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Abstract: The primary goal of this study was to investigate the monotonic tensile behavior of
high-density polyethylene (HDPE) in its virgin, regrind, and laminated forms. HDPE is the most
commonly used polymer in many industries. A variety of tensile tests were performed using
plate-type specimens made of rectangular plaques. Several factors can affect the tensile behavior
such as thickness, processing technique, temperature, and strain rate. Testing temperatures were
chosen at −40, 23 (room temperature, RT), 53, and 82 ◦C to investigate temperature effect. Tensile
properties, including elastic modulus, yield strength, and ultimate tensile strength, were obtained
for all conditions. Tensile properties significantly reduced by increasing temperature while elastic
modulus and ultimate tensile strength linearly increased at higher strain rates. A significant effect of
thickness on tensile properties was observed for injection molding specimens at 23 ◦C, but no thickness
effect was observed for compression molded specimens at either 23 or 82 ◦C. The aforementioned
effects and discussion of their influence on tensile properties are presented in this paper. Polynomial
relations for tensile properties, including elastic modulus, yield strength, and ultimate tensile strength,
were developed as functions of temperature and strain rate. Such relations can be used to estimate
tensile properties of HDPE as a function of temperature and/or strain rate for application in designing
parts with this material.
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1. Introduction

Application of polymeric materials and their composites have been increasing rapidly in different
industries, such as the automotive industry, due to their advantages such as lighter weight and resistant
to corrosive environments, as compared to metals [1–3]. Polyethylene is the world’s most widely
used polymer in volume. Compared to other polymers, polyethylene has outstanding characteristics
such as toughness, abrasion resistance, impact resistance, low (near zero) water absorption, low cost,
and recyclability.

There are three major grades of polyethylene; low density, medium density and high-density
polyethylene (LDPE, MDPE, and HDPE), depending on molecular density and crystallinity of the
polyethylene structure. High Density Polyethylene (HDPE) has high rigidity, strength, and better creep
behavior. Global demand for High-Density Polyethylene (HDPE) resins has been increasing, going
from 11.9 million tons in 1990 to 43.9 million tons in 2017 with an annual growth of 3.3% [4].

Molecular constitution and microstructural aspects like the degree of crystallinity, crystal size,
crystal thickness, and crystal orientation may affect the physical and mechanical properties of
polyethylene [5–10]. It is a fast crystallizing polymer at elevated temperatures where the thermally
activated crystallization becomes significant [5]. The amount of crystallinity affects the mechanical
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properties of semi-crystalline polymers such as HDPE. Mechanical properties and morphological
changes in HDPE also significantly depend on the orientation of the deformations with respect to
the molecular and crystal arrangement [6]. Yield stress and lamella thickness are proportional to
crystallinity and increase linearly with the index of crystallinity [7].

Based on experimental observations, while the ultimate tensile strength depends on the crystallinity
level, it is independent of molecular weight [9]. However, Karasev et al. [8] observed that tensile
strength depends on the molecular weight distribution at elevated temperatures (80–100 ◦C). On the
other hand, the yield point below about −100 ◦C is insensitive to the structure and is dependent on
factors such as the strength of the van der Waals’ bonds, but not on the details of the morphology [10].

High molecular weight results in higher strength due to the low capability of sliding molecules
over each other. In addition, increasing molecular weight reduces crystallinity [11]. Crystallinity
and secondary bond strength control the stiffness of thermoplastic, while intra-chain, inter-chain,
secondary bonding and crystallinity govern the strength of thermoplastics. As mentioned, the degree of
crystallinity plays a more important role on HDPE mechanical properties than molecular weight [11,12].
Processing conditions can also influence the microstructure parameters and consequently mechanical
properties [13]. Temperature gradient during the manufacturing process may affect crystallinity and
higher mold temperature leads to a lower crystallization rate and improved modulus [14].

HDPE can be manufactured either as virgin or regrind (recycled) material. Regrind HDPE is the
excess material form production line (trimming or cutoffs), which is used again in the production
line to reduce material waste. Regrind HDPE material experiences more than one thermomechanical
history as compared to virgin material. The physical and mechanical properties of regrind material are
often not published because of too many variables involved [11].

Polyethylene has the ability to permeate chemical liquids, gas, and vapors which is not desired
in some applications such as packaging, chemical storage containers, and automotive fuel tanks.
Therefore, a barrier layer is usually introduced in a coextruded multilayer structure to minimize
permeability of polyethylene. For example, in automotive fuel tanks made of multilayered HDPE
structure, a barrier layer ranging from 2 to 5% of the total thickness is used to reduce the gasoline
permeability [15].

The most common processing techniques to manufacture HDPE are extrusion, injection molding,
blow molding, and compression molding. Manufacturing techniques may influence the mechanical
response of HDPE, such as elastic modulus and tensile strength, which could be due to different
molecular morphologies and structures in the final product [16]. It has been shown that the
optimization of manufacturing parameters in injection molding results in substantially improved
tensile properties [17].

Tensile testing is the most common mechanical testing performed on different materials due to
the simplicity and low cost and due to the fact that tensile properties are still widely used in design.
In addition, tensile properties can be used in semi-empirical models for creep and/or fatigue analysis.
Stiffness, yield strength, ultimate tensile strength, and toughness are the basic tensile properties which
can be characterized by tension tests.

Zhou and Wilkes [6] investigated the orientation effect on mechanical and morphological properties
for uniaxially melt-extruded HDPE films. It was shown that tensile properties were significantly
dependent on the orientation of molecular structure originating from different morphologies developed
during the polymer deformation process [6]. Anisotropy effect in tensile properties was also investigated
through tension tests in 0◦, 45◦, and 90◦ relative to extrusion direction for two grades of polyethylene
(LDPE and UHMWPE) [18]. No significant difference on tensile properties was observed among
samples and it was concluded that the extruded polyethylene material is isotropic in terms of tensile
behavior [18]. However, Grommes et al. [19] reported significant anisotropy effect in elastic modulus
for blow molded HDPE between extrusion direction and blowing direction (perpendicular to extrusion)
for blow molded HDPE. Elastic modulus in the direction of extrusion was approximately 8% higher
than in the direction perpendicular to it. [19].
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Schrauwen [13] studied flow-induced oriented structures in injection molded HDPE samples.
Tensile tests were performed along and perpendicular to the injecting direction. Tensile yield strength
was higher in the flow direction due to the amount of oriented extended chain crystals. It was also
observed that the larger the thickness the lower the amount of orientation.

Addiego et al. [7] studied the manufacturing technique effect on tensile properties of HDPE.
Tension samples were cut from extruded (7 mm thickness), injection molded (4 mm thickness),
and compression molded (6 mm thickness) plates. Tensile tests were carried out at 40 ◦C under
a constant true strain rate of 5 × 10−3 s−1. Microstructural characterization was also performed to
measure and compare the crystallinity and molecular weight of these three sets of samples with
different manufacturing techniques. They showed that ultimate tensile strength linearly increases with
increasing crystallinity.

Tensile behavior can change from a ductile to a brittle manner at different loading rates or service
temperatures [20–22]. Strain rate has a significant effect on tensile properties due to the semi-crystalline
nature of HDPE and the contribution of viscosity in the mechanical response under monotonic
deformation. At high strain rates, molecular chains are unable to coordinate and deform as fast as the
load is applied. It has been observed that elastic modulus and ultimate tensile strength increase at
higher strain rates [23–27].

Dasari et al. [28] evaluated tensile behavior of injection molded HDPE (density = 0.95 g/cm3,
crystallinity = 67%) at room temperature and three strain rates 0.016, 0.04, and 0.08 s−1. A linear
relationship in a semi-log plot was observed between the ultimate tensile stress and strain rate. SEM
imaging from fractured surfaces showed that at low strain rates polyethylene behaves in a ductile
manner and fracture is a result of polymer chain fibrillation. At intermediate strain rates, crazing
or tearing was the predominant mode of fracture at the edges, while fibrillar failure occurred in the
mid-thickness region. At high strain rates, the percentage of fibrillation was small compared to that at
low strain rates. Addiego et al. [29] also found ultimate tensile stress (true stress) linearly increased
with log of true strain rate for HDPE (density = 0.962 g/cm3, crystallinity = 78%) at 23 ◦C.

Merah et al. [30] investigated the effect of temperature on tensile properties of HDPE (PE-100 pipe
grade HDPE with density = 0.96 g/cm3 ) at a constant engineering strain rate of 0.0006 s−1. A significant
reduction in ultimate tensile strength and elastic modulus was observed by increasing temperature
from −10 to 70 ◦C. Ductile fracture surface was observed even at the cold temperature of −10 ◦C).

Effects of temperature and strain rate on tensile properties were investigated for compression
molded HDPE at −40, 23, and 70 ◦C in strain rate range of 0.01–10 s−1 in [31]. Again, by increasing
strain rate, elastic modulus and ultimate tensile strength increased linearly at each tested temperature.
The trend of reduction of tensile properties with increasing temperature was also found to be linear [12].
X-ray diffraction images from the stretched polyethylene films showed that elastic modulus of
polyethylene crystals is nearly independent of temperature up to 145 ◦C, while Young’s modulus (E) of
the films decreased by increasing temperature [13].

Based on the literature review, tensile properties could significantly depend on the orientation of
molecular structure originating from different morphologies developed during the polymer deformation
process. Tensile properties also significantly change with the degree of crystallinity. Strain rate and/or
operating temperature can change the fracture mode from ductile to brittle and have a substantial
influence on tensile properties. Different relations have been developed in the literature to relate tensile
properties to strain rate or temperature.

In this paper, the effects of manufacturing technique, thickness, temperature, and strain rate on
tensile properties of virgin, regrind, and laminated HDPE are investigated. The obtained experimental
data were used to develop empirical relationships as functions of both strain rate and temperature for
tensile properties. The experimental program conducted as well as the results obtained are presented
and discussed in the following sections.
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2. Materials and Methods

High-density polyethylene as virgin, regrind, and laminated HDPE was studied with three
processing techniques (injection molding, blow molding, and compression molding) and with three
specimen thicknesses of 1, 2 and 4 mm. Virgin HDPE specimens with 0.2 % wt of carbon black
were also tested to investigate the effect of carbon black addition on tensile properties. Flash is
produced during the blow molding process; for example, 70 percent for an automotive duct [15]. Up to
25% regrind HDPE may be used for manufacturing multilayer HDPE fuel tanks in the automotive
industry [15]. Therefore, regrind and laminated HDPE forms were also included in the experimental
study. Laminated HDPE is a multilayer composite of virgin and regrind forms with a very thin layer
of adhesive and barrier (about 3% of the total thickness). The main layers are virgin HDPE, regrind
HDPE, a barrier layer as Ethylene vinyl alcohol (EVOH), and an adhesive layer (LDPE).

Virgin and regrind HDPE specimens were machined from compression-molded rectangular plates
with dimensions of 170 × 190 mm2 and thicknesses of 1, 2 and 4 mm. For blow molded HDPE,
rectangular plates with dimensions of 160 × 160 mm2 and thickness of 4 mm were used to make test
specimens. To study any anisotropy effect, compression molded and injection molded specimens were
cut in both transverse and longitudinal directions. Finally, laminated specimens were cut and prepared
from blow molded multilayer polyethylene plates. All the test specimens were machined from strips
cut from plates using a CNC milling machine with the geometry shown in Figure 1.
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Figure 1. Flat specimen geometry used for tension tests. Dimensions are in mm.

Tension tests were performed in displacement-controlled mode according to ASTM D638 [32]
and ISO-527 [33] test standards using an 8800 servo-hydraulic testing machine (Instron, Norwood,
MA, US). Tensile strain was measured using a non-contact video extensometer (Instron, Norwood,
MA, US). Two dots in the consistent distance of 8 mm in the gage section of specimens were marked.
A video extensometer was used to measure the distance between these two points and the resultant
strain as the specimen elongated. An environmental chamber (Instron, Norwood, MA, US) equipped
with an electronic heating element and a liquid nitrogen cooling system (accuracy of ±1 ◦C) was used
for conducting temperature effect tests.

Tension tests were conducted at four temperatures (−40, 23, 53 and 82 ◦C) and three load
actuator speeds (1, 10, and 100 mm/min) for virgin HDPE (compression molded) and laminated HDPE
(blow molded) specimens to investigate the effects of temperature and strain rate on tensile properties.
Virgin and regrind forms with injection molding and blow molding processing techniques were tested
only at 23 ◦C and one strain rate (0.0006 s−1).

Elastic modulus, 0.2% offset yield strength, and ultimate tensile strength were measured from
the tension tests. The yield point is defined as the point at which deviation from linearity exceeds a
specified offset value (0.2% in this case). However, sometimes in the polymer literature the ultimate
tensile strength is called the yield strength. Ultimate tensile strength (Su) is usually reported as the
maximum engineering stress (maximum force divided by the original cross-sectional area of the
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specimen) measured during a tensile test. Ultimate tensile strength happens at the onset of necking in
the case of ductile material behavior.

3. Results and Discussion

3.1. Manufacturing Process Effect

Mechanical properties of polymers may change in different directions because of processing
conditions due to arrangements or molecular orientations along molding direction. Polymer chains can
be arranged parallel and perpendicular to the primary direction of resin flow. This biaxial orientation
of polymer chains can be achieved in blow molding or blown-film extrusion [11].

As mentioned earlier, virgin HDPE specimens (injection molded and compression molded with
4 mm thickness) were tested in two perpendicular directions. No anisotropy effect was observed for
virgin HDPE with compression molding. Isotropy was expected since the melted resin in this case is
exposed to multi-direction flow, leading to the same molecule orientation in all directions.

However, tensile properties were slightly different between two perpendicular directions for
virgin HDPE with the injection molding processing technique. The maximum difference of the average
tensile strength and elastic modulus were 0.4 (~2%) and 185 MPa (~19%) between the directions along
and perpendicular to melt flow direction, respectively. During injection molding, the induced shear
to the melted polymer might cause aligning of the molecular chains. This mechanical deformation
creates a structure regularity along the flow direction.

Polarized light microscopy has also revealed that the compression molded HDPE structure is
more homogeneous than the injection molded HDPE [34]. In addition, as melt flow cools down,
the orientation of molecules in flow direction is frozen. Therefore, tensile strength in the flow direction
may be higher than the cross-flow direction [35]. Mold temperature, part thickness, and flow thickness
can affect the orientation of polymer molecules in injection molding.

Figure 2a–c show elastic modulus, yield strength, and ultimate tensile strength, respectively,
for two materials (virgin and regrind) with the same thickness (4 mm), and with three processing
techniques. As can be seen, there are some improvements by the regrinding process in elastic modulus
and ultimate tensile strength, as compared to virgin HDPE. The improvement for the regrind may
be attributed to the more than one thermal process history on the HDPE resin which can break
polyethylene molecular chains and align them more along the flow direction. However, no difference
in tensile properties between virgin and regrind HDPE at RT or at −40 ◦C was reported in [11]. Figure 2
also shows compression molding results in higher tensile properties as compared to injection molding
and blow molding for both virgin and regrind HDPE. However, tensile properties of both materials are
similar for blow molding and injection molding.

Elastic modulus and ultimate tensile strength for virgin and regrind HDPE with 2 and 4 mm
thicknesses are shown in Figure 3a,b, respectively. These properties are not significantly different
due to thickness effect in compression molding process, either for virgin or regrind HDPE. However,
there is a significant thickness effect on elastic modulus and ultimate tensile strength for the injection
molding processing technique. The elastic modulus of specimens with 4 mm thickness was 23% higher
than for 2 mm thickness. On the other hand, the ultimate tensile strength of specimens with 4 mm
thickness was about 21% lower than 2 mm thickness. The reason for higher ultimate tensile strength for
2 mm specimens may be attributed to the existence of surface layers with higher molecular orientation,
whereas in specimens with 4 mm thickness molecular orientation is decreased from layers closer to the
surface, as compared to layers closer to the core region.
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3.2. Temperature Effect

Temperature plays an important role in mechanical properties of polymers. Variations of E,
Sy, and Su with temperature are shown in Figure 4a–c respectively. Virgin, regrind, and laminated
HDPE with compression and blow molding processing techniques are included in the plots. Necking
happened at all temperatures and strain rates and the specimens elongated continuously after reaching
ultimate tensile strength, even at the slowest tested strain rate and temperature of −40 ◦C.

HDPE shows higher stiffness and ultimate tensile strength at low temperatures due to lower chain
mobility than at elevated temperatures. At elevated temperatures, the molecules are more flexible and
can deform in the direction in which stress is applied. Physical bonds due to Van der Waals hydrogen,
or dipole–dipole interactions restrict molecular motions and define the initial stiffness. Due to low
glass transition temperature of HDPE (−110 ◦C), it is in its rubbery phase at −40 ◦C. By increasing
temperature, strain at ultimate tensile strength increases, indicating higher ductility.

As the test temperature increased, an exponential reduction in tensile properties was observed for
all materials (virgin, regrind, and laminated) with different processing techniques. This reduction is
more significant by increasing temperature from −40 to 23 ◦C, as compared to the reduction from 53
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to 82 ◦C, as the temperature is getting closer to HDPE melt temperature (~130 ◦C). As temperature
increases, secondary (physical) bonds between polymer chains in the amorphous phase break and
tensile properties decline. Significant elongation at 82 ◦C is attributed to higher mobility and breakage
of tie molecules in the amorphous phase.

The reduction trends in tensile properties with temperature for virgin, regrind, and laminated
HDPE are shown in Figure 4. The strain at ultimate tensile strength increases for both virgin and
laminated HDPE specimens at 53 and 82 ◦C, as compared to at RT.Polymers 2020, 12, x FOR PEER REVIEW 7 of 14 
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3.3. Strain Rate Effect

The strain rate at which specimens are deformed significantly affects their response to the applied
stress. As the strain rate increases the molecular mobility of the polymer chains decreases and
material becomes stiffer. Higher strain rate results in increased elastic modulus, higher tensile strength,
and lower strain at ultimate tensile strength. Fracture mode can also vary from ductile to brittle
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depending on the strain rate. A ductile behaving material at low strain rate can exhibit brittle fracture
at high strain rate.

Elastic modulus and ultimate tensile strength improved by increasing strain rate from 0.0006
to 0.006 and 0.06 s−1, as shown in Figure 5. In addition, strain at ultimate tensile strength reduced
at higher strain rates, therefore, the material behavior becomes more brittle as strain rate increases.
As can be seen from Figure 5, the slope of the lines at elevated temperatures is decreased, therefore,
strain rate sensitivity of tensile properties is reduced by increasing temperature. This may be explained
by breaking of tie molecules that connect the amorphous and crystalline phases. As the rate of loading
increases, molecular chains cannot coordinate and deform, hence, material becomes more brittle and
flexibility decreases.
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Since semi-crystalline polymers contain both crystalline and amorphous phases, if the strain rate
is lower than lamella (crystalline phase), then the molecular chains cannot be disentangled and stiffness
and strength increase. On the other hand, if the strain rate is low enough to let crystalline molecular
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chains be disentangled, then stiffness and strength reduce. As shown in Figure 6a, elastic modulus
and ultimate tensile strength increase by increasing the strain rate at a constant temperature, while
tensile properties reduce by increasing temperature at a constant strain rate. The effect of increasing
deformation rate is similar to the effect of decreasing test temperature, as can be seen from Figure 6a.

1 
 

 

Figure 6. (a) Engineering stress-strain curves, and (b) true stress-strain curves showing temperature
and strain rate effects at different temperatures and strain rates.

A linear relationship was obtained between the actuator displacement rate and specimen gage
section strain rate in the log-log scale, expressed as:

.
ε = a

.
δ (1)
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where
.
δ is the displacement rate in mm/min,

.
ε is strain rate in mm−1, and a is a constant obtained

to be about 0.0351 mm−1 for the specimen geometry used for all the HDPE forms and at all
temperatures tested.

3.4. Representation of Tensile Curves and an Emprical Model for Tensile Properties

Different mathematical models can be used to represent the monotonic stress-strain curve, which
can be used in numerical simulations such as finite element analysis. The Ramberg-Osgood (RO)
equation has been shown to represent true stress-strain curves of neat and short fiber reinforced
polymers very well [20,22,36–38]. This equation was used to represent true stress-strain curves up
to the ultimate tensile strength of the studied materials at all temperatures and strain rates and is
expressed as:

ε = σ/E + (σ/K)
1/n (2)

σ = K εn
p (3)

where K is the strength coefficient and n is the strain hardening exponent. The constants K and n are
obtained from a fit of true stress (σ) versus true plastic strain (εp) on a log-log scale [39]. Figure 6b shows
true stress versus true strain and the superimposed experimental curve with the RO representation.

A set of two-variable functions for tensile properties; elastic modulus (E), yield strength (Sy),
and ultimate tensile strength (Su) were developed using the obtained tensile properties at different
temperatures (T) and strain rates (

.
ε). The fitted equations can be represented in Equation (4) given by:

Sy, Su, E = D + C
(
Log

.
ε
)
+ B (T) + A

(
T2
)

(4)

where temperature T is in ◦C and strain rate
.
ε is in s−1 and A, B, C, and D are empirical constants

obtained from the data fits and listed in Table 1.

Table 1. Constants of empirical relationships for HDPE tensile properties.

Property Symbol A B C D R2 RMSE

Elastic Modulus, MPa E 0.11 −27.7 192.4 2253 0.94 157

Ultimate Tensile Strength, MPa Su 8.75 × 10−4 −0.341 2.68 36.0 0.98 1.06

Tensile Yield Strength, MPa Sy 6.65 × 10−4 −0.189 1.22 15.4 0.94 1.18

Figure 7a–c show the three-dimensional representations of elastic modulus, yield strength,
and ultimate tensile strength, respectively, as functions of temperature and strain rate. The effects
of both temperature and strain rate on tensile properties can be seen simultaneously in Figure 7,
providing insight on the two synergistic effects. Values of R-Square and RMSE (Root Mean Squared
Error) reported in Table 1 indicate reasonable fits for tensile properties. MATLAB [40] was used for
generating the 3D plots.

As shown in Figure 7, the experimental data are reasonably close to the fitted surfaces. Equation
(4) can be used to estimate tensile properties in design with HDPE, for example in finite element
analysis. Elastic modulus and ultimate tensile strength for compression molded HDPE with specific
molding condition in [31] were estimated using this polynomial equation. The results were within a
maximum 20% of the reported values in [31]. However, such differences can be expected, depending
on the specific molding process and conditions used.
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It was also found that yield strength and elastic modulus can be estimated as functions of ultimate
tensile strength by linear functions, as shown in Figure 8a,b, respectively. Such functions were
found to be independent of material (virgin, regrind, or laminated HDPE), manufacturing technique
(compression molding, injection molding, or blow molding), thickness (1, 2 or 4 mm), temperature
(−40, 23, 53 and 82 ◦C), and strain rate, as can be observed from these figures.
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These linear relations for HDPE are expressed by the following equations:

Sy = 0.519 Su − 2.79 (MPa) (5)

E = 73 Su − 357 (MPa) (6)

Such linear equations can be used to estimate E and Sy which are sometimes used in design and
more difficult to obtain than the ultimate tensile strength Su.

4. Conclusions

This study was designed to investigate the effects of different factors on tensile behavior of HDPE
including processing technique, thickness, temperature, and strain rate. Virgin, regrind, and laminated
HDPE materials were included in the experimental study. Based on the obtained experimental results
and performed analysis, the following conclusions can be made:

1. No anisotropy effect on tensile properties was observed neither for compression molded nor for
injection molded HDPE.

2. Processing technique and thickness affect the tensile properties of HDPE synergistically. There
was no thickness effect on tensile properties for HDPE with the compression molding process,
while there was a 23% increase in elastic modulus and a 21% decrease in ultimate tensile strength
by increasing thickness from 2 to 4 mm in injection molding.

3. A slight improvement in elastic modulus and ultimate tensile strength was observed for HDPE
after the regrinding process. However, regardless of the processing technique of virgin, regrind,
and laminated HDPE, there was no significant difference observed for these three HDPE material
forms with 4 mm thickness in terms of tensile properties.

4. Stress–strain curves were greatly influenced by temperature. An exponential reduction in tensile
strength and elastic modulus was seen by increasing temperature regardless of the specimen
thickness. Elastic modulus and ultimate tensile strength linearly increase at higher strain rates.
However, strain at ultimate tensile strength is reduced as strain rate increases.

5. Polynomial functions could be fitted to all experimental data to estimate tensile properties of
HDPE as functions of temperature and strain rate.

6. Yield strength and elastic modulus were correlated with ultimate tensile strength with linear
functions, independent of material (virgin, regrind, or laminated HDPE), manufacturing technique
(compression molding, injection molding, or blow molding), thickness (1, 2 or 4 mm), temperature
(−40, 23, 53 and 82 ◦C), and strain rate.

In summary, there is much global interest in HDPE because of its application in a broad range of
industries by using a variety of molding techniques. Components and structures made of this material
are subjected to a variety of loadings and environments, therefore, the importance of the effects of
strain rate and temperature. The findings in this study can facilitate improved design and prediction
of mechanical performance of such components and structures made of HDPE.
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