
I. Introduction

Electrodiagnostic studies include nerve conduction stud-
ies, needle electromyography (EMG), and evoked potential
studies, among others. Testing electrical signals from nerves,
muscles, and neuromuscular junctions can help to clarify
electrophysiologic findings and abnormalities [1]. The elec-
trodiagnostic studies obtained results through a combination
of protocolized test procedures, expert decision-making,
and by referring to quantified results. Needle EMG, one of
the tests that make up electrodiagnostic studies, involves in-
serting a needle electrode into a muscle to record generated
electrical signals. A specialist checked whether these signals
are normal or abnormal to estimate electrophysiological
information on nerves and muscles, such as the period after

Development of Artificial Intelligence to Support
Needle Electromyography Diagnostic Analysis
Sangwoo Nam1*, Min Kyun Sohn2,3*, Hyun Ah Kim2, Hyoun-Joong Kong4, Il-Young Jung2,3

1Department of Biomedical Engineering, Chungnam National University Graduade School, Daejeon, Korea
2Department of Rehabilitation Medicine, Chungnam National University Hospital, Daejeon, Korea
3Department of Rehabilitation Medicine, Chungnam National University College of Medicine, Daejeon, Korea
4Department of Biomedical Engineering, Chungnam National University College of Medicine, Daejeon, Korea

Objectives: This study proposes a method for classifying three types of resting membrane potential signals obtained as imag-
es through diagnostic needle electromyography (EMG) using TensorFlow-Slim and Python to implement an artificial-intel-
ligence-based image recognition scheme. Methods: Waveform images of an abnormal resting membrane potential generated
by diagnostic needle EMG were classified into three types—positive sharp waves (PSW), fibrillations (Fibs), and Others—
using the TensorFlow-Slim image classification model library. A total of 4,015 raw waveform data instances were reviewed,
with 8,576 waveform images subsequently collected for training. Images were learned repeatedly through a convolutional
neural network. Each selected waveform image was classified into one of the aforementioned categories according to the
learned results. Results: The classification model, Inception v4, was used to divide waveform images into three catego-
ries (accuracy = 93.8%, precision = 99.5%, recall = 90.8%). This was done by applying the pretrained Inception v4 model to a
fine-tuning method. The image recognition model was created for training using various types of image-based medical data.
Conclusions: The TensorFlow-Slim library can be used to train and recognize image data, such as EMG waveforms, through
simple coding rather than by applying TensorFlow. It is expected that a convolutional neural network can be applied to image
data such as the waveforms of electrophysiological signals in a body based on this study.

Keywords: Artificial Intelligence, Deep Learning, Electromyography, Convolutional Neural Network, Classification

Healthc Inform Res. 2019 April;25(2):131-138.
https://doi.org/10.4258/hir.2019.25.2.131
pISSN 2093-3681 • eISSN 2093-369X

Tutorial

Submitted: March 28, 2019
Revised: April 20, 2019
Accepted: April 22, 2019

Corresponding Author
Il-Young Jung
Department of Rehabilitation Medicine, Chungnam National Uni-
versity College of Medicine, 266 Munhwa-ro, Jung-gu, Daejeon
35015, Korea. Tel: +82-42-338-2460, E-mail: 102onez@cnuh.co.kr
(https://orcid.org/0000-0001-8204-8195)
*These authors contributed equally to this work.

This is an Open Access article distributed under the terms of the Creative Com-
mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.

ⓒ 2019 The Korean Society of Medical Informatics

132 www.e-hir.org

Sangwoo Nam et al

https://doi.org/10.4258/hir.2019.25.2.131

damage, injury lesion, and amount of injury.
	 Artificial intelligence (AI) has been applied in healthcare
and medicine for many years [2]. Specifically, deep learn-
ing techniques can be applied to diagnostic needle EMG
owing to the need for repetitive testing in each muscle, the
importance of quantitative definitions to discern normal and
abnormal EMG outcomes, and the subjective nature of inter-
preting EMG results. Moreover, the criteria for normal and
abnormal findings are defined quantitatively, thus enabling
high-quality data to be selected. Further, an examiner’s
expertise and interpretation can influence the diagnosis;
therefore, AI can be used to improve the decision-making
accuracy.
	 In this study, we retrospectively collect needle EMG wave-
forms with abnormal spontaneous activities (ASAs) of the
resting membrane potential and describe how to use the
TensorFlow-Slim API to conduct AI-based EMG signal im-
aging recognition.

II. Methods

This study and the use of the needle EMG waveforms were
approved by the Institutional Review Board of Chungnam
National University Hospital (No. 2018-09-043). All needle
EMG results obtained from January 2014 to July 2018 at a
medical center were reviewed retrospectively. All measure-
ments were performed using the Viking IV electrodiagnostic
system (Nicolet Instrument Inc., Madison, WI, USA) and
a monopolar needle electrode. It was difficult to measure

stable membrane potentials for facial muscles, external anal
muscles, and paravertebral muscles accurately; therefore,
these results were excluded.
	 Because healthy muscle is electrically silent at rest, only
ASAs were collected in denervated muscles. The ASAs found
in needle EMG waveforms include positive sharp waves
(PSW) and the fibrillation potential (Fibs), commonly asso-
ciated with nerve and muscle problems, and the motor unit
action potential. After individual waveforms were extracted,
they were selected, reviewed, and classified by a specialist
who had performed electrodiagnostic studies for more than
5 years. A total of 4,015 raw waveform data were reviewed,
and 8,576 waveform images were collected for training with
a convolutional neural network (CNN).

1. Installation and Settings
In this study, a personal computer with an Intel I7 8700 3.20
GHz processor, 16 GB DDR4 RAM, and NVIDIA GeForce
GTX 1070 TI 8 GB is used. The used software consists of
Anaconda with Python, TensorFlow, and the TensorFlow-
Slim API. After installing Anaconda, at its prompt, we created
a virtual environment using the command “conda create -n
tensorflowgpu python = 3.5.” Once the TensorFlowGPU en-
vironment was created, we entered the command “activate
tensorflowgpu” at the prompt. Subsequently, we installed
TensorFlow-GPU version [3], CUDA Toolkit v9.0 [4,5], and
cuDNN [6].

Figure 1. �(A) Folders for artificial in-
telligence learning classified
into three categories: (B)
positive sharp wave (PSW)
samples, (C) fibrillation po-
tential (Fibs) samples, and
(D) Other samples (e.g., mo-
tor unit action potential).

Folders

PSW Fibs Others

A

B C D

133Vol. 25 • No. 2 • April 2019 www.e-hir.org

AI for Needle Electromyography Analysis

2. Creation of the TFRecord Dataset
We used the TensorFlow-Slim high-level API because it can
be used to create desired datasets, train images, and to con-
firm results easily and quickly [7,8].
	 To train the desired images, they were initially classified
by folder, as shown in Figure 1A, and the API code was
modified. Next, we converted thee images into a TFRecord

file format for training in TensorFlow. For this purpose, we
modified a Download_and_convert_data.py file as shown in
Figure 2A. Next, we copied download_and_convert_flowers.
py and flowers.py in the Slim\datasets\ folder and renamed
them to download_and_convert_EMG.py and EMG.py,
respectively, as shown in Figure 2B. In download_and_con-
vert_EMG.py, we modified _NUM_VALIDATION = 350 to

Figure 2. �The electromyography (EMG) waveform image was converted into a TFRecord dataset and the code was modified to pro-
ceed with customizing and learning: (A) modifying the code of Download_and_convert_data.py, (B) changing Download_
and_convert_flowers.py and flowers.py, (C) modifying the code of Download_and_convert_EMG.py, (D) modifying the
code of EMG.py, (E) modifying the code of Dataset_factory.py, and (F) modifying the code of eval_image_classifier.py.

Modifying EMG.pyD

Modifying dataset_factory.pyE

Modifying eval_image_classifier.pyF

Modifying Download_and_convert_data.pyA

Download_and_convert_EMG.py, EMG.pyB

Modifying Download_and_convert_EMG.pyC

134 www.e-hir.org

Sangwoo Nam et al

https://doi.org/10.4258/hir.2019.25.2.131

_NUM_VALIDATION = 1713, as shown in Figure 2C, to set
the validation data number. In general, 20% of the total data
was used for validation. Thus, 1,713 of the 8,567 images were
used for validation. Line 83 in Figure 2C set the path of the
original data when creating the dataset. Line 102 in Figure
2C shows the code for setting a TFRecord-type output file
name, and it was modified to replace Flower with EMG. In
this study, data need not be downloaded separately because
it was collected and arranged directly; therefore, Line 190 in
Figure 2C was commented out. Next, EMG.py was modified
as shown in Figure 2D. Lastly, code lines in dataset_factory.
py were modified as shown in Figure 2E. We issued the com-
mand to create the dataset as described in Appendix 1.

3. Training
In this study, we trained data by fine-tuning a model from
an existing checkpoint. We used the pretrained Inception v4

model, as shown in Figure 3 [9-11]. This model has a Top-
1 accuracy rate of 80.2% and a Top-5 accuracy rate of 95.2%.
Fine-tuning a model from an existing checkpoint involves
two training processes. In the first process, only the last layer
in the model was trained, and in the second process, the
entire layer was relearned using the trained model obtained
in the first process. In the pretrained model, because the last
layer consisted of classes that differ from those (i.e., PSW,
Fibs, Others) we want to classify, the existing layer structure
was removed to classify three EMG images. To train the last
layer, we created a my_checkpoints folder in a tmp folder.
After copying a downloaded inception_v4.ckpt file into the
folder, we trained it as described in Appendix 2. Next, we
trained the entire layer as described in Appendix 3. As train-
ing progressed, the loss value for each step was outputted, as
shown in Figure 4B, and training was performed according
to the preset step size, as shown in Figure 4A.

Filter concat

3 3 MaxPool

(stride 2 V)

1 1 Conv

(192)

3 3 Conv

(192 stride 2 V)

3 3 Conv

(320 stride 2 V)

Filter concat

7 1 Conv

(320)

1 7 Conv

(256)

1 1 Conv

(256)

Filter concat

3 3 MaxPool

(stride = 2 V)

3 3 Conv

(192 V)

Filter concat

35 35 384

71 19271

3 3 Conv

(96 V)

1 Conv

(64)

1

Filter concat

3 3 Conv

(96 V)

1 7 Conv

(64)

7 Conv

(64)

1

1 Conv

(64)

1

3 3 Conv

(96 stride 2 V)

3 3 MaxPool

(stride 2 V)

73 16073

3 3 Conv

(64)

3 3 Conv

(32 V)

3 3 Conv

(32 stride 2 V)

Input

(299 299 3)

147 147 64

147 147 32

149 149 32

299 299 3

Fully-connected layer

Softmax

Dropout (keep 0.8)

Avarage pooling

3 Inception-C Output: 8 8 1,536

Output: 1,000

Output: 1,536

Output: 1,536

7 Inception-B

Reduction-B

Reduction-A

4 Inception-A

Stem

Feature extraction

Output: 8 8 1,536

Output: 35 35 384

Output: 35 38435

299 3299

Output: 17 1,02417

Output: 17 1,02417

Input (299 299 3)

Filter concat

1 1 Conv

(256)

Filter concat

1 1 Conv

(256)

Avg pooling

1 3 Conv

(256)

3 1 Conv

(256)

1 1 Conv

(384)

3 1 Conv

(256)

1 3 Conv

(256)

3 1 Conv

(512)

1 3 Conv

(448)

1 1 Conv

(384)

Filter concat

Filter concat

1 7 Conv

(256)

7 1 Conv

(256)

1 7 Conv

(224)

7 1 Conv

(224)

1 7 Conv

(192)

1 1 Conv

(192)

7 1 Conv

(224)

1 1 Conv

(192)

1 1 Conv

(384)

1 1 Conv

(128)

Avg pooling

Filter concat

Filter concat

3 3 Conv

(96)

3 3 Conv

(96)

1 1 Conv

(64)

3 3 Conv

(96)

1 1 Conv

(64)

1 1 Conv

(96)

1 1 Conv

(96)

Avg pooling

Filter concat

Filter concat

3 3 Conv

(n stride 2 V)

3 3 MaxPool

(stride 2 V)

3 3 Conv

(m stride 2 V)

3 3 Conv

(l)

1 1 Conv

(k)

Figure 3. Overall schema for the pure Inception-v4 network used for image recognition.

135Vol. 25 • No. 2 • April 2019 www.e-hir.org

AI for Needle Electromyography Analysis

4. Evaluation
To evaluate the trained model, we modified eval_image_
classifier.py as shown in Figure 2F and performed evalu-
ations as described in Appendix 4 to obtain the accuracy,
precision, and recall values through the validation TFRecord
file. In addition, we wrote codes to implement a function for
a user to select data images for classification directly, as de-
scribed in Appendix 5. The EMG image to evaluate had been
selected, and it had been classified into one of three classes
(i.e., PSW, Fibs, Others) and displayed with a certain prob-
ability, as shown in Figure 5.

III. Results

We applied a CNN-based image classification model using

patients’ needle EMG waveform signal image data. Figure 5
shows that the image corresponding to the PSW of the EMG
signal waveforms can be recognized when it is applied to
the trained model, and we found that 100% of cases of PSW
were done correctly. Further, the performance evaluation
results of the trained model using the validation dataset were
as follows: accuracy = 93.8%, precision = 99.5%, and recall =
90.8%.

IV. Discussion

This paper presented the overall process for applying a CNN
for image recognition using Python and the TensorFlow-
Slim library. Specifically, we demonstrated that variable
waveform image data could be recognized by the CNN-

Training processA

0
.0

2
0
.0

k

4
0
.0

k

6
0
.0

k

8
0
.0

k

1
0
0
.0

k

1
2
0
.0

k

1
4
0
.0

k

1
6
0
.0

k

1
8
0
.0

k

2
0
0
.0

k

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

T
o
ta

l
lo

s
s

No. steps

Origin total loss

Smoothing total loss

Total lossB

Figure 4. �(A) A 200,000-step progress of all layers of model training, and (b) a convergence graph of total loss according to the prog-
ress.

Running image_classification_emg.py for image classificationA

Target imageB

ResultC

P12.png

Figure 5. �Verification process using
the completed model: (A)
running the image_classifi-
cation_emg.py file using the
completed training model,
(B) target image excluding
validation images, and (C)
image classification result.

136 www.e-hir.org

Sangwoo Nam et al

https://doi.org/10.4258/hir.2019.25.2.131

based training of medical images. The proposed image
recognition method was easily devised to analyze and use
various medical images. This tutorial has been prepared
for beginners who want to train and analyze images us-
ing a CNN; a CNN can play a significant role in accurately
interpreting needle EMG diagnostic results if an elaborate
waveform recognition algorithm is formulated in the future
in combination with automatic waveform recognition and
waveform digitizing techniques. If needle EMG is performed
under standard conditions using established methods, CNN-
based image classification can be used to support needle
EMG diagnostic analyses.
	 In this preliminary study, waveform annotation was done
manually. However, automatic waveform recognition and
classification would be possible by imaging a report result
sheet of medical signals and then training the correspond-
ing image as a single object with an object detection API. As
a result, the CNN can be applied to image data such as the
waveforms of electrophysiological signals in a body, and the
TensorFlow-Slim library can be used to train and recognize
image data through simple coding rather than with Tensor-
Flow.

Conflict of Interest

Hyoun-Joong Kong is an editor of Healthcare Informatics
Research; however, he did not involve in the peer reviewer
selection, evaluation, and decision process of this article.
Otherwise, no potential conflict of interest relevant to this
article was reported.

Acknowledgments

This work was supported by Chungnam National Univer-
sity Hospital Research Fund of 2017 (No. 2017-CF-015),
and supported by the MSIT (Ministry of Science and ICT),
Korea, under the ITRC (Information Technology Research
Center) support program (IITP-2019-2018-0-01833) super-
vised by the IITP (Institute for Information & communica-
tions Technology Promotion).

ORCID

Sangwoo Nam (http://orcid.org/0000-0003-2698-7766)
Min Kyun Sohn (http://orcid.org/0000-0002-2548-545X)
Hyun Ah Kim (http://orcid.org/0000-0002-1010-3279)
Hyoun-Joong Kong (http://orcid.org/0000-0001-5456-4862)
Il-Young Jung (http://orcid.org/0000-0001-8204-8195)

References

1.	 Lindstrom H, Ashworth NL. The usefulness of electro-
diagnostic studies in the diagnosis and management of
neuromuscular disorders. Muscle Nerve 2018;58(2):191-6.

2.	 Noorbakhsh-Sabet N, Zand R, Zhang Y, Abedi V. Arti-
ficial intelligence transforms the future of health care.
Am J Med 2019 Jan 31 [Epub]. http://doi.org/10.1016/
j.amjmed.2019.01.017.

3.	 NVIDIA CUDA Toolkit [Internet]. Santa Clara (CA):
NVIDIA Corp.; c2019 [cited as 2019 Jan 15]. Available
from: https://developer.nvidia.com/cuda-toolkit.

4.	 TensorFlow.org. GPU support [Internet]. [place un-
known]: TensorFlow.org; c2019 [cited as 2019 Jan 15].
Available from: https://www.tensorflow.org/install/gpu.

5.	 NVIDIA cuDNN [Internet]. Santa Clara (CA): NVIDIA
Corp.; c2019 [cited as 2019 Jan 15]. Available from:
https://developer.nvidia.com/cudnn.

6.	 TensorFlow.org. Install TensorFlow with pip [Internet].
[place unknown]: TensorFlow.org; 2015 [cited at 2019
Apr 15]. Available from: https://www.tensorflow.org/
install/pip?hl=ko.

7.	 Silberman N, Guadarrama S. TensorFlow-Slim image
classification model library [Internet]. [place unknown]:
GitHub Inc.; 2016 [cited at 2019 Apr 15]. Available from:
https://github.com/tensorflow/models/tree/master/re-
search/slim.

8.	 GitHub Inc. TensorFlow models [Internet]. [place un-
known]: GitHub Inc.; c2019 [cited at 2019 Apr 15].
Available from: https://github.com/tensorflow/models.

9.	 Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-
v4, Inception-ResNet and the impact of residual con-
nections on learning. Proceedings of the 31st AAAI
Conference on Artificial Intelligence; 2017 Feb 4-9; San
Francisco, CA. p. 4278-84.

10.	 Pham TC, Luong CM, Visani M, Hoang VD. Deep CNN
and data augmentation for skin lesion classification. In:
Nguyen N, Hoang D, Hong TP, Pham H, Trawinski B,
editors. Intelligent information and database systems.
Cham, Switzerland: Springer; 2018. p. 573-82.

11.	 GitHub Inc. Inception[3] Inception v4, Inception
ResNet and the Impact of Residual Connections on
Learning(2016) [Internet]. [place unknown]: GitHub
Inc.; 2018 [cited at 2019 Apr 15]. Available from: https://
github.com/hwkim94/hwkim94.github.io/wiki.

137Vol. 25 • No. 2 • April 2019 www.e-hir.org

AI for Needle Electromyography Analysis

Appendix 1. Create the TFRecord file using EMG image data

Python download_and_convert_data.py
--dataset_name=EMG
--dataset_dir=/tmp/EMG

Appendix 2. Training a model from parameter values

Python train_image_classifier.py
--train_dir=\tmp\train_inception_v4_EMG_FineTune_logs
--dataset_name=EMG
--dataset_split_name=train
--dataset_dir=\tmp\EMG
--model_name=inception_v4
--checkpoint_path=\tmp\my_checkpoints\inception_v4.ckpt
--checkpoint_exclude_scopes=InceptionV4/Logits
--trainable_scopes=InceptionV4/Logits
--max_number_of_steps=1000
--batch_size=16
--learning_rate=0.01
--learning_rate_decay_type=fixed
--save_interval_secs=60
--save_summaries_secs=60
--log_every_n_steps=1
--optimizer=rmsprop
--weight_decay=0.00004

Appendix 3. Fine-tuning a model from an existing checkpoint

Python train_image_classifier.py
--train_dir=d:\tmp\train_inception_v4_EMG_FineTune_logs\all
--dataset_name=EMG
--dataset_split_name=train
--dataset_dir=d:\tmp\EMG
--model_name=inception_v4
--checkpoint_path=d:\tmp\train_inception_v4_EMG_FineTune_logs
--max_number_of_steps=200000
--batch_size=10
--learning_rate=0.00005
--learning_rate_decay_type=fixed
--save_interval_secs=60
--save_summaries_secs=60
--log_every_n_steps=1
--optimizer=rmsprop
--weight_decay=0.00004

Appendix 4. Fine-tuning a model evaluation

Python eval_image_classifier.py -alsologtostderr
--checkpoint_path=d:\tmp\train_inception_v4_EMG_FineTune_logs\all\
--dataset_dir=d:\tmp\EMG
--dataset_name=EMG

138 www.e-hir.org

Sangwoo Nam et al

https://doi.org/10.4258/hir.2019.25.2.131

--dataset_split_name=validation
--model_name=inception_v4

Appendix 5. EMG signal image classification (image_classification_emg.py)

from matplotlib import pyplot as plt
import numpy as np
import os
import tensorflow as tf
from nets import inception
from preprocessing import inception_preprocessing
from tkinter import Tk
from tkinter.filedialog import askopenfilename
Tk().withdraw()
checkpoints_dir = ‘D:\\tmp\\train_inception_v4_EMG_FineTune_logs\\all’
slim = tf.contrib.slim
image_size = inception.inception_v4.default_image_size
while True:
 file = askopenfilename()
 if file == “”:
 break
 str(file)
 print(file)
 with tf.Graph().as_default():
 image_input = tf.read_file(file)
 image = tf.image.decode_jpeg(image_input, channels=3)
 processed_image = inception_preprocessing.preprocess_image(image, image_size, image_size, is_training=False)
 processed_images = tf.expand_dims(processed_image, 0)
 with slim.arg_scope(inception.inception_v4_arg_scope()):
 �logits, _ = inception.inception_v4(processed_images, num_classes=3, is_training=False)
 probabilities = tf.nn.softmax(logits)
 �init_fn = slim.assign_from_checkpoint_fn(os.path.join(checkpoints_dir, ‘model.ckpt-200000’), slim.get_model_
 variables(‘InceptionV4’))
 with tf.Session() as sess:
 init_fn(sess)
 np_image, probabilities = sess.run([image, probabilities])
 probabilities = probabilities[0, 0:]
 sorted_inds = [i[0] for i in sorted(enumerate(-probabilities), key=lambda x: x[1])]
 plt.figure()
 plt.imshow(np_image.astype(np.uint8))
 plt.axis(‘off ’)
 names = os.listdir(“D:\\tmp\\EMG\\EMG_photos”)
 for i in range(3):
 index = sorted_inds[i]
 print('Probability %0.2f%% => [%s]' % (probabilities[index], names[index]))

