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Abstract

Summary In this study, we integrated large-scale GWAS summary data and used the predicted transcriptome-wide association
study method to discover novel genes associated with osteoporosis. We identified 204 candidate genes, which provide novel
clues for understanding the genetic mechanism of osteoporosis and indicate potential therapeutic targets.

Introduction Osteoporosis is a highly polygenetic disease characterized by low bone mass and deterioration of the bone
microarchitecture. Our objective was to discover novel candidate genes associated with osteoporosis.

Methods To identify potential causal genes of the associated loci, we investigated trait-gene expression associations using the
transcriptome-wide association study (TWAS) method. This method directly imputes gene expression effects from genome-wide
association study (GWAS) data using a statistical prediction model trained on GTEx reference transcriptome data. We then
performed a colocalization analysis to evaluate the posterior probability of biological patterns: associations characterized by a
single causal variant or multiple distinct causal variants. Finally, a functional enrichment analysis of gene sets was performed
using the VarElect and CluePedia tools, which assess the causal relationships between genes and a disease and search for
potential gene’s functional pathways. The osteoporosis-associated genes were further confirmed based on the differentially
expressed genes profiled from mRNA expression data of bone tissue.

Results Our analysis identified 204 candidate genes, including 154 genes that have been previously associated with osteoporosis,
50 genes that have not been previously discovered. A biological function analysis found that 20 of the candidate genes were
directly associated with osteoporosis. Further analysis of multiple gene expression profiles showed that 15 genes were differen-
tially expressed in patients with osteoporosis. Among these, SLC11A2, MAP2KS5, NFATC4, and HSP90B! were enriched in four
pathways, namely, mineral absorption pathway, MAPK signaling pathway, Wnt signaling pathway, and PI3K-Akt signaling
pathway, which indicates a causal relationship with the occurrence of osteoporosis.

Conclusions We demonstrated that transcriptome fine-mapping identifies more osteoporosis-related genes and provides key
insight into the development of novel targeted therapeutics for the treatment of osteoporosis.
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Introduction

M. Zhu and P. Yin contributed equally to this work. Osteoporosis is a highly polygenetic disease characterized by

low bone mass and deterioration in bone microarchitecture,
leading to increased skeletal fragility and fracture risk [1-3]. A
low bone mineral density (BMD), independently of bone
quality or structure, measures the mineral component of bone
and is a strong clinically relevant risk factor for osteoporosis
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of Advanced Technology, Chinese Academy of Sciences, and a key indicator of its diagnosis and treatment [4, 5].
Shenzhen, China Although BMD is most often measured by dual-energy X-

2 AnLan AL Shenzhen. China ray absorptiometry (DXA) scanning in clinical settings, an
alternative method of estimating the BMD is derived from
ultrasound, typically at the heel (referred to here as estimated
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BMD (eBMD)). A previous genome-wide association study
(GWAS) of eBMD that used heel ultrasound parameters iden-
tified 84% of all currently known genome-wide significant
loci for DXA-derived BMD [6, 7], and the effect sizes were
concordant between the two traits (Pearson’s r=0.69 for the
lumbar spine and 0.64 for the femoral neck) [7]. The
ultrasound-derived eBMD values are highly heritable (on the
order of 50% to 80%) [8], and a recent GWAS of eBMD with
426,824 individuals identified 1103 independent genome-
wide significant associations at 518 loci, which is approxi-
mately 6.4-fold greater than the number of discoveries from
DXA GWAS:s [9, 10]. However, the majority of GWAS hits
are in noncoding regions, and their biological mechanisms are
difficult to interpret [11, 12].

The effect of genetic variation on phenotype is complex
and might involve altering the abundance of one or more
proteins by regulating gene expression and then affecting the
trait (SNP-Expression-Phenotype) [13, 14]. Gene expression
is arguably the most impactful and well-studied effect of reg-
ulatory genetic variation. GWAS-derived loci are enriched for
expression quantitative trait loci (eQTLs), which render these
a potential link between the genetic variant and the biology of
the disease [15—-17]. Although most GWAS do not concomi-
tantly measure gene expression, the influence of genetic var-
iation on gene expression allows the use of reference datasets
(e.g., GTEx [18]) to predict gene expression given a set of
genotypes and to subsequently identify new disease-
associated genes [11, 13, 19]. Thus, the transcriptome-wide
association study (TWAS) approach has been established to
identify genes whose expression is associated with complex
traits by integrating genetic and transcriptional variation [20,
21]. Instead of testing millions of SNPs in GWAS, TWAS
evaluates the association among the predicted expression of
thousands of genes, which greatly reduces the burden of mul-
tiple comparisons due to statistical inference. This approach
has been shown to have the potential to identify the genes
responsible for GWAS-identified associations for complex
traits and provide mechanistic insight regarding genes that
are regulated via disease-associated genetic variants [22—24].

In this study, we conducted a transcriptome-wide associa-
tion study to identify genes associated with osteoporosis by
integrating gene expression data from the Genotype-Tissue
Expression (GTEx) and GWAS summary data from the
Genetic Factors for Osteoporosis (GEFOS) Consortium and
then evaluated the biological patterns of expression-trait asso-
ciations using the COLOC method. We then used VarElect to
understand the biological function of the associations between
the significant genes identified by the TWAS and osteoporo-
sis. In comparison to the results from the differential analysis
of multiple gene expression profiles of osteoporosis, we fur-
ther verified the causal associations between the estimated
bone mineral density and the significant genes identified by
the TWAS.
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Methods
GWAS summary datasets of osteoporosis

The GWAS summary statistics for osteoporosis were derived
from the GEFOS Consortium website in December 2018. The
phenotypic features of osteoporosis were measured based on
the bone mineral density estimated from quantitative heel ul-
trasounds. The large-scale GWAS analysis of eBMD values
was performed with a cohort of 426,824 participants (55%
female) from the UK Biobank [9]. Briefly, a GWAS was
performed based on the HRC imputation panel (hg19), which
includes approximately 14,000,000 SNPs with MAF > 0.05%
and acceptable imputation quality (info score > 0.3). A de-
tailed description of the sample characteristics, experimental
design, and statistical analysis was previously published [25].

Integration of GWAS and gene expression

To integrate the GWAS results and gene expression, we used
the TWAS method. TWAS integrates information from ex-
pression reference panels (SNP—gene expression correlation),
GWAS summary statistics (SNP—phenotype correlation), and
linkage disequilibrium reference panels (SNP—SNP correla-
tion) to assess the association between the cis-genetic compo-
nent of an expression and a trait (expression—osteoporosis
correlation) [20, 22]. In practice, the effect sizes of cis-SNP
expression in the 500-kb loci region were estimated using a
sparse mixed linear model [26]. The TWAS used pre-
computed gene expression weights combined with GWAS
summary statistics to calculate the association effect for each
gene with the disease.

To select trait-related tissues, we used TSED_DB [27], a
reference database for trait-associated tissue specificity based
on GWAS results. The UK Biobank heel eBMD-related genes
were significantly enriched in muscle-skeletal tissue. The
muscle-bone is a unit of functional interaction, and the muscle
mass is positively correlated with the BMD [28]. Several stud-
ies have shown that low muscle mass is significantly associ-
ated with osteoporosis in both men and women of all age
groups [29], and age-related low muscle mass might increase
the risk of osteoporotic hip fractures [30]. In this study, the
gene expression weights were pretrained on GTEx v7 muscle-
skeletal tissue dataset, and we derived the weights from the
FUSION website. The genes with significant association sig-
nals were identified based on a p value < 3.7E-06 after strict
Bonferroni correction.

Evaluation of trait—gene expression associations
To evaluate the reliability of the TWAS results and understand

the biological mechanisms of trait—gene expression associa-
tions, we used the COLOC method [31], which utilizes
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asymptotic Bayes factors with summary statistics and a re-
gional linkage disequilibrium structure to estimate five poste-
rior probabilities: no association with either a GWAS signal or
eQTL (PPO0), association with a GWAS signal only (PP1),
association with a signal eQTL only (PP2), association with
a GWAS signal and eQTL with two independent SNPs (PP3),
and association with a GWAS signal and eQTL having one
shared SNP (PP4). For each of the GWAS hits, we defined a
500-kb region at either side of the index variant and tested for
colocalization within the entire cis—region of any overlapping
eQTLs (transcription start and end position of an eQTL gene
plus and minus 500 kb, as defined by GTEx) in muscle—
skeletal tissue from GTEx v7. In this study, we used default
priors in which a random variant in the region is associated
with either a GWAS or an eQTL individually (prior probabil-
ities = 1E—04) and set the prior probability that the random
variant is causal to both GWAS and eQTLs (prior probability
= 1E—-06). Several studies have shown that PP3+PP4 > 0.8 isa
cut-off threshold that provides evidence of colocalization [32,
33]. We used strict thresholds: PP3 > 0.9 for evidence of trait
—gene expression associations caused by multiple distinct
causal variants from a GWAS and an eQTL and PP4 > 0.8
for evidence of trait—gene expression associations caused by a
joint signal from a GWAS and an eQTL [34].

Assessment of gene—disease associations

To investigate the likelihood that functional genes are more
likely to be causal, the associations of biological function be-
tween the candidate genes and osteoporosis were assessed
using VarElect [35, 36], a cutting-edge Variant Election ap-
plication for disease/phenotype-dependent gene variant prior-
itization. VarElect provides a robust algorithm for ranking
genes within a shortlist, noting their likelihood to be associat-
ed with the disease of interest, and producing a list of priori-
tized, scored, and contextually annotated genes and direct
links to supporting evidence and additional information.
VarElect utilizes the deep LifeMap Knowledgebase to infer
the “direct” or “indirect” association of biological function
between genes and phenotypes. A “direct” association be-
tween genes and disease has been supported by many studies
showing that genes can directly affect disease development,
and an “indirect” association between genes and disease is
based on shared pathways, protein-protein interaction net-
works, paralogy relationships, domain-sharing, and mutual
publications.

Protein—protein interaction (PPI) network and path-
way enrichment analysis

The functional networks of genes that were found to be sig-
nificantly associated with osteoporosis by the TWAS were
further validated using the STRING and CluePedia tools.

STRING (Search Tool for the Retrieval of Interacting
Genes) is an online tool designed to evaluate PPI networks
[37, 38], and CluePedia is a plugin of Cytoscape software that
searches for potential genes associated with certain signaling
pathways by calculating linear and nonlinear statistical depen-
dencies from experimental data [39, 40]. The PPI networks of
the significant genes identified by the TWAS were construct-
ed using STRING. The functional pathways were detected
and visualized using CluePedia.

Differential analysis of gene expression

To further validate the functional causality of candidate genes,
the Gene Expression Omnibus (GEO) database and European
Molecular Biology Laboratory (EMBL-EBI) database were
searched to identify gene expression profiling studies of sub-
jects with osteoporosis. The following key search terms were
used: “osteoporosis,” “gene expression,” and “microarray.”
We obtained gene expression profiles from four different
sources and included original microarray studies that analyzed
the differential gene expression profiles between patients with
osteoporosis and normal controls, as shown in Table 2. The
existence of heterogeneity among multiple microarray studies
arising from different microarray platforms, gene nomencla-
ture, and clinical samples makes it infeasible to compare the
gene expression data directly. Therefore, normalization is nec-
essary to minimize heterogeneity. Consequently, we per-
formed a robust multiarray average approach [41] for back-
ground correction and normalization. The original GEO data
were then converted into expression measures. The Limma
package [42] was used to identify the differentially expressed
probe sets between patients with osteoporosis and normal
controls. Gene-specific ¢ tests were performed, and p values
were calculated. Multiple testing adjustment was performed,
and the genes with adjusted p values < 0.05 were selected as
differentially expressed genes (DEGs).

Results

TWAS-based identification of candidate genes for the
treatment of osteoporosis

We first used the TWAS method with GWAS summary data
from the GEFOS consortium to identify candidate genes as-
sociated with osteoporosis. In this study, we used the e BMD
GWAS summary dataset rather than fragility fractures be-
cause fragility fractures were not found to be enriched by the
TWAS, as shown in Supplementary Table 7. A gene expres-
sion reference panel for muscle-skeletal, which has a total of
13,416 expressed genes, was used. The TWAS identified 204
significantly associated genes with a p value < 3.7E-06, as
shown in Fig. 1.
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Fig. 1 Manhattan plot of the results from the TWAS (upper panel) and
GWAS (lower panel) of osteoporosis. The transcriptome-wide signifi-
cance threshold was p value = 3.7E-06; the genome-wide significance

The TWAS method can detect causal genes by effectively
predicting genetic variants based on gene expression. The
following four biological patterns were identified by the
TWAS (Fig. 2). First, for SNPs in coding regions (introns
and exons) significantly associated with osteoporosis, the
causal genes identified by the GWAS and the TWAS were
likely to be consistent, as shown in Fig. 2a. The effect size of
rs10411210 (Pgwas = 1.6E-119) on osteoporosis obtained
from the GWAS corresponds with that of rs10411210 on
RHPN2 (Prwas = 4.4E-73) gene expression identified from
the TWAS. Second, for SNPs in noncoding regions, the can-
didate genes might be close to the significant eQTLs but dif-
ferent from the GWAS hits, as shown in Fig. 2b. The variant
152785197 (Pgwas = 6.5E-44) in 11p13 mapped to PDHX in
GWAS, but the causal gene for rs2785197 in our TWAS
results was more likely to be CD44 (Prwas = 1.1E-32). The
colocalization analysis showed that CD44 (PP4 = 0.99 in
Supplementary Table 2) gene expression was regulated by
the single variant rs2785197, which might be regarded as its
expression regulation element. Third, the candidate genes
might be regulated by relatively distant significant SNPs in
noncoding regions, as shown in Fig. 2c. Our TWAS results
indicated that 154792909 (Pgwas = 1.5E-74) in 17q21.31
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chromosome

threshold was p value = 6.6E-09. A total of 1103 conditionally indepen-
dent SNPs at 515 loci among n = 426,824 UK Biobank participants
passed the criteria for genome-wide significance

might be associated with G6PC3 (Prwas = 4.2E-26). The
distance between rs4792909 and G6PC3 is 387 kb, but we
did not find the gene identified by the GWAS near rs4792909.
Fourth, candidate genes were discovered based on SNPs that
were not significantly associated with osteoporosis. The non-
significant region identified from the GWAS was a novel
discovery: rs1003260 (Pgwas = 3.6E-08) in 6q13 was asso-
ciated with RIMSI (Prwas = 2.1E-08), as shown in Fig. 2d.
RIMS]I, as a novel locus, was first reported to be associated
with BMD, and further investigation was performed.

Gene expression differences identified by TWAS might be
causally associated with the phenotype of interest but can also
be due to variant linkage disequilibrium or gene product co-
expression [43, 44]. To pinpoint the causal relationship be-
tween the target gene of an eQTL and a complex trait, we
performed a colocalization analysis using the COLOC meth-
od; see the Methods section. We used a strict threshold for
single variant colocalization with PP4 > 0.8 and a stricter
threshold for multiple variants colocalization with PP3 > 0.9
as this category seems slightly inflated than PP4; see QQ plot
in Supplementary Figure 4. The results showed that 103
TWAS associations provided strong evidence of joint causal
variants with PP3 > 0.9, as shown in Supplementary Table 1,
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Fig. 2 Biological patterns identified by the TWAS. a): For significant
SNPs in coding regions, rs10411210 (Pgwas = 1.6E-119) in 19q13.11
is associated with RHPN2 (Ptwas = 4.4E-73). b): For SNPs in the
noncoding regions, 1s2785197 (Pgwas = 6.5E-44) in 11p13 was
associated with PDHX, which was marked in green, as determined by
the GWAS, but the causal gene for rs2785197 was more likely to be

and 101 showed evidence of a single causal variant with PP4
> (.8, as shown in Supplementary Table 2.

Compared with previous GWAS studies, we found that 51
of the identified genes were previously implicated in osteopo-
rosis risk by GWASs, as demonstrated in the literature, and
153 genes have not been reported to be associated with oste-
oporosis risk in previous GWASs, as shown in Figs. 3a—b.

Assessment of the candidate gene—osteoporosis
associations

For 153 candidate genes, we evaluated the associations be-
tween the candidate genes and osteoporosis through an anal-
ysis using VarElect. The analytical results showed that 20
genes (Supplementary Table 3) were “directly” associated,
83 genes were “indirectly” associated (Supplementary
Table 4), and the remaining genes have not yet been classified.
The direct associations indicated that the target genes were
supported by rich evidence (the relevant literature, gene

~-LING0085¢ ~MeP3 ~FPY ~ASBIG-AST
ARLID~> ~THEM101 TMUB2~>
~ATXNTL3
0
~UBTF]
-
~MIR6762
T T T T T
414 416 418 42 422
Position on chr17 (Mb)

d RIMS1--rs1003260

Plotted SNPs ]

- 100

51003260

T T
=3 @
3 3

IS
S

~logso(p-value)
(QW/WD) ©1Bs UORBUIGUIOd8Y

n
S

o

OGFRLI— < MIR30A RINST—~
- MU?CXOC?

«LINC00472
-

LOC102724000—+

T T T
2 722 724 726 728
Position on chr6é (Mb)

CD44, which is marked in red (Prwas = 1.1E-32), as determined by
our TWAS. ¢): 154792909 (PGgwas = 1.5E-74) in 17¢21.31 might be
associated with G6PC3 (Ptwas = 4.2E-26). The distance between
154792909 and G6PC3 is 387 kb, but no gene has been identified by a
GWAS near rs4792909. d): rs1003260 (Pgwas = 3.6E-08) in 6q13 was
associated with RIMSI (Prwas = 2.1E-08)

function annotation, etc.). The score shown in
Supplementary Table 3 indicated the strength of the associa-
tion between the gene and osteoporosis: a higher score indi-
cates stronger evidence. Indirectly associated genes might in-
teract with intermediaries to influence the development of
osteoporosis through a PPI network and pathways
(Supplementary Table 5). We considered the remaining un-
identified genes as novel candidate genes, which were mainly
IncRNAs, pseudogenes, and antisense genes. These novel
candidate markers are potential disease factors for which there
is no available evidence and thus need further investigation.

Functional pathways of the candidate genes

To further verify the associations between the significant
genes identified by the TWAS and osteoporosis, we explored
the biological function pathways of these genes using the
STRING and CluePedia tools. Four pathways that may pro-
mote the understanding of the mechanism of osteoporosis

@ Springer
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Fig. 3 Significant genes and a
candidate genes in muscle-
skeletal tissue identified by
TWAS. (a) Comparison of sig-
nificant genes found using the
TWAS and GWAS methods. (b)
The top 20 candidate genes were
not reported in previous GWASs,
the red bars indicate upregulated
gene expression, and the blue bars
indicate downregulated gene ex-
pression (full lists can be found in
Supplementary Figure 1,
Supplementary Table 1 and
Supplementary Table 2).

were enriched (adjusted p value < 0.05), as shown in Table 1.
However, eBMD-related genes have mostly not yet been well
studied, and few overlaps were found with the KEGG data-
base. Other nonsignificant KEGG pathways may also have
important roles on osteoporosis and provide additional clues,
as shown in Supplementary Table 5. Among them, some of
the pathways which interacted with each other were shown in
Supplementary Figure 5 (e.g., PI3K-Akt signaling, focal ad-
hesion, and ECM-receptor interaction ). These results showed
that the significant genes identified by the TWAS are involved
in many biological mechanisms in the development of
osteoporosis.

Functional validation for the candidate genes

Previous research based on expression profiling with gene
signatures of cellular models to characterize the gene’s in-
volvement in bone metabolism and disease processes revealed
that impaired osteoblastic differentiation reduces bone forma-
tion and causes severe osteoporosis in animals [45]. We ana-
lyzed four gene expression profile datasets from bone, bone
marrow, monocyte cells, and B cells of patients with osteopo-
rosis and normal controls and high- and low-BMD control
groups. Based on the cut-off criterion for the identification

GWAS

AF131215.2
RP11-73M18.6
FAM8SA
TRMT61A
MFHAS1
ASB16
c8orf12
APOPTL
MTMR9
CTBP1-AS2
KLC1
Co44
18P
cers
AC093110.3
RP11-3565.12
RP11-554A11.9
G6PC3
RP11-798G7.8
RP3.508115.9
RP11-73M18.9
MSTIR
ELMO3
MAPT-AS1
RP11-707023.5
CRHR1-IT1
CRHR1
PLEKHM1 up

RP11-107N15.1

RP4-61404.12 down

-1 -10 -5 0 5 10 15
zZ score

of DEGs (adjusted p value < 0.05), a total of 15 significant
genes identified by the TWAS were duplicated, and 11 of
these genes were not found by the GWAS, as shown in
Table 2. The results of the functional pathway analysis also
supported our findings. As shown in Fig. 4, we discovered
that four differentially expressed genes were enriched in four
KEGG pathways that were significantly and strongly associ-
ated with osteoporosis. SLC/IA2, which is enriched in the
mineral absorption pathway (Ppahway = 0.019), regulates the
fine-tuned balance between bone resorption and bone forma-
tion and thus affects bone density [46]; MAP2KY is enriched
in the MAPK signalling pathway (Ppqmway = 0.388), which is
involved in the regulation of many cellular physiological func-
tions, such as proliferation, differentiation, inflammation, and
apoptosis, and affects bone formation [47, 48]; NFATC4 is
enriched in the Wnt signalling pathway (Ppathway = 0.104)
and is a candidate for therapeutic intervention aimed at in-
creasing bone mass and strength in treated patients [49, 50];
HSP90BI 1is enriched in the PI3K-AKT signalling pathway
(Ppathway= 0.020), which is involved in the inhibition of oste-
oporosis through the promotion of osteoblast proliferation,
differentiation and bone formation [51, 52]. Therefore, we
inferred that these genes are very likely to be the causal path-
ogenic genes of osteoporosis. Due to the small sample size of

Table 1 Functional pathways of

significant genes identified by the ID GO Term Term-adjusted p Associated genes found
TWAS value
KEGG:04978  Mineral absorption 0.019 CYBRDI, SLC11A2, SLCSAI
KEGG:04151  PI3K-Akt signaling 0.020 G6PC3, HSP90B1, IBSP, THBS3
pathway
KEGG:04921  Oxytocin signaling 0.029 ADCY4, MAP2K5, NFATCI1, NFATC4,
pathway PPPICB
KEGG:04022  c¢GMP-PKG signaling 0.039 ADCY4, NFATCI, NFATC4, PPPICB,
pathway SLCS8AI
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Table 2 Significant genes
identified by the TWAS that show
significantly differential gene

Dataset Profile

Platform

Samples Differential expression of genes identified by

the TWAS

expression in the four gene
expression profile datasets. The
red marker genes were not
identified by the GWASs

Bone E-MEXP-1618

GSE35958
GSE35956

Bone
marrow

Monocytes  GSE7158

GSE56815
B cell

GSE13850

GSE7429

GPL570

GPL96

GPL570

GPL96

GPL96

18 OP/

45 NOR
5 OP/

9 NOR

SLCIIA2

NFATC4, HSP90B1, TP53113, MAPILC3A,
DOPEYI1, MTMRY, PCGF2,
MAPT-ASIGPATCHI, SPTBN1

12 low DPP8
BMD/14
high
BMD

40 low
BMD/40
high
BMD

10 low
BMD/10
high
BMD

10 low
BMD/10
high
BMD

MAP2KS, G6PC3
ISYNAI

the mRNA expression datasets, more experiments and other
types of RNA datasets are needed in the future.
OP osteoporosis, NOR normal, BMD bone mineral density

Discussion

Multiple GWASs have been performed with considerable
sample sizes to detect osteoporosis heredity, but the progress
toward understanding the mechanism of the disease is limited.
Most GWAS hits are in noncoding regions, and it is difficult
to understand downstream biological inferences. In most
cases, the nearest genes are usually reported [53, 54]. SNPs
in noncoding regions do not have to regulate genes based on
the distance between SNPs and genes. The integration of
GWAS and transcriptome data will empower novel discovery
and, most importantly, pinpoint causality. The TWAS method
calculates local SNP—gene expression correlations and further
calculates the likelihood of gene causality. Therefore, for a
significant SNP in a coding region, the causal genes identified
by using the GWAS and TWAS methods should be and in-
deed are consistent, as shown in Fig. 2a. For SNPs in noncod-
ing regions, the causal genes might be close to the significant
eQTLs, which might differ from the GWAS hits shown in Fig.
2b. The most relevant GWAS variants and their nearest genes
were not enriched as causal variants/genes by the TWAS.
Accordingly, we compared the GWAS-reported genes and
the TWAS-enriched genes in all significant GWAS regions,
as shown in Supplementary Table 8. The TWAS method can

even discover causal genes in regions with no significant
GWAS hits, as shown in Fig. 2d, and relatively distant signif-
icant SNPs, as shown in Fig. 2c. More valuable region plots
can be found in Supplementary Figure 2.

We found 204 significant candidate genes through our
TWAS. Among these genes, 103 genes were regulated by
two distinct causal variants, and 101 genes were regulated
by a single causal variant. In comparison with the GWAS,
51 genes were duplicated. For the remaining 153 genes, an
analysis of their biological functions revealed that 20 genes
directly affected pathways closely related to the development
of osteoporosis: IBSP, EIF2B2, CD44, FENI, UBA7,
MARCO, ATF1, CBFB, G6PC3, SLC11A2, MSTIR,
PLEKHMI1, ATRIP, CCDC36, AKAP7, EPRS, CTSB,
CRHRI, FADS1, and MAP1LC3A. For example, /BSP (score
= 13.74) is the gene most associated with osteoporosis. The
COLOC analysis showed that the SNPs rs1471403 and
rs1054627 might co-regulate /BSP gene expression. In addi-
tion, previous studies have shown that /BSP is expressed in all
major bone cells, including osteoblasts, osteocytes, and oste-
oclasts [55], and encodes a major noncollagenous bone matrix
protein that binds to calcium and hydroxyapatite via acidic
amino acid clusters in the PI3K-AKT signaling pathway
[51]. In contrast, we found that 83 genes appear to exert their
biological functions to affect the development of osteoporosis
through a PPI network. As shown in Supplementary Figure 3,
RAC3 and NFATC4 were enriched in the MAPK signaling
pathway (Ppahway = 0.388) through interactions with genes
(ESRI, FOS, IGF1, TGFBI, JUN, NFATCI, IGF1, LRPS,
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Fig. 4 Biological function verification of the significant genes identified
by the TWAS. SLC11A2, NFATC4 and HSP90B1 showed significantly
differential expression in bone tissue and bone marrow cells between

TNF, and PRKACA) that are known to be associated with
osteoporosis. More information on gene interactions can be
found in Supplementary Table 4 and Table 5. In addition, 50
significant markers as novel candidate genes are not associat-
ed with osteoporosis based on existing knowledge, and these
include 19 genes, 13 lincRNAs, 9 pseudogenes, and 9 anti-
sense genes. Some of these candidate genes, such as
AF131215.2 (Prwas = 1.92E-66) and RPI11-73 MI18.6
(Prwas = 2.72E-51), were very significant. Simultaneously,
we found that R/IMS1 was located in new locus, and its causal
SNPs were non-significantly associated with osteoporosis in
the GWAS. RIMS]I is an RAS gene superfamily member and
plays a role in the regulation of voltage-gated calcium chan-
nels during neurotransmitter and insulin release. Although
previous studies have not provided evidence supporting a
causal association with osteoporosis, these genes might be
potential causal biomolecules for osteoporosis, and more ex-
periments are needed to verify their biological function.
Furthermore, we obtained additional evidence by compar-
ing differentially expressed genes through an analysis of four
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types of gene expression profiles. Our results identified 15
significantly differentially expressed genes, as shown in
Table 2. Among them, 11 genes were not discovered by the
GWAS, and these included SLCIIA2, G6PC3, and
MAPILC3A, which have been proven to be directly associated
with osteoporosis, and NFATC4, HSP90BI1, TP53113,
MTMRY9, PCGF2, MAPT-AS1, and MAP2K5, which are con-
sidered to be indirectly associated with osteoporosis based on
PPI networks and literature. It is worth mentioning that
SLCI11A2, NFATC4, HSP90BI, and MAPILC3A were
enriched in four very important pathways. In addition,
GPATCHI, SPTBNI, DPPS8, and ISYNAI were also found
in the GWAS, and our results once again confirmed their
potential as candidate disease markers. The biological func-
tion information of these 15 genes can be found in
Supplementary Table 6.

This investigation constitutes the largest study integrating
the GWAS and TWAS methods to identify osteoporosis sus-
ceptibility genes. We used data from the 426,824 individuals
with osteoporosis in the GWAS and 860 samples from GTEx
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in our analyses. Many findings were discovered, although this
research still has some limitations. First, the current TWAS
method cannot explain the variants influencing disease that
are independent of cis expression because it was only trained
on cis-eQTL analysis. Second, some bias might exist due to
the use of normal muscle-skeletal tissues from GTEx to make
predictions. Third, tissue sensitivity and tissue specificity are
important issues to consider when performing a TWAS.
Prediction models built on gene expression data from osteo-
blast cells of osteoporosis patients will help identify additional
candidate genes associated with osteoporosis [56].

In summary, we integrated data from GWAS and tran-
scriptome expression to identify 204 significant genes associ-
ated with osteoporosis. One hundred fifty-four genes have
been previously associated with osteoporosis (literature,
protein-protein interaction networks, pathway, etc.), and 50
genes have not been previously discovered. Therefore, we
analyzed the biological patterns of those loci and explained
their pathway interactions. We hope that our findings will
provide novel insights for future pathogenetic studies of
0steoporosis.

Abbreviations BMD, bone mineral density; DEGs, differentially
expressed genes; eQTLs, expression quantitative trait loci; GEO, Gene
Expression Omnibus; GEFOS, Genetic Factors for Osteoporosis;
GWAS, genome-wide association study; GTEx, Genotype-Tissue
Expression; OP, osteoporosis; TWAS, transcriptome-wide association
study; SNP, single nucleotide polymorphism.
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