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Abstract

Background: Guidewire (GW) size and stenosis dimensions are the two major factors
affecting the translesional pressure drop. Studying the combined effect of these
parameters on the mean pressure drop (Δp) across the stenosis is of high practical
importance.

Methods: In this study, time averaged mass and momentum conservation equations are
solved analytically to obtain pressure drop-flow, Δp-Q, curves for three different
percentage area blockages corresponding to moderate (64%), intermediate (80%), and
severe (90%) stenoses. Stenosis is considered to be axisymmetric consisting of three
different sections namely converging, throat, and diverging regions. Analytical expressions
for pressure drop are obtained for each of these regions separately. Using this approach,
effects of lesion length and GW insertion on the mean translesional pressure drop and its
component (loss due to momentum change and viscous loss) are analyzed.

Results and Conclusion: It is observed that for a given percent area stenosis (AS),
increase in the throat length only increases the viscous loss. However, increase in the
severity of stenosis and GW insertion increase both loss due to momentum change
and viscous loss. GW insertion has greater contribution to the rise in viscous loss
(increase by 2.14 and 2.72 times for 64% and 90% AS, respectively) than loss due to
momentum change (1.34% increase for 64% AS and 25% decrease for 90% AS). It
also alters the hyperemic pressure drop in moderate (48% increase) to intermediate
(30% increase) stenoses significantly. However, in severe stenoses GW insertion has a
negligible effect (0.5% increase) on hyperemic translesional pressure drop. It is also
observed that pressure drop in a severe stenosis is less sensitive to lesion length
variation (4% and 14% increase in Δp for without and with GW, respectively) as
compared to intermediate (10% and 30% increase in Δp for without and with GW,
respectively) and moderate stenoses (22% and 48% increase in Δp for without and
with GW, respectively). Based on the contribution of pressure drop components to
the total translesional pressure drop, it is found that viscous losses are dominant in
moderate stenoses, while in severe stenoses losses due to momentum changes are
significant. It is also shown that this simple analytical solution can provide valuable
information regarding interpretation of coronary diagnostic parameters such as
fractional flow reserve (FFR).

Keywords: Throat length, throat diameter, guidewire, hyperemic flow, basal flow,
viscous loss, mo-mentum change, diagnostic parameter, stenosis
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1. Background
Formation of stenosis in coronary arteries is the leading cause of myocardial infarction

and death in United States [1], and therefore, accurate assessment of the stenosis

severity is crucial to the interventional cardiologists. In interventional cardiology frac-

tional flow reserve (FFR; the ratio of average pressure distal [pd ] and proximal to ste-

nosis [pa] measured at maximal flow (hyperemia)) and coronary flow reserve (CFR; the

ratio of blood flow rates at hyperemic to basal condition) are measured to find the

functional severity of coronary stenosis [2]. It can be noted that these diagnostic para-

meters (FFR and CFR) are either ratio of pressure drop or blood flow rate. However,

recent studies [3,4] have proposed that the combined use of translesional pressure drop

and blood flow rate can improve the functional assessment of stenosis severity.

Accordingly, in the newly proposed diagnostic parameters translesional pressure drop

is scaled either linearly or quadratically with flow rate. It may be noted that an appro-

priate choice of scaling factor can result in non-dimensional diagnostic parameters by

including fluid properties (viscosity and density) and geometric information (diameter).

Therefore, there is a need to analytically determine the appropriate scaling approach

that can be applied to different ranges of stenoses severity and flow rates. An appropri-

ate scaling approach can be determined and put into practice by exploring the pressure

drop and its components (viscous losses [linear relation with flow rate] and losses due

to momentum changes [quadratic relation with flow rate]) along the stenosis for differ-

ent flow rates and stenoses severity.

Pressure drop across a stenosis is a function of blood flow rate and lesion anatomy

(lesion dimensions and stenosis severity [AS]). In current clinical practice geometric

(or anatomic) information can be obtained using bi-planar quantitative coronary angio-

graphy (QCA). Furthermore, the functional (hemodynamic) endpoints can be assessed

using Doppler flow guidewire (GW) and/or piezoelectric pressure wires [4-6]. This

study proposes a quick and inexpensive analytical approach that can potentially utilize

the information from QCA and GW to evaluate the translesional pressure drop and

thus, diagnostic parameters during the cardiac catheterization procedure.

In the catheterization lab FFR is the current clinical diagnostic gold standard for

detecting the severity of stenosis. If FFR falls below 0.75, then it is clinically considered

as an ischemic condition and the patient may be treated by coronary intervention (e.g.

angioplasty). Brosh et al. [7] studied 63 patients suffering from coronary artery disease

and found out that lesion length and in particular stenosis severity have significant

impact on the FFR values of intermediate coronary stenoses. The effects of GW and

vessel diameter along with percent area stenosis (AS) were also discussed in an in vitro

study by De Bruyne et al. [8], where the lesion was modeled as an orifice. Numerical

validation of pressure drop measured in in vivo experiments and GW flow obstruction

effect was quantified by Banerjee et al. [9,10].

Pressure drop-flow, Δp-Q, relation in the stenosis region has been studied by many

researchers for a wide range of geometries [8,11-17] and flow rates [18-20]. However,

there is not much analytical work, that can be used in clinical practice, to assess the

combined effect of throat geometry and GW on transstenotic pressure drop. Thus, the

goal of this study is to find the effect of the throat length, AS, and influence of GW on

pressure drop and its components (viscous losses and losses due to momentum
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changes) across the stenosis. Studying the components of pressure drop would allow us

to determine their contribution to the total pressure drop. Thus, in turn, will allow

better scaling of diagnostic parameters and possibly improved quantification of coron-

ary artery impairment in the cardiac catheterization lab.

2. Method
In this study, mean pressure drop is obtained analytically for moderate (64%), inter-

mediate (80%), and severe (90%) stenoses using the approach proposed by Back et al.

[21]. Effects of lesion length, GW insertion, and plaque severity on translesional pres-

sure drop are analyzed. Details on stenosis configuration and mathematical formulation

are presented below.

2.1 Geometry

Pressure drop across the stenosis can be correlated with stenosis geometry (plaque

severity and profile) [13,15], blood viscosity, and flow condition (basal or hyperemic).

In this work, as shown in Figure 1, stenosis geometry is considered to be axisymmetric

with trapezoidal profile. Lesion dimensions are obtained from pre- and post- coronary

angioplasty data of 32 patients as reported by Wilson et al. [20]. Stenosis geometry is

consisted of three distinct regions namely converging, throat, and diverging sections.

Table 1 presents the dimensional characteristic for moderate (64%), intermediate

(80%), and severe (90%) stenoses. All these area stenoses are associated to a clinically

relevant case. The 64% and 90% area stenoses correspond to after and before coronary

artery angioplasty, respectively [9,10,21,22]. The intermediate stenosis represents a

clinically challengeable case from diagnostic viewpoint. FFR (ratio of average pressure

distal (pd) and proximal (pa) to stenosis [FFR = pd /pa] under hyperemic condition)

values for intermediate stenoses might be affected by the variation in pressure drop

due to presence of GW which will be discussed in detail in the results section.

A coronary artery diameter of 3 mm and a constant converging length (lc) of 6 mm

is assumed for all AS [20,21]. Previous studies have shown that pressure drop along

the stenosis can be somewhat affected by the stenosis exit angle [23,24]. However, pre-

vious studies by Lipscomb et al. [13] have shown that pressure drop across the stenosis

is not affected by varying the stenosis exit angle from 10° to 90°. This analytical

approach doesn’t consider the effect of exit angle which may have some effect on Δp

and thus needs to be assessed in future studies. Constant diverging length (lr) of 1.5

mm is assumed for all AS. For a particular AS with throat diameter of dm, throat

lengths (lm) are chosen such that the distal pressure remains within the physiological

lc 
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dm 
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Figure 1 Axisymmetric geometry of stenosis: showing converging, throat, and diverging regions.
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range (> 55 mmHg) [25]. Therefore, to satisfy this criterion, throat lengths for 90%,

80%, and 64% area stenoses are chosen in the ranges of 0.25 to 0.75 mm, 0.75 to 2.25

mm, and 1.5 to 4.5 mm, respectively. Moreover, proximal and distal diameters are

assumed to be identical (de = dr). Assuming a constant lc and lr, the total lesion length

(L = lc + lm + lr) varies only with lm. Thus, it is possible to assess the effect of throat

length on translesional pressure drop, with and without GW. Previous studies have

used GW and catheters with large diameters (0.66 mm [18,26] to 1.4 mm [21]), how-

ever, in this study a GW diameter (di) of 0.35 mm is considered, which is the most

commonly used GW under current clinical practice. Pressure drop is calculated at

each section (converging, throat, and diverging) separately. The analytical formulation

is summarized in the following section.

2.2 Mathematical Model

The conservation of mass and momentum equations in their integral form are applied

to find the relation between pressure drop, flow, and lesion geometry.

Mass balance equation:

∂

∂t

∫
CV

ρd–V +
∫
CS

ρ �VdA = 0 (1)

Momentum balance equation:

∂

∂t

∫
CV

ρ �Vd–V +
∫
CS

ρ �V
(

�V · dn
)

=
∑

F (2)

After applying these equations to the geometry shown in Figure 1, mass and momen-

tum balance equations can be written as follows:

ρ
∂A
∂t

dx + ρd
∫
CS

udA = 0 (3)

∑
F = −Adp − (2πriτwi + Poτwo) dx

= ρd
∫
CS

u2dA + ρ
∂Q
∂t

dx
(4)

Table 1 Geometry of stenosis (All dimensions are in mm)

Geometry de = dr lc dm lm lm/dm lr

3.0 6.0 1.80 1.50 0.83 1.5

64% 3.0 6.0 1.80 3.00 1.67 1.5

3.0 6.0 1.80 4.50 2.50 1.5

3.0 6.0 1.35 0.75 0.57 1.5

80% 3.0 6.0 1.35 1.50 1.14 1.5

3.0 6.0 1.35 2.25 1.70 1.5

3.0 6.0 0.95 0.25 0.26 1.5

90% 3.0 6.0 0.95 0.50 0.52 1.5

3.0 6.0 0.95 0.75 0.79 1.5
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The mean momentum balance equation can be obtained by integrating equation (4)

over a period T of cardiac cycle:

−dp̃ =
1
A

(2πriτ̃wi + 2πroτ̃wo) dx + ρd
(

β
ū2

2

)
(5)

Where ū is the average axial velocity during the cycle and β =
1

ū2A

∫
CS

u2dA is the

energy correction factor based on the linear flow theory. The symbol (~) represents

the time average of the corresponding parameters which will be dropped from the rest

of equations in the paper. Therefore, as described above mean pressure drop along the

stenosis is obtained under steady, laminar flow, and Newtonian fluid assumptions.

2.2.1 Pressure Drop Calculations

Stenosis geometry in general is comprised of converging, throat, and diverging sec-

tions. In the converging section mean blood flow velocity increases and flow acceler-

ates. Therefore, in this region pressure drops due to both momentum change and

viscous loss. As the flow advances towards the throat area, flow momentum varies

due to entrance effects, however, in the current analytical approach the induced loss

due to momentum change is considered to be negligible when compared to viscous

loss. Further as the flow enters the diverging section due to the adverse pressure gra-

dients, flow separates from the wall forming a recirculation zone near to the wall

along with a high momentum stenotic jet in the center. The pressure recovery in

this section is of the order of the throat’s dynamic pressure and is estimated using a

pressure recovery coefficient. Inserting the GW shifts the flow maximum velocity

pocket towards the GW surface inducing high shear forces. Due to GW blockage

effect loss due to momentum change also increases. To sum up, losses in different

regions of a stenosis are dominated with either viscous or momentum change or

both of them. Therefore, it is of interest to determine the contribution of loss due to

momentum change and viscous loss to translesional pressure drop for different area

stenoses.

Pressure Drop across the Converging Region. Integrating equation (5) along the con-

verging length results in the mean pressure drop correlation across this region:

�pcm =
(

128
π

ρν

de
4 lcQIs

)
+(

β
1
2

ρū2
e

[(
Ae

Am

)2

− 1

]) (6)

where
Is =

1∫
0

H(
do

de

)4
[

1 −
(

di

do

)2
] (

1 +
fi
fo

)
d
(

x
lc

)
is shear force integral with H

defined as H =

⎡
⎢⎢⎢⎢⎣1 −

1
2

[
1 −

(
ri

ro

)2
]

ln
(

ro

ri

)
⎤
⎥⎥⎥⎥⎦ F,
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and

F =
1

[
1 − (

ri/ro
)2

] ⎡
⎣1 +

(
ri/ro

)2 −
[
1 − (

ri/ro
)2

]
ln

(
ro/ri

)
⎤
⎦ , while

fi
fo

is defined as

fi
fo

=
2πrilτwi

2πrolτwo
=

−(
ri/ro

)2
+

1
2

[
1 − (

ri/ro
)2

]
ln

(
ro/ri

)

1 −
1
2

[
1 − (

ri/ro
)2

]
ln

(
ro/ri

)
In these equations ro varies with axial length (x) as ro = re - xtan(l), where l= tan-1

((re-rm)/lc) is the slope of converging section and x is calculated from the stenosis lead-

ing edge as shown in Figure 1. Flow rate is calculated using the following equation: Q

= ūeAE =ūmAM, where ūe and ūm are, respectively, the average velocities at proximal

and at the throat section of stenosis; while AE = (Ae - Ai) and AM = (Am - Ai) represent

the arterial cross-sections at corresponding regions, respectively.

Pressure Drop across Throat Region. GW can be inserted in the vessel either concen-

trically or eccentrically, however, it has been shown that the former results in maxi-

mum pressure drop along the throat [27]. The pressure drop for the concentric

annular flow between the vessel and GW can be written as below:

�pm =
128
π

ρν

dm
4 lmQF (7)

where

F =
1

[
1 −

(
ri

rm

)2
] ⎡

⎢⎢⎢⎣1 +
(

ri

rm

)2

−
1 −

(
ri

rm

)2

ln
(

rm

ri

)
⎤
⎥⎥⎥⎦ is the increase in flow resis-

tance due to the presence of catheter, and depends only on the ratio of catheter to ves-

sel radius (or diameter). In the absence of a catheter ri ® 0 and F ® 1, thus, reducing

equation (7) to Poiseuille flow relation.

Pressure Recovery across the Diverging Region. In the divergent region mean flow

decelerates resulting in flow separation which makes the flow field too complicated to

be solved analytically. Distal to plaque, pressure recovery (Δprm) can be scaled by the

throat dynamic pressure (1/2 ρ u2
m ), and can be written in the following form:

�prm = pr − pm = Cpr
1
2

ρ u2
m (8)

where Cpr is pressure recovery coefficient considering pressure changes due to both

viscous losses and momentum changes. Ignoring wall friction, Cpr can be obtained by

only considering the pressure recovery due to momentum changes shown as

C∞
pr [=

�pmom

1/2 ρ u2
m

= 2
Am

Ar

(
1 − Am

Ar

)
]. The basis of C∞

pr relies on the assumption of neg-

ligible shear forces referred to as high Reynolds number limit [27], which in general

leads to higher pressure recovery values as compared to Cpr. Effect of viscous losses

can be also included in C∞
pr by multiplying it with a correction factor (b);
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[C∞
pr = 2β

Am

Ar

(
1 − Am

Ar

)
]. However, previous studies [22] have shown that for throat

Reynolds numbers greater than 673 (which is the case for all hyperemic flow rates in

this work) viscous losses are of minor importance and b tends to one; therefore pres-

sure recovery can be properly assessed by only considering the momentum changes in

flow [27]. The total mean pressure drop across the stenosis is then obtained by adding

up equations (6), (7), and (8):

�p = �pm + �pcm − �prm

�p =
128
π

ρν

dm
4 lmQF +

(
128
π

ρν

de
4 lcQIs

)
+

(
β

1
2

ρū2
e

[(
Ae

Am

)2

− 1

])
− cpr

∞ 1
2

ρū2
m

(9)

Contribution of loss due to momentum change and viscous loss to the total pressure

drop are shown in the following equations, respectively:

�pviscous = �pcmf + �pm

=
128
π

ρν

de
4 lcQIs +

128
π

ρν

dm
4 lmQF

(10)

�pmomentum = �pcmM − �prm

= β
1
2

ρū2
e

[(
Ae

Am

)2

− 1

]
− c∞

pr

1
2

ρū2
m

(11)

Equations (9) to (11) can be solved to obtain each component of pressure drop. Inte-

gral Is is solved numerically along the entire converging length using trapezoidal inte-

gration method. Pressure drops are calculated for different AS considering three

different throat lengths for each stenosis in the absence and presence of GW. The Δp-

Q characteristic curves are obtained for each case and the contribution of loss due to

momentum change and viscous loss to the total pressure drop are evaluated.

3. Results
Flow is assumed to be steady and laminar. Blood is treated as Newtonian fluid with

the viscosity of 3.5 cP and density of 1050 kg/m3. Pressure drop variation with flow

rate is obtained for different throat lengths and stenosis severity, considering the effect

of GW. Throat lengths for severe (90%), intermediate (80%), and moderate (64%) ste-

noses vary from 0.25 to 0.75 mm, 0.75 to 2.25 mm, and 1.5 to 4.5 mm, respectively.

Flow rate varies from basal to hyperemic in all the figures. Basal flow for all the cases

is 50 ml/min, while the hyperemic flow rate is different for each of the cases consid-

ered in this study. The physiological cut off value of hyperemic flow rate has an

inverse correlation with the flow resistance. That is, severe stenosis with the highest

flow resistance, among other plaques, has the lowest hyperemic flow rate. The cut off

values for hyperemic flow rates before insertion of GW for 64%, 80%, and 90% area

stenoses are 180, 165, and 115 ml/min, respectively. However, in the presence of the

GW these values reduce to 173, 150, and 85 ml/min, respectively. The cut off values

for hyperemic flow rates in the absence of GW are chosen based on the pre- and

post- angioplasty data of Wilson et al. [20], while the hyperemic flow rates in the
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presence of GW are adopted from the study of Roy et al. [28]. It should be noted that,

all percentages presented for the comparison of pressure drops between with and

without GW cases are obtained from pressure drops at their corresponding hyperemic

flow rates.

3.1 Variation of Pressure Drop (Δp) with Flow Rate (Q)

Total pressure drop across the stenosis is composed of loss due to momentum change

and viscous loss. Viscous loss is linearly correlated to flow rate [equation (10)], while

loss due to momentum change varies with the second power of flow rate [equation

(11)]. The translesional pressure drop and its component variation with respect to flow

rate for the three different area blockages are presented in Figures 2, 3, and 4. In addi-

tion, effects of throat length and GW insertion are also presented in these figures. It

can be observed that increase in stenosis severity, GW insertion, and increase in lesion

length increase the pressure drop along the plaque.

At basal flow and before insertion of GW for 64% area stenosis (moderate) as shown

in Figure 2 pressure drop increases from 0.59 to 0.86 mmHg, a 46% (= [{ (0.86-0.59)}/

0.59] × 100) increase as lm increases from 1.5 to 4.5 mm. In hyperemic condition (180

ml/min), Δp increases from 4.42 to 5.39 mmHg (22% increment) for the same lm
range. In the presence of GW and for same lm range, pressure drop increases from

1.03 to 1.66 mmHg (61% increase) at basal flow and from 5.92 to 8.08 mmHg (36%

increase) at hyperemic flow (173 ml/min). Moreover, at maximum throat length (lm=

4.5 mm) hyperemic Δp increases by 48% (= [{(8.08-5.45)}/5.45] × 100) due to GW

insertion only. This confirms the obstruction effect of GW which has also been shown

by Roy et al. [28].
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Figure 2 64% area blockage Δp vs. Q characteristic.
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The Δp-Q characteristic for 80% area stenosis (intermediate) where lm ranges from

0.75 to 2.25 mm is shown in Figure 3. Without GW at basal flow (50 ml/min), Δp

increases from 1.76 to 2.20 mmHg (25% increase) as lm increases from 0.75 to 2.25

mm, while for hyperemic flow (165 ml/min) and same range of lm, Δp increases from
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Figure 3 80% area blockage Δp vs. Q characteristic.
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14.30 to 15.72 mmHg (10% rise). As the GW is inserted at basal flow and hyperemic

flow, for the same range of throat lengths, Δp increases from 2.95 to 4.17 mmHg (41%

rise) and 16.73 to 20.39 mmHg (22% rise), respectively. In the intermediate stenosis,

the difference between Δp for same flow rate but different lm is diminished in both

without and with GW insertion when compared to moderate stenosis. Although, there

is a relative increase in overall Δp because of GW insertion, its dependency on lm is

reduced as compared to 64% AS. As the throat length increases for 64% AS at hypere-

mic flow rates with and without GW, Δp increases from 22% to 36%, respectively,

while these percentages reduce to 10% and 22% for intermediate stenosis. Moreover,

percentage pressure drop increase at hyperemic condition due to GW insertion (30%)

is less than that for 64% AS (48%). This indicates a decreasing trend in sensitivity of

Δp to GW insertion in stenoses with higher severity.

As mentioned before from diagnostic viewpoint, intermediate stenosis is a clinically

challenging case. GW diagnostic is widely used to assess lesion severity by measuring

FFR under hyperemic condition. Insertion of GW adds extra resistance to flow which

results in sharp rise in Δp and consequently a reduction in FFR value. At the maxi-

mum lm of 2.25 mm, Δp increases by 30% (= [{20.39-15.72}/15.72] × 100) as the result

of GW insertion, which underestimates FFR value. In 80% AS with proximal pressure

(pa) of 86 mmHg [28], distal pressure (pd) reduces from 70.5 to 66 mmHg as the GW

is inserted. This would change FFR from 0.85 (= 70.5/86) to 0.77 (= 66/86). Thus, in

the presence of GW, FFR shows values around the limiting condition of 0.75 which

may lead to misdiagnosis of lesion severity. With this regard, the Δp-Q curves can be

helpful in interpreting Δp values and consequently the FFR results.

Similar to Figures 2 and 3, Δp-Q curve is also obtained for the severe stenosis (90%)

case with throat lengths ranging from 0.25 to 0.75 mm (Figure 4). In the absence of

GW with increase in lesion length, Δp shows 11% increase (from 6.90 to 7.48 mmHg)

at basal flow (50 ml/min) and 4% rise (from 32.48 to 33.81 mmHg) at hyperemic con-

dition (115 ml/min). In the presence of GW and for the same range of throat lengths

pressure drop increases by 20% (from 12.21 to 14.70 mmHg) at basal flow (50 ml/min)

and 14% (29.75 to 33.99 mmHg) at hyperemic flow (85 ml/min). Moreover, for the

maximum lm of 0.75 mm, hyperemic Δp increases only by 0.5% (= [{33.99-33.81}/

33.81] × 100) due to GW insertion. Hence Δp variation in severely stenosed arteries

has a weak dependency on GW insertion when compared to that of moderate and

intermediate stenoses.

Pressure drop is directly related to lm in both without and with GW cases, however,

GW insertion increases Δp non-linearly for all throat lengths. This can be elucidated

by expressing the pressure drop-flow rate data in the general form of Δp = kQn. Here,

n and k values can be obtained from the natural logarithm of the Δp-Q curves. Log-log

scale of Δp-Q characteristic for the three AS at their corresponding throat lengths are

shown in Figure 5. The resulting straight lines are regressed to find their correspond-

ing slopes (n) and intercepts (k) that are summarized in Table 2. The values of n varies

from 1 to 2, where n = 1 signifies purely viscous loss and n= 2 signifies purely loss due

to momentum change. Hence, the value of n indicates the relative estimate of loss due

to momentum change and viscous loss. Moreover, n shows the dependency of pressure

drop to flow rate and varies with throat length, stenosis severity, and GW insertion.

Figure 6 shows the variation in n values with respect to these parameters. Second
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order polynomials are fitted to the slope (n) vs. throat length (lm) data and the corre-

sponding equations are given in the figure. As the lesion length increases n decreases

due to the enhanced viscous effects (e.g., as lm increases from 1.5 to 4.5 mm in 64%

AS with GW, the value of n decreases from 1.42 to 1.25). Moreover, at a fixed throat

length, GW insertion increases the viscous forces and thus reduces the n values (e.g.,

at lm = 4.5 mm and 64% AS, with the insertion of GW n reduces from 1.45 to 1.25).

However, increase in stenosis severity increases the fluid momentum and thus raises

the n values (e.g., in the presence of GW, as the stenosis severity increases from 64%

to 90%, n increases from 1.41 to 1.53).

3.2 Loss Due to Momentum change and Viscous Loss

Variation of loss due to momentum change and viscous loss with flow rate for moderate

and severe stenoses at their corresponding minimum and maximum lesion lengths are
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Figure 5 All area blockages on log-log scale: Δp vs. Q characteristic.

Table 2 Slope and constant as per Δp = k × Qn

Area stenosis Without GW With GW Without GW With GW Without GW With GW

lm 1.5 3.00 4.50

64% n 1.6191 1.4145 1.5263 1.3168 1.4530 1.2523

k 0.0001 0.0039 0.0017 0.0076 0.0028 0.0123

lm 0.75 1.5 2.25

80% n 1.7276 1.5130 1.6592 1.4206 1.5997 1.3538

k 0.0020 0.0081 0.0030 0.0142 0.0042 0.0217

lm 0.25 0.50 0.75

90% n 1.7653 1.5292 1.7244 1.4478 1.6862 1.3926

k 0.0070 0.0314 0.0086 0.0477 0.0103 0.0647
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shown in Figures 7 and 8, respectively. Effects of GW insertion on the loss due to

momentum change and viscous loss are also shown in these figures. Minimum and max-

imum throat lengths are, respectively, 1.5 and 4.5 mm for moderate stenosis, and 0.25

and 0.75 mm for the severe stenosis. As shown in Figure 7A, for moderate stenosis with

minimum throat length (lm = 1.5 mm) before insertion of GW, loss due to momentum

change is dominant and exceed the viscous loss at flow rate of 60 ml/min. Increasing the

throat length to 4.5 mm (Figure 7B) reduces the dominancy range of loss due to

momentum change, as they exceed the viscous loss at flow rate of 120 ml/min. However,

at lm = 1.5 mm, insertion of GW elevates the viscous loss significantly (by 2.1 times), and

viscous loss becomes dominant up to flow rate of 138 ml/min for the minimum throat

length (see Figure 7A). For the maximum throat length (lm = 4.5 mm) as the GW is

inserted, viscous effects, as can be seen in Figure 7B, remain dominant in the entire

range of flow rates (viscous loss increases by 2.14 times in comparison with 1.34% rise in

loss due to momentum change). This shows that viscous loss is dominant in moderate

stenoses, which is consistent with the results of Young et al. [29].

In contrast to moderate stenoses, loss due to momentum change is dominant in the

entire range of physiological flow rates (greater than 50 ml/min) for severe stenoses

regardless of GW insertion, as shown in Figure 8. It is interesting to note that for the

90% AS, by inserting GW, loss due to momentum change for both minimum (lm =

0.25 mm) and maximum (lm = 0.75 mm) throat lengths decrease by 25% with similar

pressure drop values (from 29.4 to 22 mmHg). However, viscous loss increases by 2.53

times for lm = 0.25 mm (from 3 to 7.8 mmHg) and by 2.72 times for lm = 0.75 mm

(from 4.4 to 12 mmHg). It is noteworthy that regardless of this reduction in loss due

to momentum change, it is still relatively more significant as compared to the viscous

nwith= 0.2096 lm
2 - 0.4828 lm + 1.6368

nwith = 0.0228 lm
2 - 0.1744 lm + 1.631

nwith = 0.0074lm
2 - 0.0983 lm+ 1.5454

nwithout= 0.0216 lm
2 - 0.1798lm + 1.8089

nwithout= 0.0079 lm
2 - 0.109 lm + 1.8049

nwithout = 0.0043lm
2 - 0.0814 lm + 1.7314
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Figure 6 Variation of slope n for all lm and percentage area blockages.
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loss. Thus, severe stenoses can be categorized as momentum dominated plaques, which

is also consistent with the results of Young et al. [29].

It should be noted that inserting GW in all cases increases the viscous loss relatively

more than the loss due to momentum change, however, based on the stenosis severity,

one of these losses becomes dominant. For example in the moderate stenoses the vis-

cous loss tends to dominate the loss due to momentum change, while this trend is
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reversed in the severe stenoses. Therefore, insertion of GW decreases n in Δp = kQn

relationship (see Table 2). Furthermore, it is noteworthy that regardless of stenosis

severity, changes in lesion length only affect the viscous loss.

Effects of flow rate and lesion length on the dominancy of loss due to momentum

change and viscous loss are already discussed. Combined effects of stenosis severity

(ranging from 30% to 90% AS), throat length to diameter ratio (lm/dm= 0.25 and 4.0),
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and GW insertion on the percentage viscous and momentum pressure drops are ana-

lyzed in Figures 9A, 9B, 9C, and 9D. Percentage pressure drop due to viscous loss (or

loss due to momentum change) is defined as the ratio of viscous loss (or loss due to

momentum change) to the total pressure drop. These figures are plotted at three con-

stant flow rates corresponding to basal flow (50 ml/min), hyperemic flow in severe ste-

nosis with GW (85 ml/min), and hyperemic flow in severe stenosis without GW (115

ml/min).

The transitional percent area blockage is defined as the point where loss due to

momentum change overcomes viscous loss. For basal flow before insertion of GW and

for lm/dm = 0.25 and 4.0 as shown in Figure 9A, transitional percent area blockages

are 64% and 90%, respectively. As the flow rate increases to hyperemic condition these

values reduce to 52% and 80%, respectively (Figure 9B). This reduction is due to higher

dependency of loss due to momentum change to the second power of flow rate, while

viscous loss is linearly related to flow rate. Thus transitional percent area blockages are

reduced as flow is increased. Moreover, for lm/dm = 0.25 and before insertion of GW

loss due to momentum change is dominant for moderate to severe stenoses, while for

the lm/dm = 4.0 viscous loss is dominant even for severe stenoses. Furthermore, by

insertion of GW (Figures 9C and 9D) viscous loss is dominant at both basal and

hyperemic flow rates in the entire range of area stenoses for lm/dm = 4.0 However, for

lm/dm = 0.25 the transitional percent area blockage are 79% and 67% at basal and

hyperemic flow rates, respectively. These values are higher than the corresponding

transitional area blockages for lm/dm = 0.25 without GW. This again shows that GW

insertion contributes more to the rise in viscous loss rather than loss due to momen-

tum change.
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4. Discussion
The purpose of this study is to acquire a more fundamental understanding regarding

the effect of GW insertion, lesion length, and stenosis severity on the total pressure

drop across a stenosed coronary artery. Mean pressure drop along the stenosis is

obtained under steady flow and Newtonian fluid assumptions. Contribution of the loss

due to momentum change and viscous loss to the overall pressure drop along the

lesion is also investigated.

Having obtained the translesional pressure drop (Δp = pa-pd) from this analytical

approach, and adopting proper pressure proximal to stenosis (pa),

FFR(=
pd

pa
=

pa − �p
pa

= 1 − �p
pa

) can be calculated. Here, pa values for 90%, 80%, and

64% AS are taken as 89, 86, and 84 mmHg [28], respectively. Recently, our group has

proposed two new diagnostic parameters namely pressure drop coefficient (CDPe) and

lesion flow coefficient (LFC). These new diagnostic parameters are based on the fluid

dynamic principles and can better diagnose the stenosis severity [30].

CDPe(=
�p

0.5 ρ u2
e

) is defined as the ratio of mean translesional pressure drop to the

proximal dynamic pressure (0.5 ρ u2
e ), while LFC (=

1 − κ√
CDPm

) is defined as the ratio of

percent area stenosis (1-�) to the square root of the throat pressure drop coefficient

(CDPm =
�p

0.5 ρ u2
m

). The analytical method can provide enough information to evalu-

ate these diagnostic parameters (FFR, CDPe, and LFC) as shown in Figure 10. The ana-

lytically obtained FFR values are compared with the available numerical results [28] in
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the absence (Figure 10A) and presence (Figure 10B) of GW for different stenosis sever-

ity. It is noteworthy that FFR obtained analytically shows a trend similar to that of

CFD results. Moreover, the percentage difference between FFR values obtained from

the analytical and numerical approaches is around 5% (e.g. for 64% AS with GW: 4.6%

[= (0.91-0.87)/0.87] × 100) for all the cases, except for the 90% area stenosis with GW

which shows 21% ( =[(0.63-0.52)/0.52] × 100) difference. Also, variations of CDPe and

LFC for different stenosis severities in the presence of GW are shown in Figures 10C

and 10D, respectively. CDPe and LFC are not compared with any numerical or experi-

mental results since these parameters have not been previously reported for the same

geometries and flow rates considered in this study. It is observed that the increase in

stenosis severity results in an increase in CDPe and reduction in the LFC which, in

general, is consistent with the previous in vivo studies [30]. However, more studies

need to be performed on the ability of this analytical approach in evaluating these new

diagnostic parameters. In addition to the diagnostic parameters, obstructive effect of

GW also can be measured using this analytical approach. Obstructive effect of GW

can be quantified by the absolute difference of the pressure drop values between with

and without guidewire cases. This effect results in 2 (= |7-5|), 3.5, and 1.2 mmHg

changes in pressure drop at hyperemic condition for 64%, 80%, and 90% area stenosis,

respectively.

Steady flow assumption is one of the major limitations of this analytical approach

which neglects time dependent phenomena such as transient shear layer growth in the

throat section and time varying recirculation zone distal to plaque. However, previous

studies [9,10] have shown that mean translesional pressure drop for severe stenosis can

be obtained within 20% error of pulsatile calculations. It should be mentioned that due

to the small magnitude of pressure drop for the moderate stenosis (i.e. for mean flow

rate of 180 ml/min, the analytical and numerical translesional pressure drops are 3.7

and 5.5 mmHg, respectively) the percentage difference between numerical and analyti-

cal results is relatively higher (33% = [(5.5-3.7)/5.5] × 100) as compared to the inter-

mediate and severe stenoses, which will be discussed later. However, this higher

percentage difference will not affect the diagnostic assessments (FFR values for the

analytical and numerical approaches are 0.96 {= 1-3.7/84} and 0.93, respectively).

Therefore, for intermediate to severe stenoses steady assumption can provide valuable

information on hemodynamic parameters such as pressure drop under clinical setting.

To address this point, as shown in Figure 11 the analytically obtained translesional

pressure drop is compared to pulsatile result from Banerjee et al. [9,10]. They have

used the same geometry and dimensions that are considered here for 90% AS with

throat length of 0.75 mm, however, the GW diameter is 0.46 mm and not 0.35 mm. It

can be seen that the analytical approach at most results in 14% to 17% error in the

presence of GW (GW diameter of 0.46 mm), while for without GW the error ranges

from 2% to 18%.

It should be mentioned that the translesional pressure drop obtained through the

analytical approach is lower than the ones from the numerical calculations. This

variation in the pressure drop is due to the simplified assumptions such as steady

state and Newtonian fluid. However, this variation can be reduced by using a cor-

rection factor that can account for such limitations. In our previous studies on the

translesional pressure drop for moderate and severe stenoses in the presence of
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GW [2,9], the ratio of the pressure drop for pulsatile and steady state flows under

hyperemic condition is determined to be 1.16. The analytical pressure drop can be

multiplied by this factor to obtain the corrected pressure drop. Table 3 shows the

analytically and numerically obtained pressure drops [28] along with the corrected

pressure drops and the corresponding FFR values under hyperemic condition. It can

be seen that the percentage difference between the numerical and analytical pres-

sure drops has significantly reduced by using this correction factor. For example for

64% area stenosis this difference has reduced from 29.3% (= [(9.9-7)/9.9] × 100) to

17.9% (= [(9.9-8.3)/9.9] × 100), while similar reduction has been observed for 80%

(11.4% to 2.8%) and 90% AS (20.9% to 8.2%). Also as shown in the Table 3, the cor-

rected pressure drops have reduced the difference between the corresponding cor-

rected analytical and the numerical FFR values. For 64% AS this difference has

reduced from 4.5% (= |(0.88-0.92)/0.88| × 100) to 2.3% (= |(0.88-0.9)/0.88| × 100),

while a similar trend is also observed for 80% (from 3.8% to 1.3%) and 90% AS

(19.2% to 7.7%).

Table 3 Numerical [28], analytical, and corrected analytical pressure drops along with
the corresponding FFR values for different stenosis severity at hyperemic flow rate (Q)

AS lm
(mm)

Q
(ml/
min)

pa
(mmHg)

Δpnumerical Δpanalytical Δpcorrected =
1.16 ×

Δpanalytical

FFRnumerical FFRanalytical FFRcorrected

64% 3 173 84 9.9 7 8.13 0.88 0.92 0.9

80% 0.75 150 86 18.9 16.74 19.42 0.78 0.81 0.77

90% 0.75 85 89 43 34.02 39.46 0.52 0.62 0.56

The GW diameter is 0.35 mm.
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Figure 11 Comparison of the current results for 90% area stenosis with pulsatile results from
Banerjee et al. [9,10].
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In addition to steady state assumption, considering blood as a Newtonian fluid is

another limitation of this study. Blood viscosity may affect the total pressure drop in

the viscous dominated regions. From the results of this work it can be concluded that

GW insertion tends to increase the viscous loss more than the loss due to momentum

change (see Figures 7 and 8). However, due to high shear rate in the converging and

throat sections, non-Newtonian behavior of blood is of minor importance. The adverse

pressure gradient results in recirculation zone distal to the plaque where the non-New-

tonian behavior of blood becomes important. However, previous studies have shown

that Newtonian assumption has lesser influence on flow field in medium to large sized

arteries such as coronary artery [31].

In previous studies [10,32,33] the occurrence of shear layer instabilities has been

observed for intermediate to severe stenoses. Shear layer instability is considered as

low Reynolds number turbulence flow phenomenon which can be observed experimen-

tally, but are not easy to detect by numerical computations (may need a refined mesh

and higher order numerical schemes). It should be mentioned that in this

study the throat Reynolds number (Rem) is limited to 734 (where

ρ = 1050
kg
m3

, um = 2.7
m
s

, d = 0.95 mm and, μ = 0.0037
kg
ms

) for the limiting case

(i.e. 90% area stenosis without GW at hyperemic flow condition). Therefore, the authors

are assuming the flow regime to be laminar. However, although laminar assumption is

valid for the cases considered in this study, there are still chances of occurrence of shear

layer instabilities in physiological flows and experimental studies due to possible distur-

bances in the cardiac pulse and irregularities in plaque anatomy. It should be noted that

the current analytical approach is based on laminar flow assumption, and thus, cannot

account for the shear layer instabilities which is one of the limitations of this work.

5. Conclusion
Translesional pressure drops in stenosed coronary artery with different area blockages

with and without GW presence are studied. Pressure drop-flow rate characteristics are

obtained analytically for different area blockages (64%, 80%, and 90%) with different

throat lengths. Variations in lesion length primarily affect the viscous loss. However,

this effect diminishes as the stenosis severity increases from moderate to intermediate

stenoses. In the severe stenoses, effect of lesion length is almost negligible.

Similar to lesion length effect, insertion of GW increases the viscous loss signifi-

cantly. In moderate stenoses, viscous effects in the presence of GW can surpass the

loss due to momentum change in the entire range of flow rates. In contrast, for the

severe stenoses although the GW increases the viscous effects, the loss due to momen-

tum change is completely dominant in the entire range of flow rates. It is noteworthy

that insertion of GW, as compared to without GW case, increases the hyperemic pres-

sure drop in the moderate to intermediate stenoses significantly. However, for the

severe stenosis GW insertion has a negligible effect on the hyperemic translesional

pressure drop. This finding which is in agreement with the previous study of Verberne

et al. [34] might be due to appreciable reduction in flow rate as compared to without

GW case. Moreover, insertion of GW increases the dominancy of viscous losses

regardless of ste-nosis severity which can be observed with the reducing values of n

(comparing without and with GW cases) in Table 2.
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Also, total translesional pressure drop can be written in the form of Δp = kQn, in

which n varies between 1 and 2, which are, respectively, the limits for viscous dominated

and momentum dominated losses. Therefore, n can be used to assess the contribution

of these two types of losses to the total pressure drop, and accordingly lesions can be

cate-gorized into different groups of stenoses. Translesional pressure drop in the newly

proposed diagnostic parameters is scaled either by viscous losses [4] or losses due to

momentum changes [3]. Thus, evaluating n for specific flow rate and stenosis geometry

can provide information on appropriate and accurate scaling approach for the diagnostic

parameters. For the moderate stenosis with n values closer to 1, pressure drop may be

scaled by viscous losses (or linear function of flow rate). However, for intermediate to

severe stenosis with n values closer to 2, losses due to momentum changes (quadratic

function of flow rate) can provide a better scaling for translesional pressure drop.

Moreover, pressure drop values obtained using this approach are comparable to the

corresponding CFD results published in literature. Results of this approach can be

further improved by modifying the current formulation to include a correction factor

that can account for the pulsatile nature of coronary flows as well as the non-Newtonian

behavior of blood. Also, with further improvements in clinical techniques such as QCA

and Doppler flow catheters, this method has a potential to provide a quick evaluation of

pressure drop and FFR values under bedside condition in the cardiac catheterization lab.

Nomenclature

A = flow cross-sectional area (m2),c∞
pr = pressure recovery coefficient, CFR = coronary

flow reserve, de = proximal vessel diameter (m), di = catheter (or guidewire) diameter

(m), dm = throat diameter (m), do = mean vessel diameter (m), f= mean wall shear

force = 2πrlτw (N), F = flow resistance, FFR = fractional flow reserve, Is = shear force

integral, lc = length of converging region (m), lm = length of throat region (m), lr =

length of diverging region (m), p = mean pressure (mmHg), pa = pressure proximal to

the stenosis (mmHg), pd = pressure distal to the stenosis (mmHg), pr = Recovered

pressure distal to stenosis (mmHg), Δp = overall mean pressure drop, Δpviscous = Over-

all pressure drop due to viscous loss (mmHg), Δpmomentum = Overall pressure drop cor-

responding to loss due to momentum change (mmHg), Δpcm = pressure drop across

constriction region (mmHg), Δpm = viscous pressure drop in throat region (mmHg),

Δprm = pressure recovery in divergent and distal region (mmHg), Q= volume flow rate

(ml/min), r = radial distance (m), ro = mean vessel radius (m), t = time (s), ū = average

axial velocity (m/s), x = axial distance (m), b = momentum coefficient, l = conical half

angle of constriction, μ = blood dynamic viscosity (Kg/m-s), υ = blood kinematic visc-

osity (μ/r) (cP), r = blood density (Kg/m3), Po= vessel perimeter (m), τw = wall shear

stress (N/m2), T = period of cardiac cycle (s), �V = velocity vector (m/s),

Rem = Reynolds number =
ūm (dm − di)

υ
, Rem = Reynolds number =

ūm (dm − di)
υ

Subscripts:

e= proximal vessel, i = catheter, m = throat region, o = vessel, r = recovery point, w

= wall condition

Superscripts:

(~) = time average over cardiac cycle, (-) = mean flow
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