a high enzyme turnover number (Kcat) 
being filtered (e.g. GIMME and iMAT) or strongly con-
strained (e.g. E-Flux and GX-FBA), and currently, there is 
no method that considers the enzymes turnover numbers. 
Gene Ontology [19, 20] is the most comprehensive and 
widely used knowledge base on gene function established by 
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the Gene Ontology Consortium, which covers three different 
aspects of gene function: molecular function (MF), cellular 
components (CC), and biological processes (BP). In addi-
tion, gene ontology gives the EC number corresponding to 
the GO term. By including the Kcat information correspond-
ing to the EC number given by the Brenda database [21], we 
found that GO terms with similar functions have a smaller 
difference in Kcat values , and Kcat is also relatively close in 
the same GO term. Based on this observation, we developed 
the gene ontology-based flux analysis method (iMTBGO) 
that integrates transcriptome data with metabolic network 
analysis to make more accurate predictions of metabolic 
fluxes. This method first identified some marker genes with 
a stable expression from the published large-scale E. coli 
expression profiles. Subsequently, the expression value of 
the marker gene in each term was used to modify the upper 
bounds of each reaction. We used different experimental data 
(e.g. overexpression or knockout) to evaluate the predictive 
ability of iMTBGO and found that the flux predictions of 
growth rate and the central metabolic pathways were stable 
and maintained a low level of error (Fig. 1). 
 

 
Fig. (1). Flowchart of mapping the Kcat values. 

2. MATERIALS AND METHODS 

2.1. Distribution of Kcat Values at Each Level of GO 
Terms 

 The Kcat values corresponding to all EC numbers were 
downloaded and extracted from the Brenda database, and the 
relationship between the GO and EC number was obtained 
from the Gene Ontology database. Kcat values were assigned 
to each GO term based on the GO-EC and EC- Kcat relation-
ships. GO terms were organized hierarchically at different 
levels in the Gene Ontology database. The three root terms 
(‘molecule function’, ‘cellular component’ and ‘biological 
process’) are at level 0, their direct child GO terms are at 
level 1, and so on. Child terms have more specialized func-
tion descriptions than their parent terms [19]. A parent GO 
term contains Kcat values for all its child GO terms. We 
mainly focused on the GO terms under ‘molecule function’ 
(MF), as most EC numbers are assigned to these terms. We 
used Eq. 1 to calculate the standard deviation of Kcat values 
for each GO term (containing two or more Kcat values).  

!! =
!
!
∗ (!!" − !!)!!

!!!            (1) 

Where i represents the i-th GO term in a level, !!"   represents 
the j-th Kcat value in i-th GO term, !! represents the mean of 
the Kcat values in i-th GO term, and N is the number of Kcat 
values. 
 To test if GO terms with more specific functions (higher 
level numbers) have similar Kcat values, we calculated the 
average standard deviations for all GO terms in the respec-
tive same levels and compared the values at different levels. 
To test if genes under the same GO term also have similar 
Kcat values, we also shuffled the GO-Kcat pairs to simulate 
the discrete distribution of Kcat values when a GO term con-
tained Kcat values from other GO terms (1000 times), and ran 
a t-test statistic with real a Kcat distribution. 

2.2. The iMTBGO Algorithm 

 iMTBGO uses the expression ratio obtained from a 
specific expression profile to correct the upper and lower 
boundary of each reaction (Fig. 2 dotted line rectangle). 
When we know the substrate absorption rate (such as glu-
cose absorption rate) or the concentration of an intermediate 
metabolite under specific conditions, we can assess the true 
flux corresponding to each reaction via the formula 

!!!"#$ =
!!"#!"#∗!!!"#$%&'%()

!!"#!"#$%&'%()
. Finally, the optimization problem 

is converted into the following form, shown in Eqs. 2-8. 

        Max  Z = c!v                                                                                     (2) 

        S ∗ v = 0                                                                                          (3) 
        −ratio! ≤ V! ≤ ratio!, reversible              (4) 

        −ratio! ≤ V! ≤ 0, irreversible                                           (5) 

        0 ≤ V! ≤ ratio!, irreversible                                             (6) 

    ratio! =
[!]!

[!]!"#$%#
                (7) 

          !!!"#$ =
!!"#!"#∗!!!"#$%&'%()

!!"!!"#$%&%'(
                                                 (8) 

where !!"#!"#$%&%'( is the glucose absorption rate calculated 
by iMTBGO, !!"#!"# is the true glucose absorption rate (e.g. 
experimentally-measured phenotype data from Holm et al.), 
V!!"#$%&'%() is the flux of the j-th reaction predicted by 
iMTBGO that needs to be corrected, V!!"#$ is the corrected 
flux of the j-th reaction, ratio! is the maximum boundary of 
!! calculated from the expression data, and [!]!"#$%# repre-
sents the expression value of the marker genes in each GO 
term. 

2.3. Determination of Marker Genes Using Gene Expres-
sion Profiles in EcoMAC 

 We directly used the expression profiles in EcoMAC, 
derived from the literature [22] and standardized, to deter-
mine the marker genes. We used the DAVID [23, 24] anno-
tation information to obtain the GO term information for 
each gene in EcoMAC. Then, we mapped all of the gene ids 
in EcoMAC to Ecogene [25] and removed the unique ids 
from EcoMAC. If the different ids in the EcoMAC matrix 
corresponded to the same id in Ecogene, they were replaced 
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with the gene id in the Ecogene, and the expression value 
was the mean of these two ids. Furthermore, we selected the 
mean expression value of the wild-type strains during the 
exponential phase in the M9 medium as the control group, 
and other expression data in EcoMAC as the case group to 
run the differential expression analysis. We defined genes 
with fold changes of more than two times and the number of 
samples exceeded half of the total as unstably expressed 
genes and others as stably expressed genes. We chose the 
coefficient of variation (Eq. 9) to obtain the discrete distribu-
tion of the genes’ expression and finally selected candidates 
among the stably expressed genes and CV less than specific 
values (e.g. 0.175 in this research) as potential marker genes. 
The detailed flowchart is shown in Fig. 2, of a solid 
rectangle. 

!"! =
!
!∗ (!!"!!!)!!

!!!   

!!
                                                           (9) 

where i represents the i-th gene in the profiles, !!" represents 
the expression value of the i-th gene in the j-th profile, !! 
represents the mean of the expression values of the i-th gene, 
and P is the number of expression profiles. 

 Based on the GO-gene relationship obtained from the 
DAVID database, we mapped potential marker genes onto 
individual GO terms. Since some GO terms did not have a 
marker gene, we relied on the tree structure of GO terms in 
gene ontology to develop the following standardized rules 
for different types of terms (Fig. 2 dashed rectangle). First, 
when a term had a number of potential marker genes, we 
selected the gene with the smallest CV value among these 
potential marker genes. Second, for terms without a maker, a 
single set was formed, and the gene with the smallest CV 
value in the set was used as the marker. 

2.4. Determination of Expression Ratios Using an Ex-
pression Profile Under Specific Conditions 

 It is known from the Michaelis-Menten equation that 
V= !!"#   !

!!! !
. When the substrate concentration is saturated, 

!!"# = !!"# ∗ ! . In the same GO term, Kcat is relatively 
close, and we can reasonably assume that 

!!!"#
!!"#$%#!"#

~ [!]!
[!]!"#$%#

, where marker represents the marker 

gene in GO term, i represents the i-th gene in the same GO 
term, !!!"# represents the maximum flux of i-th gene, and 

 
Fig. (2). Shows the flowchart of the iMTBGO algorithm. The solid rectangle represents the procedure of determining the marker genes, the 
dashed rectangle represents the standardized rules for each term, and the dotted line rectangle represents the calculation of fluxes using the 
expression profile under specific conditions. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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[!]! represents the expression value of i-th gene. If we split 
the entire metabolic network into multiple GO term combi-
nations and assume that !!!"#$"!"#=1 in each combination 
for computational simplicity, then !!!"#~

[!]!
[!]!"#$%#

, that is 

!!!"#~ratio!. Therefore, we used the standardized rules of 
each term to obtain the expression ratio of genes under spe-
cific experimental conditions. If an enzyme consists of mul-
tiple subunits encoded by different genes, the minimum val-
ue of these genes was used as the expression ratio of the re-
action (Eq. 10). If a reaction can be independently catalyzed 
by multiple enzymes, the corresponding expression ratio for 
this enzyme is the sum of expression ratios of the subunits, 
as shown in Eq. 11. 

ratio! = min!∈!
g!

marker Term!
       , 

Enzymes = (g!  AND  g!  AND  g!   … g!)                                     (10) 

ratio! =
g!

marker Term!
     

!

!

  , 

Enzyme = (g!  OR  g!  OR  g!   … g!)                                         (11) 

where marker (Termi) indicates the expression value of the 
marker gene in the term containing the i-th gene. If an en-
zyme consists of multiple subunits, gi represents the expres-
sion value of the gene encoding the i-th subunit, and other-
wise represents the expression value of the gene encoding 
the i-th enzyme. 

2.5. Evaluation of the Predictive Accuracy of iMTBGO 

 Microarray and experimentally-measured phenotype data 
for E. coli from Holm et al. [26] (wild-type, overexpressed 
ATPase, and overexpressed NADH oxidase) and Ishii et al. 
(two wild-type strains: WT0.5, WT0.7, and five mutant 
strains: ∆!"#, ∆!"#, ∆!"#$, ∆!"# and ∆!"#) [27] were 
used to solve the metabolic fluxes under specific conditions. 
For the datasets of Holm et al., the raw data (GSE20374) 
was first read into R using the affy package. Then, the RMA 
algorithm was applied for a set of replicates for background 
correction and normalization. Since the data of Holm et al.  
involved three replicates, we used the mean of the three sets 
of experiments as the expression value. Because the datasets 
provided by Ishii et al.  did not give the corresponding GEO 
id, so we directly downloaded the chip signal file from the 
literature, and took the logarithm of the "normalized intensi-
ty of sample" column as the expression value. 
 Since the datasets of Ishii and Holm [26, 27] provided 
experimentally-measured phenotype data of the central met-
abolic pathways, we used the growth rate error [28] (Eq. 12) 
and flux error measurement [29] (Eq. 13) to evaluate the 
prediction. 

Normalized  growth  rate  error =
!!"#$%&,!"#!!!"#$%&,!"#

!!"#$%&,!"#
       (12) 

Normalized  fluxes  error =
!!"#,!!!!"#,!

!!
!

!!"#,!!!
!

                           (13) 

where v!"#$%&,!"# and v!!"#$%,!"# represent the predicted 

growth rate and the experimentally measured growth rate, 
respectively. n is the number of experiments,  v!"#,! is the 
flux of the i-th reaction in the central metabolic pathways 
and v!"#,! is the measured flux of i-th reaction. We also car-
ried out sensitivity analysis to determine the optimal CV 
value by changing the range of CV values according to the 
literature [29]. We then performed robustness analysis by 
using the optimal CV value to determine the sensitivity of 
fluxes to gene expression levels. In the robustness analysis, 
we shuffled each column of the expression matrix (x) to de-
termine a random matrix (r), and then we obtained the noisy 
expression matrix (y) according to Eq. 14, as published pre-
viously [29]. The value of λ was consistent with the literature 
[28], which set the values of 0, 0.25, 0.5, 0.75, and 1 for λ. 

! = ! + ! ! − ! , ! ∈ !,!                                              (14) 

 We obtained the complete codes of E-Flux, RELATCH 
[15], iMAT [10], GIMME, and GX-FBA [16] from the liter-
ature [29]. In all simulation experiments, the genome-scale 
metabolic model iJO1366 [30] was used in conjunction with 
the COBRA toolbox 2.0 in MATLAB software to solve the 
optimal solution by glpk/qpng, in which the objective func-
tion is the maximization of biomass.  
 For the Ishii datasets, the oxygen uptake rate was also 
used as a constraint, which was set as the measured value 
when running the simulation. 

3. RESULTS 

3.1. The Distribution of Kcat in the GO Terms 

 We obtained 4178 pairs of GO-EC numbers from the 
Gene Ontology database, including 4150 GO terms and 3950 
EC numbers (Supplementary file). In addition, we obtained 
59615 pairs of EC-Kcat information with 2840 EC numbers 
from the Brenda database (Supplementary file). We mapped 
the corresponding Kcat to each GO term through a common 
EC number, and finally obtained 44118 pairs of GO-Kcat data 
including 2043 GO terms (Supplementary file). We also 
used child nodes to assign Kcat values to the terms without 
Kcat values level by level, and re-updated 463 GO terms. 
Only 413 pairs of GO-Kcat records belonged to CC (4 terms) 
and BP (120 terms), so these two types of terms were not 
considered in the subsequent analysis. We then used the 
standard deviation to evaluate the distribution of Kcat at each 
level of MF and found that except for levels 10 and 6, the 
larger the level, the smaller the mean value of the standard 
deviation (Table 1). It can be inferred that GO terms with 
similar functions have a smaller difference in Kcat values. 
Furthermore, we also found that the standard deviation of the 
GO term of real Kcat was significantly smaller than that of 
the simulation (nearly 90% of the simulations when 
p<0.001). When the p-value was set to 0.05, the standard 
deviation of the real Kcat was smaller than that of all simula-
tions, which indicated that Kcat values in the same GO term 
were relatively similar. 

3.2. Determining Marker Genes and Standardization 
Rules 

 We found that GO annotation information for 126 genes 
of 4190 genes in EcoMAC could not be obtained using the
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Table 1. The distribution of Kcat values according to GO levels. 

GO Level Mean of the Standard Deviation of Kcat Numbers of GO Terms with Kcat 

0 959774.44 1 

1 242600.75 4 

2 147651.83 24 

3 43151.06 129 

4 16857.15 369 

5 12258.59 1181 

6 19380.66 364 

7 11525.28 120 

8 387.64 24 

9 6.25 5 

10 20.78 2 

 

 
Fig. (3). Shows sensitivity analysis of iMTBGO for the CV parameter using the datasets of Holm et al. (a) and Ishii et al. (b). Each average 
error and its variation (the error bars represent the standard error of the mean) represent the error distribution across all conditions in one da-
taset. The solid red arrow indicates the optimal CV and the dashed red arrow indicates the suboptimal CV for the datasets of Ishii et al. (A 
higher resolution / colour version of this figure is available in the electronic copy of the article). 
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Fig. (4). Shows the distribution of the relative error in the prediction of growth rates (a, c) or fluxes in the central metabolic pathways (b, d) 
for each method across multiple perturbations for the datasets of Holm et al. (a, b) and Ishii et al. (c, d). Each box plot represents the distribu-
tion of errors for all perturbations in one dataset. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

DAVID database, 35 of the 126 genes were only found in 
EcoMAC, and the remaining 91 genes used outdated gene 
ids. After excluding these, we obtained a final set of 4106 
genes. We carried out sensitivity analysis to find the optimal 
value of CV to determine the marker genes and standardiza-
tion rules. The results showed that the average value of the 
growth error changes with the change of CV, as well as that 
the variation is monotonic with respect to the CV value, and 
the average error changes little with the change of CV (Fig. 
S1). When considering the fluxes in the central metabolic 
pathways, we found that the optimal values of CV were 
0.175 and 0.125  in the datasets of the Holm et al. and Ishii 
et al. respectively. Furthermore, 0.175 was also a suboptimal 
value for the dataset of Ishii et al. (Fig. 3). When considering 
the ratio of the number of genes in a GO term to the total 
number of genes (Fig. S2 a) and the proportion of terms con-
taining potential marker genes to the total numbers of terms 
in the different CVs (Fig. S2 b), we found that the proportion 
occupied by CV at 0.175 was basically saturated. Based on 
these findings, we finally selected the genes with CV less 
than 0.175, which resulted in 1083 potential marker genes. 
We obtained 21411 pairs of GO-gene information from the 
DAVID database, including 3675 GO terms and 3815 genes 
(Supplementary file). Using the GO-gene relationship, we 
mapped these potential marker genes onto individual GO 
terms of MF, encompassing 1705 GO terms and 1235 genes 
are annotated into these GO terms (Supplementary file). We 
used the gene with the smallest CV value as the final marker 

gene with multiple potential markers, and finally determined 
1209 unique marker genes. For terms without a marker, we 
used b3033 (yqiB) as the marker gene, since it had the 
lowest CV value among these terms. 

3.3. Evaluation of the Predictive Accuracy of iMTBGO 

 We found that the accuracy of iMTBGO for growth rate 
prediction was the highest under different experimental con-
ditions among several methods for the datasets of Holm et 
al. (Fig. 4a), but did not perform the same for the datasets of 
Ishii et al. (Fig. 4c), which may have a certain relationship to 
the use and omission of the optimal CV. For fluxes in the 
central metabolic pathways, iMTBGO still maintained lower 
flux errors than other methods (Fig. 4b, d). It was found to 
be superior to several other methods for integrating the tran-
scriptome data, but not superior to pFBA, especially for the 
datasets of Ishii et al. (Fig. 4d). In addition, iMAT and 
RELACTH always remained unchanged for growth rate pre-
diction (Fig. 4a, c) and GX-FBA was not able to calculate 
the fluxes for partial expression profiles (Fig. 4c, d). Com-
pared with these methods, except for the way of integrating 
transcriptome data, the biggest difference is that the 
iMTBGO considers the enzymes turnover numbers. By ana-
lyzing GO terms, the genes stably expressed in the same GO 
term are used to standardize the genes in the term, eliminat-
ing the constraint error caused by low enzyme expression in 
conjunction with a high turnover number, and the flux is 
only related to the enzyme expression level. This is why the 
iMTBGO method is superior to several other methods that 
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integrate the transcriptome data. As the central metabolic 
pathways are more heavily regulated at post-transcriptional 
levels [31-33], transcript levels are not suitable to represent 
the final enzyme activity levels, which leads to problems in 
the upper constraints of fluxes in the central metabolic path-
ways, as observed in our method and finally results in incor-
rect prediction compared with pFBA. Subsequently, robust-
ness analysis was carried out to evaluate the effects of noise 
in the expression data, and we found that iMTBGO to be 
robust due to a relatively smooth increase in the error with 
an increase in the noise level for the datasets of Holm et al. 
and Ishii et al. (Fig. S3). However, it was also evident that 
the error of several noise points was reduced, which indirect-
ly indicated that iMTBGO was dependent on the expression 
profiles, and it was necessary to provide more accurate tran-
scriptomic data or directly provide proteomic data if possi-
ble. In conclusion, this GO-based metabolic flux analysis 
method is relatively reliable and can be used to estimate flux 
changes in metabolic networks with comparatively good 
accuracy. 

CONCLUSION 

 We developed the new method iMTBGO that integrates 
metabolic network and transcriptome data. This method first 
introduces Gene Ontology information into metabolic net-
work analysis by obtaining the expression ratios of the 
enzymes by normalizing the marker genes in the same GO 
term. iMTBGO maintained higher predictive accuracy in 
some experiments and always maintained a lower level of 
flux errors in the central metabolic pathways than other test-
ed methods. The iMTBGO method provides a feasible pro-
cess for integrating metabolic networks with omics datasets, 
which offers new broader ideas for using expression profiles. 
Although there are still some problems when the method 
integrates metabolic networks with transcriptome data, it 
cannot be denied that this integrated analysis can improve 
the prediction process under certain experimental conditions. 
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