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Abstract: In the present study, a model is presented to optimize the fabrication parameters of
natural fiber reinforced polyester matrix composites with dual fillers. In particular, jute fiber mat
was chosen as reinforcement and eggshell powder (ESP) and montmorillonite nanoclay (NC) were
selected as fillers. The weight per square meter (GSM) of the fiber, the weight percentage of ESP
and NC have been chosen as independent variables and the influence of these variables on tensile,
flexural and impact strength of the composite has been inspected. The permutations of the different
combinations of factors are intended to accomplish higher interfacial strength with the lowest possible
number of tested specimens. The experiments were designed by the Taguchi strategy and a novel
multi-objective optimization technique named COPRAS (COmplex PRoportional ASsessment of
alternatives) was used to determine the optimal parameter combinations. Affirmation tests were
performed with the optimal parameter settings and the mechanical properties were evaluated and
compared. Experimental results show that fiber GSM and eggshell powder content are significant
variables that improve mechanical strength, while the nanoclay appears less important.

Keywords: eggshell powder; nanoclay; COPRAS; jute fabric; composites; optimization

1. Introduction

The need for low-cost and environment-friendly materials has been continuously increasing, with
sustainability becoming a stringent requirement. This allowed some space for natural fiber composites,
especially as the replacement of fiberglass: this process developed substantially at the beginning of
this century, but is deemed to continue and grow, also for the increasing availability and variety of
ligno-cellulosic fibers for the purpose [1]. The selection of fibers for use in composites has normally
been based on environmental together with economic considerations, e.g., the fact that the fiber is a
by-product of another sector, e.g., textile, or that the local origin of the crop for fibers would result in
reduced transportation costs. More recently, also mechanical data have been added to the picture to
allow a selection that would eventually appear more suitable for engineering purposes: this proved
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particularly of interest in sectors, such as the automotive industry, with growing interest on natural
fiber composites [2]. In most engineering sectors, the replacement of oil-based polymers as matrices
appears still cumbersome in terms of controlled processing and performance. A major challenge
for the investigator is to obtain a sufficiently strong interface between the polymer matrix, which
is normally hydrophobic, and vegetable fibers, whose nature is hydrophilic: in principle, this fact
impedes the adhesion between the two phases, being therefore detrimental for the composite properties.
The chemical treatment of vegetable fibers, widely applied in the textile industry, improves their
water resistance, stiffness and hardness, normally also removing undesired loose and unstructured
ends of ligno-cellulosic material [3]. A possibility that is often applied is alkali treatment, which
in the particular case of jute produces an effective shrinkage of the fibers, leading also to its higher
crystallinity [4].

In case treatment is not sufficient to achieve the desired properties, also the introduction of ceramic
fillers may be required. In jute, for example, silicon carbide and aluminum oxide proved beneficial on
mechanical and impact properties, when introduced up to 10 wt.% in the composite [5]. However,
also other options are possible, which can be cheaper, being possibly based on waste from other
industries, or allow an even more significant dispersion in the laminate.

Eggshell (ESP) is mainly based on calcium carbonate (CaCO3). More precisely it contains 96%
CaCO3, 1% magnesium carbonate (MgCO3), 1% calcium phosphate (Ca3PO4), the remaining part being
formed by a natural network of sulfated polysaccharides, collagen, and distinctive polypeptides [6].
Its abundance and repeatable structure make egg shell an adaptable and free, as coming from food
industry waste, source of bio-based calcium carbonate [7,8]. A crucial aspect is represented by assessing
the maximum amount of egg shell powder (ESP) that can be introduced in the composite: in the case,
e.g., of poly(lactic acid) (PLA), a positive effect on tensile strength and modulus is obtained with up
to 4 wt% of ESP, then declines rapidly [9]. This suggests the need for a fine-tuning that, if correctly
carried out, would allow obtaining a more ductile behavior and a controlled damage under loading as
the effect of introducing egg shell powder as polymer filler.

Montmorillonite nanoclay (NC) also offers successful interaction and incorporation with as filler
for polymer matrices [10]. This is the case also when combined with natural fibers, e.g., sisal [11].
The integration of nanoclay up to 3 wt% offered a suitable damage tolerance and increased shear
properties, so to try to overcome one of the most considerable drawbacks in the use of composites [12].

This work, developing the mechanical assessment performed on a similar material system [13],
aims at combining of different factors, namely eggshell powder and nanoclay content, and jute mat
areal weight. The study performed in [13] mainly concentrated on the effect of alkali treatment on
jute mat, although the influence of the different factors on the performance and especially of their
combination was not evaluated. This is the goal of this work, which may lead to optimized values,
in particular, as far as tensile strength, flexural strength, impact strength and hardness are concerned.
Factors are purposely selected in a way to show the influence of small variations in their values.
The idea is that, by testing only 9 of the possible 33 = 27 alternatives, with the minimum possible
number of samples, an optimal assessment would be able to identify the alternative, inside or outside
the examined ones, which is possibly the most suitable for the characteristics required.

This is carried out using multiple criteria decision-making (MCDM) techniques, which have
shown some potential for materials selection in the field of design. This potential is based on the fact
that the correlation between multiple factors with different influence and often conflicting determines
ultimately the properties, whose combination can be intended as the material performance for the
envisaged use [14]. This method had limited use on natural fiber composites so far, for their inherent
complexity and geometrical variability with respect to synthetic fiber ones [15]. A full factorial design
has been recently applied on coir fiber composites, yet with short fiber reinforcement [16]. Previous
attempts on thermosetting matrix composites including nanoclay with fillers, such as nanocarbon tubes,
expressed the potential of Taguchi’s experimental design [17]. In particular, in this case the optimal
assessment of alternatives has been elucidated using COPRAS (COmplex PRoportional ASsessment of
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alternatives) [18]. COPRAS has been known and used over two decades and more for multicriteria
evaluation proving successful in both maximizing and minimizing criteria values [19].

2. Results and Discussion

2.1. Optimization of the Composite Using COPRAS

All experimental data collected in the four modes of testing carried out are reported in Tables 1–4,
referring to tensile, flexural, Charpy impact and Shore A hardness, respectively. Only three (instead
of the prescribed five) specimens per test and per category have been carried out, which gives a
total of 108 separate specimens, because these tests are intended as preparatory for the confirmatory
experiment. Limiting the number of experiments responded also to the criterion of trying to assess
whether this limitation would allow predicting the most suitable configuration for the final composite.
Single, average and standard deviation values have been reported, while given the limited number of
experiments analysis of variance was deemed not entirely appropriate, since this is indicated by the
single experiments.

Table 1. Experimental tensile strength (MPa) for the different specimens.

Category Specimen 1 Specimen 2 Specimen 3 Average Value St. Dev.

1 28.6 30.5 16.8 29 7.4
2 29.9 34.2 29.9 31.3 2.5
3 28.3 28.3 33.2 29.9 2.8
4 38.6 35.4 26.9 33.6 6.0
5 32.3 30.1 29.2 30.5 1.6
6 31.1 34.4 32.4 32.6 1.7
7 35.9 38.4 41.7 38.7 2.9
8 44.1 46.8 42.9 44.6 2.0
9 36.9 45.6 35.2 29.2 5.6

Table 2. Experimental flexural strength (MPa) for the different specimens.

Category Specimen 1 Specimen 2 Specimen 3 Average Value St. Dev.

1 47.9 60.2 62.9 57 8
2 62.9 71 97.3 77.1 18
3 74.9 56.9 68.9 66.9 9.2
4 115.7 67.8 73.7 85.7 26.1
5 81.8 69.9 87.8 79.8 9.1
6 87.8 82.8 88.8 86.5 3.2
7 88.8 94.8 85.8 89.8 4.6
8 99.6 96.4 112.6 102.9 8.6
9 74.9 69.9 76.8 73.9 3.6

Table 3. Experimental impact energy (J) for the different specimens.

Category Specimen 1 Specimen 2 Specimen 3 Average Value St. Dev.

1 0.9 0.9 0.88 0.89 0.01
2 2.08 1.73 1.08 1.63 0.51
3 1.21 1.49 1.35 1.35 0.14
4 1.88 2.24 1.63 1.58 0.31
5 1.88 1.73 1.89 1.83 0.09
6 1.93 2.34 2.02 2.12 0.22
7 2.34 1.94 1.63 1.97 0.36
8 2.72 1.98 2.56 2.09 0.39
9 2.45 2.13 2.21 2.26 0.17
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Table 4. Experimental Shore A hardness for the different specimens.

Category Specimen 1 Specimen 2 Specimen 3 Average Value St. Dev.

1 95.7 92 92.2 93.3 2.1
2 93.7 90 91.8 91.8 1.9
3 75.9 83.8 80.4 80 4.0
4 87.1 85.9 84.1 85.7 1.5
5 73.3 71.2 72.7 72.4 1.1
6 77.7 75.9 72.1 75.2 2.9
7 91.3 97.7 94.8 94.4 3.2
8 80.9 80.7 80.5 80.7 0.2
9 86.3 85.7 85.9 86 0.3

COPRAS examination was utilized to find the best combination of factors for higher mechanical
quality, as requested by the application. This hypothesis is particularly appropriate for information
with questionable and multiple (e.g., widely scattered) inputs and discrete properties, as it may be
the case for materials selection [20]. The means beneath were pursued while applying COPRAS
investigation, expressed in a number of subsequent steps:

1. Identification of attributes under investigation;
2. Decision matrix preparation (Parameters and Levels);
3. Decision matrix normalization;
4. Identify the weight of the attributes (equal weightage);
5. Identification of the weighted normalized matrix;
6. Identification of maximize indices (Pj) and minimize indices (Rj);
7. Identification of each alternatives relative weights of Qj (COPRAS grade);
8. Ranking of alternatives;
9. Determination of the main effects of COPRAS grade;
10. Confirmation experiment;
11. Select the optimal values of process parameters.

Taguchi strategies employ the signal/noise (S/N) ratio to measure the reliability of the
investigational results, because this proportion accounts for both the average and the variation
of these outcomes. The S/N ratio accounts for the minimization of effect due to widely scattered
parameters. It is computed in the light of the smaller the better using Equation (1), in the specific case
applied only for hardness, and in the light of the larger the better, in the specific case applied for tensile
and flexural strength and impact energy, using Equation (2).

S/N = −10 log10[
∑

(y2)/n] (1)

S/N = −10 log10[
∑

(1/y2)/n] (2)

where y = experimental data; n = number of experiments.
Signal to noise (S/N) ratio for experimental data corresponding to the L9 orthogonal array are

displayed in Table 5.
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Table 5. S/N ratio.

Category Tensile Strength (MPa) Flexural Strength (MPa) Impact Strength (J) Hardness

1 27.11 35.77 −0.97 −39.40
2 29.87 37.74 4.23 −39.26
3 29.52 36.52 2.59 −38.07
4 30.54 38.68 5.64 −38.66
5 29.70 38.06 5.25 −37.19
6 30.27 38.66 6.43 −37.53
7 31.75 39.08 5.90 −39.52
8 32.99 40.28 7.68 −38.14
9 31.87 37.38 7.09 −38.69

After this, the S/N ratios are normalized by dividing each of them by their sum, as per the
following equation, where m represents the S/N ratio, i the samples and j the alternatives. Since the
total number of parameters investigated is 4 (tensile, flexural, Charpy impact, and Shore A hardness)
and to each of these the same weight is attributed, the obtained values are multiplied by 0.25, referred
to as nij and reported in Table 6.

Table 6. Normalized S/N ratio.

Category Tensile Strength (MPa) Flexural Strength (MPa) Impact Strength (J) Hardness

1 0.0268 0.0261 −0.0055 0.0284
2 0.0270 0.0275 0.0241 0.0283
3 0.0267 0.0267 0.0148 0.0275
4 0.0277 0.0283 0.0322 0.0279
5 0.0269 0.0278 0.0300 0.0268
6 0.0274 0.0282 0.0367 0.0271
7 0.0288 0.0286 0.0337 0.0285
8 0.0298 0.0294 0.0438 0.0275
9 0.0289 0.0273 0.0405 0.0279

From this, the COPRAS analysis is started, by calculating the average of the sole nij values referred
to the “better when higher” parameters (tensile, flexural, Charpy impact), referred to as Pj and the
summation of all nij values, referred to as Rj as clarified in Equations (3) and (4). From this, Qj values
are obtained, defined as:

nij =


mij

n∑
i=1

mij

 ∗ 0.25; i = 1, 2, 3; j = 1, 2, 3 (3)

Qj = Pj


m∑

i=1

Rj

Rj
m∑
j

1
Rj

 (4)

and the relevant values obtained are reported in Table 7, considering that the lowest Qj. would
represent the highest suitability for use, according to the properties required. From these results,
a ranking of the nine experiments is obtained, which is reported as their variable in the two last
columns as their percent difference and as the ranking position, respectively. In Table 8 the average
and the max–min differences between the various parameters and levels considered are also reported.
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Table 7. COPRAS analysis.

Category Pi Rj 1/Rj Qj Nj Rank

1 0.0159 0.0757 13.21 0.1750 72.3 9
2 0.0263 0.1071 9.33 0.1384 91.3 7
3 0.0227 0.0957 10.45 0.1483 85 8
4 0.0294 0.1160 8.62 0.1330 95 5
5 0.0282 0.1115 8.97 0.1360 92.9 6
6 0.0308 0.1194 8.38 0.1314 96.1 4
7 0.0304 0.1195 8.37 0.1302 97 3
8 0.0344 0.1306 7.66 0.1266 100 1
9 0.0322 0.1246 8.03 0.1284 98.3 2

Table 8. Average and max–min variation between the different factors and levels.

Parameters Avg. L1 Avg. L2 Avg. L3 Max-Min Difference

A: Jute areal weight (JAW) 82.9 94.6 98.4 15.5

B: Eggshell powder (ESP) 88.1 94.7 93.1 6.6

C: Nanoclay (NC) 91.6 94.8 89.4 5.4

From the above observations, the three specimens that showed the highest combined effect were
samples 8, 9 and 7, in that order. All these specimens included a 46 GSM jute fabric, whilst they had a
possible amount of ESP and NC equal to 0%, 1.5% or 3%. This suggested that the effect of ESP and NC
was considerably minor with respect to jute fabric areal weight. To establish which could be in practice
the configuration for the confirmation experiment, it needs also to be observed that by long the worst
data are indicated by specimen n.1, including 3% nanoclay and 0% egg shell powder. Hence, also these
values are excluded from the final composite.

To establish the nanoclay content (0% or 1.5%) and the egg shell powder one (1.5% or 3%),
the following three alternatives, ranked 4, 5 and 6, are considered. The only one that does not contain
the excluded quantities of 3% nanoclay and 0% egg shell powder is the n.5 with 1.5% egg shell powder
and 0% nanoclay.

For the aforementioned reasons, the verification experiment was carried out with jute fabric of
46 GSM areal weight, 1.5 wt.% egg shell powder and 0 wt.% nanoclay. Furthermore, Table 8 suggests
that the influence of jute fabric areal weight is much more significant than that of the other two factors,
as indicated from the high difference between the levels.

2.2. Confirmation Experiment

The results of the confirmation experiment, carried out on five samples per each test, are reported
in Table 9 and it can be noticed that the improvement over any of the nine initial experiments is
considerable in any of the properties investigated. To complete the study, morphological investigations
have been carried out using scanning electron microscope. Figure 1, showing failure obtained by:
(a) tensile loading, (b) flexural loading and (c) impact loading. It generally shows that the fabric pullout
phenomenon is dominant into failure. However, specific considerations can be also reported on the
single testing modes. These suggest in the case of flexural loading the clear effect of fiber bending
leading to pullout due to the applied load in the direction perpendicular to the composite surface.
In contrast, in the case of impact loading, a series of breakage events between the matrix surface and
the fabric tend to lead to decrease fabric-matrix adhesion.
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Table 9. Confirmation experiment results.

Parameter Average Values and Standard Deviation

Tensile strength (MPa) 54.7 ± 5.5

Flexural strength (MPa) 109.2 ± 8.3

Impact strength (J) 3.14 ± 0.35

Shore A hardness 58.1 ± 6.9

Figure 1. Morphological observations of the fractures by scanning electron microscopy (SEM). (a) Tensile
fracture; (b) Flexural fracture; (c) Impact fracture.

The results obtained indicated that the combined effect of different ceramic fillers may be
questionable. It is of course depending also on the fact that in this specific case the laminate was
investigated for its easier mechanical workability (e.g., hole drilling), which required therefore achieving
a lower hardness. The combination of jute fibers with nanoclay proved of interest in rubber matrix
composites, which are characterized by considerable elongation [21]. This might not be the case for
thermosetting polymer composites. Another significant observation is the fact that even a limited
increase into areal weight of natural fiber fabric may produce a very notable effect: this is likely to occur
especially for quite regular and thin fibers, such as it is the case for cottonized jute. The effect of areal
weight in particular on flexural performance of natural fiber composites has also been investigated,
for example for flax fiber reinforced laminates [22]. In this sense, COPRAS can represent a useful
tool to better tailor the use of adequate areal weight fabric in natural fiber composites, connecting the
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material reinforcement characteristics to the desired properties, while avoiding excessive amounts of
preliminary testing for material selection. This enabled solving conflicting trade-offs between materials,
which is a possibility already explored using COPRAS, also in combination with other methods [23].
This becomes particularly crucial in the preparation of natural fiber composites, also in view of the
fact that other fillers and additives are continuously proposed; these often come from secondary
raw materials, such as it was the case for egg shell powder, striving to improve the sustainability of
these materials.

3. Materials and Methods

3.1. Materials

Naturally woven cottonized jute mats were acquired from local shops in Coimbatore, Tamilnadu
region, India. as produced by Usha Corporation Limited (UCL). These mats are normally obtained
in low areal weight for possible coupling with cotton in textiles, therefore in comparable thicknesses.
MMTK10 (Montmorillonite) nanoclay (surface area 220–270 m2/g) was supplied by Sigma–Aldrich
(St. Louis, MO, USA) and Egg Shell Powder (ESP) was mashed in dimensions in the order of 30 microns,
along the lines of what performed in [24]. The prepared composite contains the jute fabric mat with
three slightly different areal weights (44, 45 and 46 g/m2). Unsaturated polyester resin was used as the
matrix. Methyl ethyl ketone peroxide (MEKP) was used as the catalyst and cobalt naphthenate as the
accelerator; all those chemicals were supplied by Aishwarya Polymers, Coimbatore, Tamilnadu State,
India. Sodium hydroxide (NaOH) was purchased from Ponnmani chemicals, Madurai, Tamilnadu
State, India.

3.2. Surface Modification

Detergent washing, dewaxing, and alkali treatment were carried out in light of enhancing the
interfacial bonding between hydrophilic jute fabric mats to and hydrophobic polyester matrix.

In particular:

• Dirt was removed from fabrics by washing into a 5% detergent (liquid hand washing by Ariel
with 5–15% non-ionic tensioactives) solution at room temperature for 10 h;

• Dewaxing, removing the traces of pectin and waxes, was ensured by keeping the fabric into 5%
ethanol solution at room temperature for 1 h;

• The removal of loose fibrils and hardening the surface was achieved by keeping the fabric into a
5% NaOH solution at room temperature for 6 h, then the alkali-treated fiber mats surface was
sprinkled by using a 2% acetic acid (CH3COOH) solution.

Each phase was followed by washing with refined water and natural drying.

3.3. Fabrication and Testing

The composite was set up by shifting the wt% of nano-clay eggshell powder and fiber GSM
dependent on the grouping of the standard L9 orthogonal array. The fabric mat polyester resin extent
is 1:3. Jute mat weighing 42 g was taken, and the form was set up using 101 g of polyester resin.
The CN and MEKP were added as 1.5 wt% of the total resin weight each. For the overhaul of the
scrambling, the ESP/NC polyester delays were mechanically mixed in the quick shear blender 500 r/min
for around an hour at ambient temperature. After that, the mix was held in a vacuum broiler to clear
the air pockets to show up in it. By then, the mold was closed by applying 100 kg/cm2 weight using
pressure forming machine, by then the composite was re-established up to 12 h at room temperature.
The fabricated composites were taken out of the mold and cut into the dimensions recommended by
the ASTM D3039 standard for flexural and tensile testing and ASTM D256 for Charpy impact testing.



Molecules 2020, 25, 5579 9 of 11

3.4. Control Factors and Matrix of Experiments

Multi criteria decision-making (MCDM) is aimed at evaluating the combination of conflicting
criteria in order to take a decision, in the specific case of this work to clarify which may be the most
suitable mix of values for the three factors, concerning jute, eggshell powder and nanoclay, leading
to the most desirable properties for the application envisaged (automotive interior panels). Here,
COPRAS technique has been used to forecast the impact of limiting criteria esteems on the last outcome,
to check the computations and to consider conceivable flimsiness of evaluations yielded by the method
because of the particular character of the actual data. Hence, L9 orthogonal array with three parameters
(fiber size in GSM, weight percentage of eggshell powder and nanoclay) in three levels was used to
optimize the variation of ESP/NC, to accomplish better tensile, impact and flexural strength with a
lower hardness, able to provide an easier accommodation for the automotive panels. The control
factors for three levels of COPRAS analysis were reported in Table 10, and the L9 matrix is shown in
Table 11.

Table 10. Parameters (P) and levels (L) matrix for experimental work.

Parameter Variable L1 L2 L3

P1 Jute fabric areal weight (g/m2) 44 45 46

P2 Egg shell powder (%) 0 1.5 3

P3 Nanoclay(%) 3 1.5 0

Table 11. Parameters (P) and levels (L) for the different specimen categories.

Category P1 P2 P3 Jute Fabric Areal
Weight (g/m2)

Egg Shell
Powder (%)

Nanoclay
(%)

1 L1 L1 L1 44 0 3

2 L1 L2 L2 44 1.5 1.5

3 L1 L3 L3 44 3 0

4 L2 L1 L2 45 0 1.5

5 L2 L2 L3 45 1.5 0

6 L2 L3 L1 45 3 3

7 L3 L1 L3 46 0 0

8 L3 L2 L1 46 1.5 3

9 L3 L3 L2 46 3 1.5

4. Conclusions

In this investigation, the influence of fabric areal weight and hardening fillers, such as egg shell
powder (ESP) and montmorillonite nanoclay (NC), on the quality of jute mat strengthened unsaturated
polymer composite, assessed through tensile, flexural, impact and hardness measurements, has been
explored. For the enhancement of the quality, the combination of those parameters has to be optimized;
an analysis which has been performed using the COPRAS based Taguchi method. The COPRAS
was prescribed to overhaul various objectives into a single target work (to help the examination of
the Taguchi procedure). The equal individual response weights for the parameters were allotted to
determine COPRAS grade to determine the optimal combination of parameters. This combination,
namely including 46 g/m2 jute fabric with 1.5 wt.% eggshell powders without nanoclay, has been
therefore assumed to be the best one amongst possible combinations for the required conditions
(improved tensile, flexural and impact strength with decreased hardness).
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