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Abstract

Background: Current genome-wide association studies (GWAS) are normally implemented in a univariate framework and
analyze different phenotypes in isolation. This univariate approach ignores the potential genetic correlation between
important disease traits. Hence this approach is difficult to detect pleiotropic genes, which may exist for obesity and
osteoporosis, two common diseases of major public health importance that are closely correlated genetically.

Principal Findings: To identify such pleiotropic genes and the key mechanistic links between the two diseases, we here
performed the first bivariate GWAS of obesity and osteoporosis. We searched for genes underlying co-variation of the
obesity phenotype, body mass index (BMI), with the osteoporosis risk phenotype, hip bone mineral density (BMD), scanning
,380,000 SNPs in 1,000 unrelated homogeneous Caucasians, including 499 males and 501 females. We identified in the
male subjects two SNPs in intron 1 of the SOX6 (SRY-box 6) gene, rs297325 and rs4756846, which were bivariately associated
with both BMI and hip BMD, achieving p values of 6.8261027 and 1.4761026, respectively. The two SNPs ranked at the top
in significance for bivariate association with BMI and hip BMD in the male subjects among all the ,380,000 SNPs examined
genome-wide. The two SNPs were replicated in a Framingham Heart Study (FHS) cohort containing 3,355 Caucasians (1,370
males and 1,985 females) from 975 families. In the FHS male subjects, the two SNPs achieved p values of 0.03 and 0.02,
respectively, for bivariate association with BMI and femoral neck BMD. Interestingly, SOX6 was previously found to be
essential to both cartilage formation/chondrogenesis and obesity-related insulin resistance, suggesting the gene’s dual role
in both bone and fat.

Conclusions: Our findings, together with the prior biological evidence, suggest the SOX6 gene’s importance in co-
regulation of obesity and osteoporosis.
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Introduction

Genome-wide association studies (GWAS) have now become a

major strategy for genetic dissection of human complex diseases/

traits. Through this strategy, novel genetic polymorphisms have

been successfully identified for many common diseases of public

health importance. A general trend for current GWAS is to collect

multiple phenotypes of interest from a single study population and

analyze these phenotypes separately in a univariate framework [1].

However, this strategy is limited by ignoring potential genetic

correlation between different traits analyzed and hence is difficult

to detect pleiotropic genes that are important to the pathogenesis

of many correlated human diseases.

An effective strategy to tackle the challenge of detecting

pleiotropic genes is to analyze potentially correlated disease

phenotypes simultaneously via a multivariate GWAS approach.

This approach takes advantage of covariance between multiple

study phenotypes and therefore may be more powerful for

detecting pleiotropic genes. In addition, analyzing multiple

phenotypes jointly can also alleviate multiple testing problem

caused by testing different traits separately. Motivated by the

above reasons, we here performed the first bivariate GWAS

analyzing simultaneously two correlated diseases of public health

significance, obesity and osteoporosis. Our study may set an

example for future ‘‘multivariate’’ GWAS of common human

diseases.
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Obesity is a disease of excessive storage of body fat resulting

from chronic imbalance between energy intake and consumption

[2]. It is a serious public health problem affecting ,65% of adult

US population [3] and incurring a direct cost of ,$100 billion per

year [4]. Obese people are more likely to develop other serious

diseases, such as diabetes, hypertension, and coronary heart

diseases [5,6]. A commonly used measure for quantifying the

severity of obesity is body mass index (BMI) that is defined as body

weight divided by the square of height.

Osteoporosis is another major public health problem, which is

characterized by excessive skeletal fragility and susceptibility to

low trauma fractures among the elderly [7]. Currently ,10 million

people in the US suffer from and another ,34 million are at high

risk for the disease [7]. It results in.1.5 million osteoporotic

fractures (OF) each year in the US [7] and incurs the country a

direct cost of ,$13.8 billion in 1995 [8]. The most widely

accepted measure for quantifying risk of osteoporosis is the

amount of bone mass in the skeleton, as denoted by bone mineral

density (BMD) [9]. Since hip fracture is the most severe type of OF

and directly associated with high morbidity and mortality [10], hip

or femoral neck (FN) BMD is the most important risk phenotype

for osteoporosis.

Obesity and osteoporosis are closely related diseases [11].

Adipocytes and osteoblasts (the bone formation cell) share the

same progenitor, bone marrow mesenchymal stem cells, and can

transdifferentiate into each other [12]. Adipocytes secrete factors

important to bone remodeling, such as the estrogen synthesis

enzyme, aromatase, and proinflammatory cytokines [12]. In-

creased bone marrow fat was found in osteoporosis patients [13]

and correlation between obesity phenotypes (e.g., body weight and

BMI) and osteoporosis risk phenotypes (e.g., BMD) was observed

[14–16]. Several mechanisms were identified in mouse models for

fat-bone correlations/interactions and the potential mechanistic

links between obesity and osteoporosis, for example, leptin’s

influence via the sympathetic nerve system [17,18]. However, the

extent to which these mechanisms are relevant to normal human

population is still unknown.

Since both obesity and osteoporosis have high genetic

predisposition, pleiotropic genes may exist to influence the risks

of both diseases, which was supported by studies suggesting

significant genetic correlation between the two diseases [11,19].

Recently, we conducted a bivariate whole genome linkage scan

and identified several genomic regions shared by obesity and

osteoporosis, providing further support for the existence of

pleiotropic genes for the two diseases [20]. Importantly, identifi-

cation of such pleiotropic genes in humans may offer novel insights

into the pathogenic links between obesity and osteoporosis. Such

findings, as compared to those from studies using mouse models,

may have more direct relevance to normal human population so

as to provide important targets for treatment and prevention of

both diseases. To identify such pleiotropic genes, we here

performed the first bivariate GWAS of obesity and osteoporosis

taking advantage of Affymetrix high throughput SNP genotyping

platform. Using Affymetrix 500K array, we successfully genotyped

and analyzed a total of ,380,000 SNPs in 1,000 unrelated

homogeneous Caucasians. Through bivariate association analyses,

we identified the SOX6 gene (SRY-box 6) as a potential pleiotropic

gene underlying both obesity and osteoporosis.

Results

We compared statistical power of bivariate association analyses

of two continuous traits with that of univariate association analyses

of each trait separately. According to our power analyses,

analyzing two traits simultaneously using bivariate association

approach consistently achieved higher statistical power under all

the 3 genetic models (i.e., additive, dominant, and recessive) and

different SNP effect sizes than analyzing each trait separately using

univariate association approach. For example, under the additive

model, the model we used in our real data association analysis in

this study, the power to detect a QTL of a heritability of 0.01 is

under 60% using univariate association analysis approach, as

compared with a ,80% power using bivariate association analysis

approach. (A heritability of 0.01 means that the QTL under

simulation contributes 1% variation for both traits of a bivariate

phenotype, e.g., BMI and BMD.) The detailed results are

presented in Appendix S1.

We identified two interesting SNPs in the male subjects of our

GWAS cohort, which are rs297325 and rs4756846. The two SNPs,

although not univariately associated with BMI or hip BMD at the

significance level of p = 0.05, were strongly associated with BMI-

hip BMD bivariately, achieving p values at the levels of 1026 to

1027. The basic characteristics of our GWAS cohort are

summarized in Table 1 and the bi/univariate association results

are shown in Table 2. In the male subjects of our GWAS cohort,

the correlation coefficient between BMI and hip BMD is 0.384

(p,0.001), and that between FM and hip BMD is 0.244 (p,0.001).

The two SNPs are in the intron 1 of the SOX6 gene. According

to the analysis using the HaploView program, the two SNPs have

very weak LD (r2,0.05) between each other.

To further confirm the relevance of our findings to obesity, we

also performed univariate analysis of FM as well as bivariate

analysis of FM-hip BMD at the two SNPs (Table 2). Again, at the

univariate level, the SNPs were not found to be associated with

FM at the significance level of p = 0.05. However, at the bivariate

Table 1. Basic Characteristics of Study Subjects.

Traits GWAS cohort FHS cohort

Male (N = 499) Female (N = 501) Male (N = 1,370) Female (N = 1,985)

Age (years) 50.5 (18.9) 50.1 (17.7) 62.0 (11.4) 63.9 (12.4)

Height (cm) 177.8 (7.0) 163.8 (6.5) 174.2 (7.0) 159.7 (6.9)

Weight (kg) 89.0 (14.9) 71.2 (15.9) 86.1 (14.4) 69.4 (15.0)

BMI (kg/m2) 28.9 (4.3) 27.3 (6.0) 28.3 (4.2) 27.2 (5.5)

Fat mass (kg) 23.5 (8.9) 26.9 (10.3) 22.8 (6.2) 27.7 (8.7)

Hip/FN BMD (g/cm2) 1.03 (0.15) 0.91 (0.14) 0.96 (0.14) 0.84 (0.16)

Note: Presented are means (SD).
doi:10.1371/journal.pone.0006827.t001
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level, the SNPs achieved highly significant p values for bivariate

association with FM-hip BMD (Table 2).

The SNP, rs4756846, also showed predictive efficacy for

obesity. We stratified our male subjects in our GWAS cohort into

obese and normal groups based on the diagnostic criterion for

obesity (i.e., BMI$30 kg/m2). In our male subjects, 146 subjects

are defined as obese and the remaining 353 are normal. According

to our analysis, for the SNP rs4756846, the non-carriers of the

minor allele, C, has an odds ratio of 1.75 (p = 0.048) for obesity, as

compared to the carriers.

These two SOX6 SNPs ranked at the top in significance for

bivariate association with BMI-hip BMD in the male subjects among

all the ,380,000 SNPs examined genome-wide. The two SNPs also

ranked among the top 5 SNPs for bivariate association with FM-hip

BMD in the male subjects among all the SNPs tested genome-wide.

For readers’ information, we list in Appendix S2 the top 5 SNPs for

bivariate association with BMI-hip BMD and the top 5 SNPs for

association with FM-hip BMD. Due to the top significance achieved

by these two SNPs in our GWAS, our replication analyses in the FHS

cohort were focused only on these two SNPs.

The two SNPs were replicated in the 1,370 male subjects of the

FHS cohort. The basic characteristics of the FHS cohort are

summarized in Table 1. The two SNPs, rs297325 and rs4756846,

achieved p values of 0.03 and 0.02, respectively, for bivariate

association with BMI-FN BMD. In addition, the two SNPs

achieved p values of 0.04 and 0.08, respectively, for bivariate

association with FM-FN BMD. The detailed results are shown in

Table 3. In the male subjects of the FHS cohort, the correlation

coefficient between BMI and femoral neck (FN) BMD is 0.257

(p,0.001), and that between FM and FN BMD is 0.079

(p = 0.015).

Using Fisher’s method [21], we combined the bivariate p values

achieved in the GWAS cohort with those achieved in the FHS

cohort (Table 4). Compared with rs4756846, the combined

bivariate p values at the rs297325 were more significant, which

are 3.8361027 for bivariate association with BMI- BMD and

4.2261027 for bivariate association with FM- BMD.

Since under univariate analysis, association of the two SOX6

SNPs with hip BMD, BMI and FM is non-significant in both the

GWAS and the FHS cohorts, we are unable to estimate if the

direction of effects for the SNPs is the same in the two cohorts.

We analyzed our GWAS cohort using software Structure 2.2

[22]. When 200 randomly selected un-linked markers were used to

cluster our subjects, under all the assigned values (i.e., 2, 3, and 4)

for the assumed number of population strata, k, all the subjects

were tightly clustered together, suggesting no population stratifi-

cation. The results are shown in Appendix S3. We further tested

the cohort for population stratification using EIGENSTRAT

software [23]. Based on genome-wide SNP information, we

estimated inflation factor (l), a measure for population stratifica-

tion, for each of the three traits (BMI, FM, and hip BMD) tested in

this study. Ideally, for a homogenous population with no

stratification the value of l should be equal or near to 1. In our

GWAS cohort, the estimated values for l for BMI, FM, and hip

BMD were 1.003, 1.007, and 1.009, respectively, which suggested

no population stratification and further confirmed the results from

the Structure 2.2 software.

Discussion

With GWAS becoming a convenient and powerful tool for

genetic study of common human diseases, an arising new

challenge is how to utilize efficiently the vast amount of

information generated in GWAS to better understand disease

mechanisms. Currently, GWAS are normally performed in a

univariate framework, which analyzes different phenotypes in

isolation even for a single study population. Such an approach

ignores the genetic correlation between and genetic co-predispo-

Table 2. Information on the SOX6 gene SNPs bivariately associated with obesity and osteoporosis phenotypes in the male
subjects of our GWAS.

SNP Position Role Allelea MAFb MAFc Univariate P value Bivariate P value

BMI FM Hip BMD BMI-hip BMD FM-hip BMD

rs297325 16346170 Intron 1 C/T 0.229 0.225 0.32 0.15 0.80 6.8261027 5.6761027

rs4756846 16360087 Intron 1 C/T 0.119 0.144 0.07 0.11 0.12 1.4761026 1.2161026

Note:
aThe first allele represent the minor allele of each locus.
bMinor allele frequency calculated in our own Caucasian sample.
cMinor allele frequency reported for Caucasians in the public database of HapMap CEU.
doi:10.1371/journal.pone.0006827.t002

Table 3. Replication signals for the SOX6 gene SNPs in the male subjects of the FHS cohort.

SNP Position Role Allelea MAFb MAFc Univariate P value Bivariate P value

BMI FM FN BMD BMI-FN BMD FM-FN BMD

rs297325 16346170 Intron 1 C/T 0.212 0.225 0.19 0.05 0.07 0.03 0.04

rs4756846 16360087 Intron 1 C/T 0.118 0.144 0.21 0.90 0.03 0.02 0.08

Note:
aThe first allele represent the minor allele of each locus.
bMinor allele frequency calculated in the FHS cohort.
cMinor allele frequency reported for Caucasians in the public database of HapMap CEU.
doi:10.1371/journal.pone.0006827.t003
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sition to many human diseases, which is a common scenario in

modern medicine. To address the above shortcomings, new

GWAS strategies, such as bivariate association approach as

adopted in the present work to study co-variation of two related

disease phenotypes, are necessary. The new strategy, with more

efficient use of GWAS data, may help identify pleiotropic genes

underlying diseases of shared genetic susceptibility and help reveal

the interconnected pathophysiological networks for a spectrum of

common human diseases of major public health importance.

With the novel multivariate approach, we here performed the

first genome-wide bivariate association analyses for obesity and

osteoporosis. Our study identified in the male subjects SOX6 as a

potential pleiotropic gene underlying both obesity and osteoporo-

sis. Two SNPs of the gene achieved bivariate association with

BMI-hip BMD and with FM-hip BMD, with the bivariate p values

ranking at the top among ,380,000 SNPs tested genome-wide

(Appendix S2). The bivariate association detected in our GWAS

was confirmed also in the male subjects from an FHS cohort

(Table 3).

In addition to the above statistical evidence, previous biological

studies on the SOX6 gene also support its dual role in both obesity

and osteoporosis. SOX6 is a member of the SOX gene family that

encodes a group of transcription factors defined by the conserved

high mobility group (HMG) DNA-binding domain [24]. As

documented in the OMIM website (http://www.ncbi.nlm.nih.

gov/entrez/dispomim.cgi?id = 607257), the major function of

SOX6 is chondrogenesis and cartilage formation. The gene was

found to be expressed during mouse chondrogenesis and to

activate a chondrocyte differentiation marker, COL2A1 [25]. Null

mutations of the gene in mice caused skeletal abnormalities

through influencing size and mineralization rate of endochrondral

elements [26]. In respect to the gene’s relevance to obesity, two

recent studies identified that SOX6 plays an important role in

obesity-related insulin resistance [27,28]. The gene was found to

attenuate glucose-stimulated insulin secretion and was downreg-

ulated in the pancreatic beta-cells in hyperinsulinemic obese mice;

the gene’s downregulation may further stimulate beta-cell

proliferation and insulin secretion. The above evidence, together

with our GWAS findings, may prompt us to propose a

hypothetical mechanism for co-regulation of obesity and osteopo-

rosis, where the SOX6 gene’s effects on chondrocytes and

pancreatic beta cells may play a key role. However, this

mechanism is still speculative and needs extensive studies for final

validation.

Bivariate association analyses as adopted in this study is a

powerful approach in identifying pleiotropic genes for genetically

correlated complex diseases/traits, such as obesity and osteopo-

rosis. As shown in our statistical power analyses (Appendix S1),

association analyses in a bivariate framework are more powerful

than regular univariate association analyses for any of two

genetically correlated traits. This difference in power between

univariate and bivariate analyses is clearly reflected in our results.

As shown in Table 2, although in our GWAS none of the two

SOX6 gene SNPs achieved nominally significant p values (p,0.05)

for univariate association with BMI, FM or hip BMD, both SNPs

achieved p values of 1026 to 1027 for bivariate association with

BMI-hip BMD or FM-hip BMD. Of note is that the SOX6 gene

and its SNPs would not have been discovered for the significance

to obesity and osteoporosis in our GWAS if only univariate

association analyses were performed. Our study results underscore

the advantage of bivariate over univariate association approaches

in detecting pleiotropic genetic variants for complex diseases/

traits, especially given that these variants quite often have only

moderate effects to an individual phenotype/trait and hence may

be insensitive to regular univariate genetic association analysis.

In this study, we intentionally restricted our selection of study

phenotypes to those most important ones for obesity and

osteoporosis research. For osteoporosis, we chose only ‘‘hip

BMD’’ as the study phenotype since it is one of the most

frequently measured skeletal sites for assessing osteoporosis. More

importantly, hip BMD is directly relevant to risk of hip fracture,

the most severe and fatal outcome of osteoporosis. Therefore,

findings based on hip BMD may be clinically more important than

other osteoporosis phenotypes, such as spine BMD. For obesity,

we chose BMI and FM as study phenotypes due to the following

reasons. The WHO proposed BMI as a simple practical measure

for obesity. In epidemiological studies, BMI is also the most

commonly used obesity phenotype. We chose FM as another

obesity phenotype in order to corroborate findings achieved

through studying BMI since BMI alone may not always be

appropriate in defining obesity. For example, a very muscular

soldier with only 10%–15% body fat may have a BMI.25 kg/m2

[29]. Therefore, our bivariate association analyses were focused

only on two pairs of phenotypes, BMI-hip BMD and FM-hip

BMD.

Currently, there is still no standard method to deal with the

multiple testing problem in a GWAS and hence the cut-off p value

for a significant association in a GWAS is not well defined. A

genome-wide significance threshold of p = 4.261027 was recently

proposed by Lencz et al. [30] based on a Bayesian approach [31]

(to obtain$0.95 posterior probability of a correct inference of a

genetic association) and an estimate of a total of ,20,000 genes in

the human genome. This cut-off p value can be used as a rough

reference for the significance threshold for our study. In our

GWAS, the most significant SNP, rs297325, achieved p values

(6.8261027 for bivariate association with BMI-hip BMD and

5.6761027 for association with FM-hip BMD) that approach this

cut-off. More importantly, this and another SOX6 SNP,

rs4756846, ranked at top in significance (top 2 for bivariate

association with BMI-hip BMD and top 5 for association with FM-

hip BMD) among the ,380,000 SNPs tested genome-wide (see

Appendix S2). Therefore, these two SNPs were selected for

replication in the FHS cohort.

Population stratification and/or ethnic admixture can be an

important source of spurious association in genetic association

studies. However, these factors are unlikely to exist in our sample

Table 4. Combined bivariate p values of the SOX6 gene SNPs.

SNP GWAS bivariate P values FHS bivariate P values Combined bivariate P values

BMI-hip BMD FM-hip BMD BMI-FN BMD FM-FN BMD BMI-BMD FM-BMD

rs297325 6.8261027 5.6761027 0.03 0.04 3.8361027 4.2261027

rs4756846 1.4761026 1.2161026 0.02 0.08 5.3961027 1.6661026

doi:10.1371/journal.pone.0006827.t004
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to interfere with our GWAS results. Our GWAS cohort came

from an apparently homogenous US mid-west white population,

living in Omaha, Nebraska and its surrounding areas. We found

that the allele frequencies of the two significant SNPs in our

GWAS are very similar to those reported in the typical and

representative Caucasian samples used in the HapMap CEU

(Table 2) and those calculated in the FHS cohort (Table 3). In the

analyses using Structure 2.2 [22], all subjects used in our GWAS

consistently clustered together as a single group (Appendix S3),

suggesting no significant population substructure. In the analysis

using EIGENSTRAT [23], the measure for population stratifica-

tion, l, for each study phenotype (BMI, FM and hip BMD) as

inferred from genome-wide SNP information, was very close to 1,

which also suggests no stratification in our GWAS cohort. More

importantly, the association with the SOX6 gene was replicated in

an FHS cohort, a family-based study sample that is typically free

from interference of population structure. For the above reasons,

our association results are unlikely to be plagued by spurious

associations due to population admixture/stratification.

Our findings on male-specific bivariate association with BMI-

hip BMD (or FM-hip BMD) may be due to sex-specific genetic

architecture for obesity and osteoporosis. Sex-specific genetic

architecture has been found to be an important mechanism

underlying many human common diseases and complex traits.

This topic has been comprehensively reviewed in Ober et al [32].

In particular, for both obesity and osteoporosis, sex-specific genetic

basis has been suggested in many studies. Sex difference in

heritability of BMI was observed in a large sample containing

37,000 twin pairs from 8 countries [33]. QTL analyses in mice

[34,35] and linkage and association studies in humans [36–39]

also revealed sex-specific genomic regions and candidate genes

underlying obesity phenotypes. Sex-specific patterns were also

observed in genetic studies of osteoporosis. For example, both our

recent whole genome linkage scan [40] and candidate gene

association study [41] identified sex-specific genomic regions and

candidate genes for BMD. A large-scale meta-analysis for genome-

wide linkage scans of BMD involving.11,800 subjects also

suggested sex-specific genetic regulation of bone mass [42].

In summary, using a novel bivariate GWAS approach, we

identified a gene, SOX6, which appeared to be important to co-

variation of both obesity and osteoporosis risk phenotypes in male

subjects. Replication of our association findings in the FHS cohort

and the gene’s established importance in both chondrogenesis/

cartilage formation and obesity-related insulin resistance further

suggests the gene’s pleiotropic roles in both obesity and

osteoporosis. This work also serves as a methodology exploration

in GWAS, using bivariate analysis of obesity and osteoporosis

phenotypes as an example. Although some evidence suggests the

potential role of the SOX6 gene in co-variation of obesity and

osteoporosis phenotypes, the finding still needs to be replicated in

studies of a larger-scale.

Materials and Methods

Subjects
The GWAS cohort. The study was approved by the

Institutional Review Boards of Creighton University and

University of Missouri–Kansas City. Signed informed-consent

documents were obtained from all study participants before they

entered the study. A random sample containing 1,000 unrelated

Caucasians was identified and selected for this GWAS from our

established and expanding genetic repertoire currently containing

more than 6,000 subjects. All of the chosen subjects were US

Caucasians of European origin living in Omaha, Nebraska and its

surrounding areas. They were healthy subjects recruited for

genetic research of common human complex traits, such as BMD

and BMI. The detailed recruitment and exclusion criteria were

published elsewhere [43]. Generally, subjects with chronic diseases

and conditions involving vital organs (heart, lung, liver, kidney,

and brain) and severe endocrinological, metabolic, and nutritional

diseases were excluded from this study. In particular, for genetic

study of osteoporosis, subjects with diseases and conditions that

might potentially affect bone mass, structure, or metabolism were

excluded. These diseases/conditions included serious metabolic

diseases (diabetes, hypo- and hyper-parathyroidism,

hyperthyroidism, etc.), other skeletal diseases (paget disease,

osteogenesis imperfecta, rheumatoid arthritis, etc.), chronic use

of drugs affecting bone metabolism (hormone replacement

therapy, corticosteroid therapy, anti-convulsant drugs),

malnutrition conditions (such as chronic diarrhea, chronic

ulcerative colitis, etc.), and so forth. In addition, subjects taking

anti-bone-resorptive or bone anabolic agents/drugs, such as

bisphosphonates, were also excluded from this study. The

purpose of the above exclusion procedures was to minimize the

known environmental and therapeutical factors that influence or

are related to the endocrine systems/factors important to

development of bone mass and obesity, so that the effect sizes

due to genetic factors can be enhanced in our study sample for

more powerful detection of genetic variants via our study design.

BMI was calculated as body weight (in kilograms) divided by the

square of height (in meters). Weight was measured in light indoor

clothing without shoes, using a calibrated balance beam scale, and

height was measured using a calibrated stadiometer. We also

measured body fat mass (FM) using a Hologic 4500 DEXA

machine (Hologic Inc., Bedford, MA) in the study subjects. The

short-term reproducibility (coefficient of variation, CV) of BMI

and FM measurements was on average 0.2% and 1.1%,

respectively. Hip BMD values were measured also using the

DEXA machine. The CV of the DXA measurements for hip

BMD was 1.98%. The general relevant characteristics of the study

subjects were listed in Table 1.

The FHS replication cohort. To replicate our GWAS

findings, we used a sample from the FHS population, which

contains 3,355 Caucasians, including 1,370 males and 1,985

females, from 975 families. The phenotype and genotype

information of the cohort was downloaded from Framingham

SHARe (SNP Health Association Resource), accessed through

NCBI dbGaP (http://view.ncbi.nlm.nih.gov/dbgap). Appropriate

procedures have been taken for the usage of the data, which

include approval from UMKC IRB and signatures on the Data

Distribution Agreement by all the UMKC investigators who have

access to the data.

BMI, FM and femoral neck (FN) BMD information was

available for all the study subjects according to the Framingham

SHARe. The basic characteristics of the study subjects are

presented in Table 1.

Genotyping
GWAS cohort. Genomic DNA was extracted from whole

human blood using a commercial isolation kit (Gentra systems,

Minneapolis, MN, USA) following the protocols detailed in the kit.

Genotyping with the Affymetrix Mapping 250k Nsp and

Affymetrix Mapping 250k Sty arrays was performed using the

standard protocol recommended by the manufacturer.

Genotyping calls were determined from the fluorescent

intensities using the DM algorithm with a 0.33 p-value setting

[44] as well as the B-RLMM algorithm [45]. DM calls were used

for quality control while the B-RLMM calls were used for all
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subsequent data analysis. B-RLMM clustering was performed with

94 samples per cluster.

In our GWAS genotyping experiment, following an Affymetrix

guideline, we set a standard for the minimum DM call rate at 93%

for a sample, considering all the SNPs in the two arrays (i.e., the

250k Nsp and 250k Sty arrays). 99% of all the subjects (i.e., 990

subjects among a total of 1,000 subjects) met this call rate

standard. The remaining 10 samples that did not meet this

standard however had one hybridized array passing or approach-

ing this call rate standard (i.e., 93% of all the SNPs in the array

were successfully called). Hence the genotype data in the array

(with the higher call rate) for these 10 samples were also kept in the

dataset for GWAS analysis. For all the 1,000 subjects, the average

DM call rate reached.95%.

The final average BRLMM call rate across the entire sample

reached the high level of 99.14%. However, out of the initial full-

set of 500,568 SNPs, we discarded 32,961 SNPs with sample call

rate,95%, another 36,965 SNPs with allele frequencies deviating

from Hardy-Weinberg equilibrium (HWE) (p,0.001) and 51,323

SNPs with minor allele frequencies (MAF),1%. Therefore, the

final SNP set maintained in the subsequent analyses contained

379,319 SNPs, yielding an average marker spacing of ,7.9 kb

throughout the human genome.

FHS replication cohort. Using the FHS cohort, we

performed in silico replication of two interesting SNPs (rs297325

and rs4756846) identified in our GWAS cohort (see details for the

SNPs in the Results section and in Table 2). Genotyping of the FHS

cohort was performed with Affymetrix 500K mapping array plus

Affymetrix 50K supplementary array. For details of the genotyping

method, please refer to Framingham SHARe at NCBI dbGaP

website (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/

study.cgi?study_id = phs000007.v3.p2). Specifically, for both of the

two SNPs of interest, the call rate is 99.8%. The p values for HWE

test at the two SNPs are 0.22 for rs297325 and 0.86 for rs4756846,

suggesting HWE and good genotyping quality at the SNPs.

Statistical Analyses
We compared statistical power of bivariate association analyses

of two continuous traits with that of univariate association analyses

of each trait separately. Under three genetic models, i.e., additive,

dominant, and recessive, we performed power analyses using the

GEE (Generalized Estimation Equation) Package implemented in

the R environment (http://cran.r-project.org/src/contrib/De-

scriptions/geepack.html) for genotype-based bivariate association

analyses. We used ANOVA in R and performed power analyses of

genotype-based univariate association analyses. The power

analyses were based on a sample size of 500 unrelated subjects

(in consistence with our gender-specific GWAS analysis, where the

sample size is ,500). One thousand replicates were run in

simulation to calculate the power. The detailed procedures of

simulation for power calculation are presented in Appendix S1.

Bivariate GWAS analyses were performed using SAS (SAS

Institute Inc., Cary, NC), where bivariate regression analyses were

conducted to detect association between a SNP and two

phenotypes. The analyses were based on a linear model. Denote,

for an individual i , yi be a vector of a length of 2, coding the

individual’s bivariate phenotype, which can be modeled as

yi1
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� �
~ m1
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� �
z z1z2:::znð Þ
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where m~ m1
m2

� �
is the grand mean vector, xi is the genotype score

at the locus of interest for individual i , Z~ z1z2 � � � znð Þ is a vector

coding for covariates and may include other risk factors and

confounding factors, b0s represent the corresponding effects of

covariates or the SNP under test, and ei is the random error

vector. We tested the alternative hypothesis by comparing the

likelihood of the model under the null hypothesis (SNP effects are

restricted to 0) with that under the alternative hypothesis (the SNP

effects are not 0). The likelihood ratio can convert to an F-statistic,

which follows an F-distribution under the null hypothesis. The

bivariate p value was then calculated based on the F-statistic.

We have recently published two papers that used approaches

similar to that as shown above for bivariate association analyses

[46,47].

In the FHS cohort, a family-based sample, bivariate association

analyses were performed using FBAT-GEE implemented in FBAT

(ver. 2.02) (http://biosun1.harvard.edu/,fbat/fbat.htm) [48].

FBAT-GEE generalizes univariate family-based association anal-

yses to multivariate scenarios. It can produce a X
2FBAT-GEE

statistic, which follows a chi-square distribution and its degrees of

freedom is the number of phenotypes tested. The bivariate p value

was then calculated based on the statistic.

For comparison purpose, we also calculated univariate associ-

ation with each tested phenotype using SAS (SAS Institute Inc.,

Cary, NC) in our GWAS cohort and using FBAT in the FHS

cohort. For analysis using SAS in our GWAS cohort, genotypic

association analysis was performed under the linear regression

framework, where genotype was treated as the independent

variable and the study phenotype (such as BMI) as the dependent

variable, and the phenotype was modeled as a linear function of

alternative genotypes at a certain SNP. For analysis using FBAT in

the FHS cohort, association analysis was performed by correlating

transmission of parental genotype to offspring with a phenotype.

Additive genetic model was applied in both univariate and

bivariate association analyses.

In all the above association analyses, age, age2 and sex were

included as covariates to adjust the study phenotypes. In the

gender specific association analyses, only age and age2 were used

as the covariates.

The linkage disequilibrium (LD) between interesting SNPs was

analyzed using the Haploview program [49] (http://www.broad.

mit.edu/mpg/haploview/) and the most recent SNP genotype

data (HapMap Data Rel 23a/phaseII Mar 08, on NCBI B36

assembly, dbSNP b126) from HapMap (www.hapmap.org).

To quantify the overall evidence of association achieved in our

GWAS and in the FHS replication cohort, Fisher’s method [21] was

used to combine the individual p values achieved in our GWAS and

FHS cohorts. The method, also known as Fisher’s combined

probability test, is a meta-analysis technique for combining the

results from independent statistical tests that have the same overall

null hypothesis (H0) [21]. The method combines p values from

different studies into one test statistic that has a chi-square distribution

using the formula X 2
2k ~{2

Pk
i~1

loge pið Þ. The p value for the X2

statistic can be extrapolated from a chi-square table using 2k ‘‘degree

of freedom’’, where k is the number of tests being combined.

To detect population stratification that may lead to spurious

association results, we used the software Structure 2.2 (http://

pritch.bsd.uchicago.edu/software.html) and EIGENSTRAT soft-

ware (http://genepath.med.harvard.edu/,reich/EIGENSTRAT.

htm) to investigate the potential substructure/stratification of our

sample. The Structure 2.2 program uses a Markov chain Monte

Carlo (MCMC) algorithm to cluster individuals into different

cryptic sub-populations on the basis of multi-locus genotype data

[22]. Using the software, we performed independent analyses under
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three assumed numbers of population strata, k = 2, 3, and 4,

respectively, using 200 un-linked markers randomly selected

genome-wide. To confirm the results achieved through Structure

2.2, we further tested population stratification in our sample using

EIGENSTRAT software that uses principal component analysis

approach to model ancestral differences between cases and controls

[23].
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