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The role of bile acids in cellular 
invasiveness of gastric cancer
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Abstract 

Background:  Bile acids have been implicated in the development of digestive tract malignancy by epidemiological, 
clinical and animal studies. The growth and transformation signaling by most of the bile acids is thought to be related 
to the induced cyclooxygenase-2 (COX-2) expression and increased production of prostaglandin E2 (PGE2). The highly 
hydrophobic bile acids such as chenodeoxycholic acid (CD) and deoxycholic acid can promote carcinogenesis and 
stimulate the invasion of colon cancer cells. On the contrary, ursodeoxycholic acid (UDCA), a less hydrophobic stereoi‑
somer of CD, inhibits proliferation and induces apoptosis in colon cancer cells. We examined the effects of bile acid on 
human gastric cancer cells MKN-74.

Methods:  Early-passage human gastric cancer MKN-74 cells were used for drug treatment, preparation of whole 
cell lysates, subcellular extracts and Western blot analysis. The levels of PGE2 released by the cells were measured 
by enzyme inummoassay to indicate COX-2 enzymatic activity. Cellular invasion assay was performed in Boyden 
chamber.

Results:  Exposure of CD led to activation of protein kinase C (PKC) alpha, increased COX-2 expression and increased 
PGE2 synthesis. The induced COX-2 protein expression could be detected within 4 h exposure of 200 μM CD, and it 
was dose- and time-dependent. PGE2 is the product of COX-2, and has been reported to cause tumor invasion and 
angiogenesis in animal study. Safingol (SAF), a PKC inhibitor, suppressed the COX-2 protein expression and PGE2 pro‑
duction by CD in MKN-74. Furthermore, UDCA suppressed PGE2 production by CD but did not affect COX-2 protein 
expression induced by CD. Using a Boyden chamber invasion assay, both SAF and UDCA impeded CD induced tumor 
invasiveness of MKN-74 by 30–50%.

Conclusions:  Our results indicate that signaling of hydrophobic bile acid such as CD in gastric cancer cells is through 
PKC activation and COX-2 induction, which leads to increased cellular invasion. By perturbing the bile acid pool, 
UDCA attenuates CD-induced PGE2 synthesis and tumor invasiveness.
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Background
Bile acids have been implicated in the development of 
digestive tract malignancy [1, 2]. Epidemiological studies 
have suggested that the concentration and composition 
of fecal bile acids, amphiphilic derivatives of choles-
terol, are important determining factors in the etiology 

of colon cancer [3, 4]. The primary bile acids, cholic acid 
and chenodeoxycholic acid (CD), are synthesized in the 
liver and are excreted into the duodenum where they 
facilitate absorption of dietary lipids [5]. Most of these 
bile acids are reabsorbed in the intestine; however, a 
small quantity remains unabsorbed and passes into the 
colon where it is converted to secondary bile acids, deox-
ycholic acid (DCA) and lithocholic acid, by enteric bac-
teria [6]. The highly hydrophobic bile acids such as CD 
and DCA can promote carcinogenesis and stimulate the 
invasion of colon cancer cells. It has been postulated that 
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bile acids with increased hydrophobicity such as CD and 
DCA have a greater capacity to pass through cell mem-
brane and modulate signaling cascades for tumorigenesis 
in normal colonic cells [7, 8]. Qiao et  al. have reported 
that DCA suppresses wild-type p53 by stimulating pro-
teasome-mediated p53 protein degradation in HCT-116 
colon cancer cells [9].

On the contrary, ursodeoxycholic acid (UDCA), a less 
hydrophobic stereoisomer of CD, is a naturally occur-
ring bile acid found in small quantities in normal human 
bile, and is indicated clinically for gallbladder stone dis-
solution. Interestingly, UDCA inhibits proliferation and 
induces apoptosis in colon cancer cells [10–12]. Results 
from experimental animal studies and clinical observa-
tion in ulcerative colitis have implied UDCA has chem-
opreventive action for colonic carcinogenesis [13–17]. 
Moreover, UDCA inhibits proliferation and induce apop-
tosis in colon cancer cells [18, 19]. Herein, we have exam-
ined the effects of bile acid on human gastric cancer cells 
MKN-74.

Methods
Cell culture and drug treatment
Early-passage human gastric cancer MKN-74 cells were 
established and characterized as described previously [20, 
21]. Human colon cancer cell line HT-29 was obtained 
from ATCC. Human gastric cancer cell line SK-GT5 was 
established and characterized as described previously 
[22, 23]. All the cultures were maintained in standard 
MEM media supplemented with 100 units/ml penicillin, 
100 μg/ml streptomycin and 20% heat inactivated normal 
calf serum (Gibco) at 37 °C in a humidified atmosphere of 
5% CO2. Cells were checked for mycoplasma contamina-
tion at least every 6 months and consistently tested nega-
tive. MTT ([3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl 
tetrazolium bromide]), 3-phorbol 12-myristate 13-ace-
tate (PMA) and bisbenzimide trihydrochloride (Hoechst 
33258) were purchased from Sigma. Safingol (SAF) was 
purchased from Aventi Polar Lipids. The cytotoxicity of 
each agent for 24-h exposure in MKN-74 cells was deter-
mined by MTT assay [24], and the concentration caus-
ing less than 20% of growth inhibition was used in this 
study. Twenty-four hours after passage, when cells were 
approximately 50–60% confluent, they were exposed 
to the indicated drug treatment. Cells were checked for 
Mycoplasma contamination at least every 6 months with 
a GEN-Probe Mycoplasma rapid detection kit (Fischer 
Scientific) and consistently tested negative.

Preparation of whole cell lysates and Western blot analysis
After drug treatment, cells were washed twice with cold 
phosphate-buffered saline, and then lysed by scrap-
ping into a radioimmunoprecipitation assay buffer 

(phosphate-buffered saline containing 1% Nonidet P-40, 
0.5% sodium deoxycholate and 0.1% SDS) containing the 
protease inhibitors (100 μg/ml phenylmethylsulfonyl flu-
oride, 25  μg/ml aprotinin, 25  μg/ml leupeptin, 10  μg/ml 
soybean trypsin inhibitor and 1 mM sodium orthovana-
date). The lysate was left on ice for 30 min, passed through 
a 21-gauge needle twice, and then centrifuged at 15,000×g 
for 20 min in a microfuge at 4 °C. The clarified superna-
tant was collected and the protein concentration was 
measured using Bio-Rad protein assay kit (Bio-Rad, Her-
cules, CA). Sodium dodecyl sulfate–polyacrylamide gel 
electrophoresis (SDS-PAGE) was performed as previously 
described [25]. Fifty microgram of protein from each sam-
ple was run in SDS-PAGE using a Bio-Rad Mini-Protean 
system with an 8% resolving gel and 4% stacking gel. The 
resolved proteins were transferred onto Immobilon poly-
vinyl difluoride membranes (Millipore Corporation, Bed-
ford, MA). Ponceau S (Sigma Chemical, St. Louis, MO) 
staining of the membranes was performed to assess the 
equivalence of sample loading and gel transfer. Antibodies 
purchased from Santa Cruz Biotechnology were used to 
detect the proteins of interest. After incubation with sec-
ondary antibody, membranes were developed using the 
Pierce SuperSignal chemiluminescent detection reagents 
(Pierce Biotechnology, Rockford, IL) according to the 
manufacturer’s instructions and exposed to NEN Renais-
sance X-ray film (New England Nuclear, Boston, MA) 
with intensifying screens. The linear-range signal intensity 
of each specific band on the fluorogram was quantitated 
by a densitometric scanning system and comparison of 
proteins of interest was performed after normalization to 
the densitometric scanning of the Ponceau S staining.

Preparation of subcellular extracts
Membrane and cytosolic protein extracts were pre-
pared based upon a method described previously 
[26]. Briefly, 2–4 × 106 MKN-74 cells were sus-
pended in ice-cold lysis buffer (20  mM Tris–HCl, pH 
7.5, 2  mM EDTA, 2  mM [ethylenebis(oxyethylenen
itrilo)]tetraacetic acid, 10  mM β-mercaptoethanol, 
0.5  mM phenylmethylsulfonyl fluoride, 10  μg/ml leu-
peptin, 10  μg/ml soybean trypsin inhibitor and 10  μg/
ml Aprotinin) at a concentration of 107  cells/ml. Cells 
were lysed by passing through gauge 27 needle three 
times, and further homogenized by a motorized pes-
tle for 50 strokes. The extent of cell lysis was examined 
under microscope throughout the homogenization, 
and consistent results with more than 95% cell lysis 
were obtained. Cell homogenates were centrifuged at 
27,000×g for 30  min at 4  °C. The supernatants were 
collected as cytosolic protein extracts. The pellets were 
resuspended in ice-cold lysis buffer plus 1% Triton-X 
for 30 min at 4 °C, and intermittently homogenized by a 
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motorized pestle every 10 min. The undissolved debris 
was removed after centrifugation at 12,000×g for 
10 min, and the clarified supernatants were collected as 
membrane protein extracts. Protein concentration was 
determined by Bio-Rad protein assay. For Western blot 
analysis, 30 μg of protein from each extract was used.

Measurement of prostaglandin E2 (PGE2) production
Cyclooxygenase-2 (COX-2) enzymatic activity was esti-
mated by the production of PGE2 [27, 28]. Cells (1 × 104/
well) were plated in 24-well dishes and grown to 60% 
confluence in DMEM containing 10% FCS. The medium 
was then replaced with DMEM containing 1% FCS and 
vehicle or drug to be tested for 12  h. At the end of the 
treatment period, the culture medium was replaced 
with fresh DMEM containing 1% FCS and 1 μM sodium 
arachidonate. After 30 min, the medium was collected for 
analysis of PGE2. The levels of PGE2 released by the cells 
were measured by enzyme inummoassay using an ELISA 
kit from Oxford Biomedical Research. Rates of produc-
tion of PGE 2 were normalized to protein concentrations.

Invasion assay
The invasion assay was performed based on published 
methods with some modifications [29, 30]. Exponen-
tially growing cells after 2–3 days of growth in complete 
medium were collected, and the old medium was saved as 
conditioned medium for chemotaxis. The Nuclepore fil-
ter was coated with 1 ml matrigel on ice, then incubated 
at 37 °C for 15–30 min. Boyden chamber was assembled 
with 24 μl of conditioned medium in each lower cham-
ber, matrigel-coated Nuclepore filter facing upward, and 
50 μl of serum-reduced (5% or less) medium containing 
2.5 × 105 cells in each upper chamber. After incubating 
the Boyden chamber in tissue culture incubator for 6 h, 
the filter was reversed, fixed in methanol, and stained 
by H&E. The cells that have traveled past the filter were 
counted as invasive cells.

Statistical analysis
All experiments have been performed at least twice with 
similar results, and the results of one representative exper-
iment are reported. Invasion assay results are reported as 
the average of three experiments with error bars repre-
senting standard error of the mean as shown in Fig. 4.

Results
We first examined the effect of CD in MKN-74 cells 
with regard to COX-2 expression. MKN-74 cells were 
exposed to 100, 200 or 400  μM CD for 24  h, then cells 
were collected and fractionated into membrane (M) and 

cytosolic (C) extracts as described in Methods. Western 
blots analyses were performed using COX-2 antibody. As 
shown in Fig. 1a, with exposure to 10 nM PKC activator 
PMA as a positive control, a dose-dependent induction 
of COX-2 protein expression by CD was demonstrated; 
similar results were noted in primary gastric adenocarci-
noma SK-GT5 cells (Fig. 1c). Furthermore, a time-course 
induction of COX-2 without affecting COX-1 was seen 
after exposing to 200  μM CD at different time interval 
for MKN-74 cells (Fig. 1b). Similar results were noted in 
human colon cancer cell line HT-29 (data not shown).

We then examined the effect of CD on PKCα activa-
tion. MKN-74 cells were exposed to 100, 200 or 400 μM 
CD for 24 h; then cells were collected and fractionated as 
described. Western blots analyses were performed using 
COX-2 and PKCα antibody. As shown in Fig. 2a, induc-
tion of COX-2 protein expression was associated with 
activation of PKCα, as demonstrated by translocation 
from cytosolic fraction to membrane fraction.

Fig. 1  a Western blot analysis of COX-2 in MKN-74 after treatment 
with 10 nM PMA, 100, 200 and 400 μM CD, respectively for 24 h. 
M denotes membrane extract and C denotes cytosolic extract. b 
Western blot analysis of COX-2 and COX-1 in MKN-74 after treatment 
with 200 μM CD for 0, 4, 8 and 24 h, respectively. c Western blot 
analysis of COX-2 in SK-GT5 after treatment with 10 nM PMA, 100 and 
200 μM CD, respectively for 24 h
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We further examined the effect of UDCA on COX-2 
expression. MKN-74 cells were exposed 8 h to single drug 
alone including PMA, CD and UDCA, 10 nM PMA with 
200 μM UDCA, or 200 μM CD with 200 μM UDCA; then 
cells were collected and fractionated as described. West-
ern blots analyses were performed using COX-2 anti-
body. As shown in Fig. 2b, UDCA did not affect PMA- or 
CD-induced COX-2 protein expression.

We then examined the effect of PKC inhibitor SAF 
on CD-induced PKCα activation and COX-2 protein 
expression. Exponentially growing MKN-74 cells were 
exposed 8  h to single drug alone including PMA, CD 
and SAF, 10  nM PMA with 10  nM SAF, or 200  μM 
UDCA with 10 nM SAF; then cells were collected and 
fractionated as described. As shown in Fig.  3, SAF 
suppressed CD-induced PKCα activation and COX-2 
protein expression. There was no effect of low concen-
tration of SAF (10 nM) on the induction of COX-2 and 
activation of PKCα from PMA; we previously showed 
higher concentration of SAF (50  nM) was needed to 
suppress PMA-induced PKCα activation and COX-2 
protein expression [26].

We examined PGE2 production under various condi-
tions; MKN-74 cells were exposed to single drug alone, 
10 nM PMA with 200 μM UDCA, or 200 μM CD with 
200  μM UDCA for 8  h, then PGE2 production was 
measured by ELISA. UDCA suppressed PGE2 produc-
tion by PMA and CD (Table 1). Boyden chamber assay 
was performed to determine invasiveness in MKN-74 
cells exposing to various agents. Either SAF or UDCA 
attenuated CD-induced invasiveness in MKN-74 cells 
(Fig. 4).

Discussion
Our data have shown that CD exposure in human gas-
tric cancer MKN-74 cells leads to activation of PKCα 
and induction of COX-2 expression in conjunction with 
increased PGE2 production. Furthermore, UDCA sup-
presses CD-induced PGE2 production without affecting 
COX-2 expression. This implies that signaling of hydro-
phobic bile acid in gastric cancer is mediated through 
PKC activation and COX-2 induction, which gives rise 
to increased cellular invasion. By perturbing the bile acid 
pool, UDCA attenuates CD-induced PGE2 synthesis 

UDCA UDCA
Control PMA CD UDCA PMA CD
C M C M  C  M C  M C M C M

a

b

Fig. 2  a Induction of cyclooxygenase (COX)-2 by CD required activation of PKCα in MKN-74 cells. Exponentially growing MKN-74 cells were 
exposed to control, 10 nM PMA, and CD in 100, 200 and 400 μM respectively for 24 h; then cells were collected and fractionated into membrane 
(M) and cytosolic (C) extracts. Western blots analyses were performed using COX-2 and PKCα antibody. Induction of COX-2 protein expression was 
associated with activation of PKCα, as demonstrated by translocation from cytosolic fraction to membrane fraction. b UDCA did not affect PMA- or 
CD-induced COX-2 protein expression. Exponentially growing MKN-74 cells were exposed to control, 10 nM PMA, 200 μM CD, 200 μM UDCA, 10 nM 
PMA plus 200 μM UDCA, or 200 μM CD plus 200 μM UDCA for 8 h, then cells were collected and fractionated into membrane (M) and cytosolic (C) 
extracts. Western blots analyses were performed using COX-2 antibody. UDCA did not affect PMA- or CD-induced COX-2 protein expression
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and tumor invasiveness without affecting the COX-2 
expression.

We have used another cell line, HT-29 colon cancer 
cells as a control, for the induction of COX-2 protein 
expression by CD. CD has been shown to increase COX-2 
protein expression via transcriptional regulation possibly 
through protein kinase C mediated mechanism in human 
colon cancer cells including HT-29 [31]. Pyo et  al. have 
shown DCA inhibited tumor invasion and migration in 
gastric cancer cell lines, SNU-216 and MKN-45 [32]. It 
is worth noting that both MKN-74 and MKN-45 were 
derived from the metastatic liver tumors and SNU-216 
was derived from lymph node metastasis [33, 34]. More-
over, we observed similar findings in primary gastric ade-
nocarcinoma SK-GT5 cells. This indicates the effects of 
bile acid on gastric cancer invasion and migration are not 
cell line dependent.

Bile reflux has been implicated in the genesis of gastric 
and esophageal cancer in animals and humans [35–38]. 
Animal study in rats indicates that reflux of duodenal 
contents into the esophagus leads to increased COX-2 
expression and mucosal thickening, and bile acids are 
likely to contribute to these effects [39]. Pulses of acid or 
bile have been shown to increase cell proliferation and 
COX-2 expression in Barrett’s esophagus epithelial cells 
[40]. Exposure of the CD and DCA in SK-GT4, a human 
esophageal cancer cell line, leads to a significant induc-
tion of COX-2 gene expression and a tenfold increase in 
the production of PGE2 [41].

It has been postulated that bile acids with increased 
hydrophobicity such as CD and DCA have a greater 
capacity to pass through cell membrane and modulate 
signaling cascades for tumorigenesis in normal colonic 
cells [7]. Qiao et al. have reported that DCA suppresses 

SAF SAF
Control PMA CD SAF PMA CD
C M C M C M C M C M C M

Fig. 3  PKC inhibitor SAF suppressed CD-induced PKCα activation and COX-2. Exponentially growing MKN-74 cells were exposed to control, 10 nM 
PMA, 200 μM CD, 10 nM SAF, 10 nM PMA plus 10 nM SAF, or 200 μM CD plus 10 nM SAF for 8 h, then cells were collected and fractionated into 
membrane (M) and cytosolic (C) extracts. Western blots analyses were performed using PKCα and COX-2 antibodies

Table 1  PGE2 production determined by ELISA

UDCA suppresses PMA- and CD-induced PGE2 production. Exponentially 
growing MKN-74 cells were exposed to single drug alone, 10 nM PMA with 
200 μM UDCA, or 200 μM CD with 200 μM UDCA for 8 h, then PGE2 production 
was measured by ELISA

Treatment group PGE2 production (pg/
μg total cellular protein)

Untreated 2.04

PMA 53.23

CD 3.37

UDCA 6.15

UDCA + PMA 22.28

UDCA + CD 2.05
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Fig. 4  PKC inhibitor SAF and UDCA inhibited invasiveness in 
CD-exposed MKN-74. By using Boyden chamber to determine 
invasiveness in MKN-74 cells exposing to various agents as in Fig. 3, 
both SAF and UDCA blocked CD-induced invasiveness in MKN-74 
cells. Values were reported as the average of three experiments with 
error bars showing standard error of the mean
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wild-type p53 by stimulating proteasome-mediated 
p53 protein degradation in HCT-116 colon cancer cells 
[42]. UDCA, a less hydrophobic stereoisomer of CD, is 
a naturally occurring bile acid found in small quantities 
in normal human bile, and is used clinically for gallblad-
der stone dissolution. Interestingly, UDCA is found to 
have anti-proliferative effects on normal intestinal cells 
[12]. Results from experimental animal studies and clini-
cal observation in ulcerative colitis have pointed out that 
UDCA is a chemopreventive agent for colonic carcino-
genesis [15]. Moreover, UDCA inhibits proliferation and 
induce apoptosis in colon cancer cells [10]. Most of the 
bile acids except UDCA stimulate the proliferation and 
invasion of human colorectal cancers [6].

Debruyne et al. have demonstrated that bile acids stim-
ulate cellular invasion of human colorectal cancer cells at 
different stages of tumor progression [43]. Bile acid-stim-
ulated invasion occurs through stimulation of haptotaxis 
and was dependent on the RhoA/Rho-kinase pathway 
and signaling cascades using PKC, mitogen-activated 
protein kinase, and COX-2. Hydrophobic bile acids such 
as DCA and CD have been shown to induce COX-2 gene 
expression through activation of PKC signal transduc-
tion in colorectal and esophageal cancer cells. Inhibitors 
of PKC can block the induction of COX-2 by DCA and 
CD [41, 44]. Bile acid-mediated induction of COX-2 can 
be important for tumorigenesis in the gastrointestinal 
tract because the products of COX-2 activity, e.g. PGE2, 
inhibit apoptosis, and increase the invasiveness and angi-
ogenesis of malignant cells. Jacoby et al. reported a study 
using APC-mutant Min mouse model for FAP found 
that UDCA treatment decreased tumors throughout the 
entire intestine in a dose-dependent fashion, compared 
with control treatment [45]. Combined treatment with 
UDCA plus sulindac, an inhibitor of COX-1 and COX-2 
that is active in the treatment of FAP, was more effective 
than either compound alone in reducing the incidence of 
intestine neoplasia.

Clinical studies have indicated that UDCA treatment 
was associated with decreased recurrence rates of colo-
rectal adenomas in patients with a history of primary 
biliary cirrhosis and was associated with a lower preva-
lence of colonic cancer in patients with ulcerative colitis 
and primary sclerosing cholangitis [46, 47]. Alberts et al. 
reported a phase III doubled-blind placebo-controlled 
study involving 1285 adults who had undergone removal 
of a colorectal adenoma within the past 6 months to daily 
treatment with UDCA or placebo for 3 years [48]. UDCA 
treatment was associated with a non-statistically signifi-
cant reduction in total colorectal adenoma recurrence 
but with a statistically significant 39% reduction in recur-
rence of adenomas with high-grade dysplasia.

Conclusions
Bile acid has been implicated in the development of 
digestive tract malignancy such as colonic, gastric and 
esophageal neoplasms by epidemiological, clinical and 
animal studies. In colon cancer, the highly hydrophobic 
bile acids such as CD promote carcinogenesis and stimu-
late the invasion; UDCA, a less hydrophobic stereoiso-
mer of CD, inhibits proliferation and induces apoptosis. 
Our investigation in gastric cancer indicates signaling of 
CD is mediated by activation of PKC and COX-2, which 
leads to increased cellular invasion. Either UDCA or PKC 
inhibitor can interfere signaling of CD, causing decreased 
cellular invasion.
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