
I. Introduction

Electrodiagnostic studies include nerve conduction stud-
ies, needle electromyography (EMG), and evoked potential 
studies, among others. Testing electrical signals from nerves, 
muscles, and neuromuscular junctions can help to clarify 
electrophysiologic findings and abnormalities [1]. The elec-
trodiagnostic studies obtained results through a combination 
of protocolized test procedures, expert decision-making, 
and by referring to quantified results. Needle EMG, one of 
the tests that make up electrodiagnostic studies, involves in-
serting a needle electrode into a muscle to record generated 
electrical signals. A specialist checked whether these signals 
are normal or abnormal to estimate electrophysiological 
information on nerves and muscles, such as the period after 
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damage, injury lesion, and amount of injury.
	 Artificial intelligence (AI) has been applied in healthcare 
and medicine for many years [2]. Specifically, deep learn-
ing techniques can be applied to diagnostic needle EMG 
owing to the need for repetitive testing in each muscle, the 
importance of quantitative definitions to discern normal and 
abnormal EMG outcomes, and the subjective nature of inter-
preting EMG results. Moreover, the criteria for normal and 
abnormal findings are defined quantitatively, thus enabling 
high-quality data to be selected. Further, an examiner’s 
expertise and interpretation can influence the diagnosis; 
therefore, AI can be used to improve the decision-making 
accuracy.
	 In this study, we retrospectively collect needle EMG wave-
forms with abnormal spontaneous activities (ASAs) of the 
resting membrane potential and describe how to use the 
TensorFlow-Slim API to conduct AI-based EMG signal im-
aging recognition. 

II. Methods

This study and the use of the needle EMG waveforms were 
approved by the Institutional Review Board of Chungnam 
National University Hospital (No. 2018-09-043). All needle 
EMG results obtained from January 2014 to July 2018 at a 
medical center were reviewed retrospectively. All measure-
ments were performed using the Viking IV electrodiagnostic 
system (Nicolet Instrument Inc., Madison, WI, USA) and 
a monopolar needle electrode. It was difficult to measure 

stable membrane potentials for facial muscles, external anal 
muscles, and paravertebral muscles accurately; therefore, 
these results were excluded.
	 Because healthy muscle is electrically silent at rest, only 
ASAs were collected in denervated muscles. The ASAs found 
in needle EMG waveforms include positive sharp waves 
(PSW) and the fibrillation potential (Fibs), commonly asso-
ciated with nerve and muscle problems, and the motor unit 
action potential. After individual waveforms were extracted, 
they were selected, reviewed, and classified by a specialist 
who had performed electrodiagnostic studies for more than 
5 years. A total of 4,015 raw waveform data were reviewed, 
and 8,576 waveform images were collected for training with 
a convolutional neural network (CNN).

1. Installation and Settings
In this study, a personal computer with an Intel I7 8700 3.20 
GHz processor, 16 GB DDR4 RAM, and NVIDIA GeForce 
GTX 1070 TI 8 GB is used. The used software consists of 
Anaconda with Python, TensorFlow, and the TensorFlow-
Slim API. After installing Anaconda, at its prompt, we created 
a virtual environment using the command “conda create -n 
tensorflowgpu python = 3.5.” Once the TensorFlowGPU en-
vironment was created, we entered the command “activate 
tensorflowgpu” at the prompt. Subsequently, we installed 
TensorFlow-GPU version [3], CUDA Toolkit v9.0 [4,5], and 
cuDNN [6].

Figure 1. �(A) Folders for artificial in-
telligence learning classified 
into three categories: (B) 
positive sharp wave (PSW) 
samples, (C) fibrillation po-
tential (Fibs) samples, and 
(D) Other samples (e.g., mo-
tor unit action potential).

Folders

PSW Fibs Others

A
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2. Creation of the TFRecord Dataset
We used the TensorFlow-Slim high-level API because it can 
be used to create desired datasets, train images, and to con-
firm results easily and quickly [7,8].
	 To train the desired images, they were initially classified 
by folder, as shown in Figure 1A, and the API code was 
modified. Next, we converted thee images into a TFRecord 

file format for training in TensorFlow. For this purpose, we 
modified a Download_and_convert_data.py file as shown in 
Figure 2A. Next, we copied download_and_convert_flowers.
py and flowers.py in the Slim\datasets\ folder and renamed 
them to download_and_convert_EMG.py and EMG.py, 
respectively, as shown in Figure 2B. In download_and_con-
vert_EMG.py, we modified _NUM_VALIDATION = 350 to 

Figure 2. �The electromyography (EMG) waveform image was converted into a TFRecord dataset and the code was modified to pro-
ceed with customizing and learning: (A) modifying the code of Download_and_convert_data.py, (B) changing Download_
and_convert_flowers.py and flowers.py, (C) modifying the code of Download_and_convert_EMG.py, (D) modifying the 
code of EMG.py, (E) modifying the code of Dataset_factory.py, and (F) modifying the code of eval_image_classifier.py.

Modifying EMG.pyD

Modifying dataset_factory.pyE

Modifying eval_image_classifier.pyF

Modifying Download_and_convert_data.pyA

Download_and_convert_EMG.py, EMG.pyB

Modifying Download_and_convert_EMG.pyC
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_NUM_VALIDATION = 1713, as shown in Figure 2C, to set 
the validation data number. In general, 20% of the total data 
was used for validation. Thus, 1,713 of the 8,567 images were 
used for validation. Line 83 in Figure 2C set the path of the 
original data when creating the dataset. Line 102 in Figure 
2C shows the code for setting a TFRecord-type output file 
name, and it was modified to replace Flower with EMG. In 
this study, data need not be downloaded separately because 
it was collected and arranged directly; therefore, Line 190 in 
Figure 2C was commented out. Next, EMG.py was modified 
as shown in Figure 2D. Lastly, code lines in dataset_factory.
py were modified as shown in Figure 2E. We issued the com-
mand to create the dataset as described in Appendix 1.

3. Training
In this study, we trained data by fine-tuning a model from 
an existing checkpoint. We used the pretrained Inception v4 

model, as shown in Figure 3 [9-11]. This model has a Top-
1 accuracy rate of 80.2% and a Top-5 accuracy rate of 95.2%. 
Fine-tuning a model from an existing checkpoint involves 
two training processes. In the first process, only the last layer 
in the model was trained, and in the second process, the 
entire layer was relearned using the trained model obtained 
in the first process. In the pretrained model, because the last 
layer consisted of classes that differ from those (i.e., PSW, 
Fibs, Others) we want to classify, the existing layer structure 
was removed to classify three EMG images. To train the last 
layer, we created a my_checkpoints folder in a tmp folder. 
After copying a downloaded inception_v4.ckpt file into the 
folder, we trained it as described in Appendix 2. Next, we 
trained the entire layer as described in Appendix 3. As train-
ing progressed, the loss value for each step was outputted, as 
shown in Figure 4B, and training was performed according 
to the preset step size, as shown in Figure 4A.
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Figure 3. Overall schema for the pure Inception-v4 network used for image recognition.
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4. Evaluation
To evaluate the trained model, we modified eval_image_
classifier.py as shown in Figure 2F and performed evalu-
ations as described in Appendix 4 to obtain the accuracy, 
precision, and recall values through the validation TFRecord 
file. In addition, we wrote codes to implement a function for 
a user to select data images for classification directly, as de-
scribed in Appendix 5. The EMG image to evaluate had been 
selected, and it had been classified into one of three classes 
(i.e., PSW, Fibs, Others) and displayed with a certain prob-
ability, as shown in Figure 5.

III. Results

We applied a CNN-based image classification model using 

patients’ needle EMG waveform signal image data. Figure 5 
shows that the image corresponding to the PSW of the EMG 
signal waveforms can be recognized when it is applied to 
the trained model, and we found that 100% of cases of PSW 
were done correctly. Further, the performance evaluation 
results of the trained model using the validation dataset were 
as follows: accuracy = 93.8%, precision = 99.5%, and recall = 
90.8%.

IV. Discussion

This paper presented the overall process for applying a CNN 
for image recognition using Python and the TensorFlow-
Slim library. Specifically, we demonstrated that variable 
waveform image data could be recognized by the CNN-
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based training of medical images. The proposed image 
recognition method was easily devised to analyze and use 
various medical images. This tutorial has been prepared 
for beginners who want to train and analyze images us-
ing a CNN; a CNN can play a significant role in accurately 
interpreting needle EMG diagnostic results if an elaborate 
waveform recognition algorithm is formulated in the future 
in combination with automatic waveform recognition and 
waveform digitizing techniques. If needle EMG is performed 
under standard conditions using established methods, CNN-
based image classification can be used to support needle 
EMG diagnostic analyses.
	 In this preliminary study, waveform annotation was done 
manually. However, automatic waveform recognition and 
classification would be possible by imaging a report result 
sheet of medical signals and then training the correspond-
ing image as a single object with an object detection API. As 
a result, the CNN can be applied to image data such as the 
waveforms of electrophysiological signals in a body, and the 
TensorFlow-Slim library can be used to train and recognize 
image data through simple coding rather than with Tensor-
Flow.
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Appendix 1. Create the TFRecord file using EMG image data

Python download_and_convert_data.py 
--dataset_name=EMG 
--dataset_dir=/tmp/EMG

Appendix 2. Training a model from parameter values

Python train_image_classifier.py
--train_dir=\tmp\train_inception_v4_EMG_FineTune_logs
--dataset_name=EMG
--dataset_split_name=train
--dataset_dir=\tmp\EMG
--model_name=inception_v4
--checkpoint_path=\tmp\my_checkpoints\inception_v4.ckpt
--checkpoint_exclude_scopes=InceptionV4/Logits
--trainable_scopes=InceptionV4/Logits
--max_number_of_steps=1000
--batch_size=16
--learning_rate=0.01
--learning_rate_decay_type=fixed
--save_interval_secs=60
--save_summaries_secs=60
--log_every_n_steps=1
--optimizer=rmsprop
--weight_decay=0.00004

Appendix 3. Fine-tuning a model from an existing checkpoint

Python train_image_classifier.py
--train_dir=d:\tmp\train_inception_v4_EMG_FineTune_logs\all
--dataset_name=EMG
--dataset_split_name=train
--dataset_dir=d:\tmp\EMG
--model_name=inception_v4
--checkpoint_path=d:\tmp\train_inception_v4_EMG_FineTune_logs
--max_number_of_steps=200000
--batch_size=10
--learning_rate=0.00005
--learning_rate_decay_type=fixed
--save_interval_secs=60
--save_summaries_secs=60
--log_every_n_steps=1
--optimizer=rmsprop
--weight_decay=0.00004

Appendix 4. Fine-tuning a model evaluation

Python eval_image_classifier.py -alsologtostderr 
--checkpoint_path=d:\tmp\train_inception_v4_EMG_FineTune_logs\all\ 
--dataset_dir=d:\tmp\EMG 
--dataset_name=EMG 
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--dataset_split_name=validation 
--model_name=inception_v4

Appendix 5. EMG signal image classification (image_classification_emg.py)

from matplotlib import pyplot as plt
import numpy as np
import os
import tensorflow as tf
from nets import inception
from preprocessing import inception_preprocessing
from tkinter import Tk
from tkinter.filedialog import askopenfilename
Tk().withdraw()
checkpoints_dir = ‘D:\\tmp\\train_inception_v4_EMG_FineTune_logs\\all’
slim = tf.contrib.slim
image_size = inception.inception_v4.default_image_size
while True:
       file = askopenfilename()
       if file == “”:
              break
       str(file)
       print(file)
       with tf.Graph().as_default():
               image_input = tf.read_file(file)
               image = tf.image.decode_jpeg(image_input, channels=3)
               processed_image = inception_preprocessing.preprocess_image(image, image_size,  image_size, is_training=False)
               processed_images = tf.expand_dims(processed_image, 0)
               with slim.arg_scope(inception.inception_v4_arg_scope()):
                   �logits, _ = inception.inception_v4(processed_images, num_classes=3, is_training=False)
               probabilities = tf.nn.softmax(logits)
               �init_fn = slim.assign_from_checkpoint_fn(os.path.join(checkpoints_dir, ‘model.ckpt-200000’), slim.get_model_
                 variables(‘InceptionV4’))
               with tf.Session() as sess:
                    init_fn(sess)
                    np_image, probabilities = sess.run([image, probabilities])
                    probabilities = probabilities[0, 0:]
                    sorted_inds = [i[0] for i in sorted(enumerate(-probabilities), key=lambda x: x[1])]
                plt.figure()
                plt.imshow(np_image.astype(np.uint8))
                plt.axis(‘off ’)
                names = os.listdir(“D:\\tmp\\EMG\\EMG_photos”)
                for i in range(3):
                     index = sorted_inds[i]
                     print('Probability %0.2f%% => [%s]' % (probabilities[index], names[index]))


