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Liver fibrosis develops in response to chronic toxic or cholestatic injury, and is
characterized by apoptosis of damaged hepatocytes, development of inflammatory
responses, and activation of Collagen Type I producing myofibroblasts that make liver
fibrotic. Twomajor cell types, Hepatic Stellate Cells (HSCs) and Portal Fibroblasts (PFs) are
the major source of hepatic myofibroblasts. Hepatotoxic liver injury activates Hepatic
Stellate Cells (aHSCs) to become myofibroblasts, while cholestatic liver injury activates
both aHSCs and Portal Fibroblasts (aPFs). aPFs comprise the major population of
myofibroblasts at the onset of cholestatic injury, while aHSCs are increasingly activated
with fibrosis progression. Here we summarize our current understanding of the role of aPFs
in the pathogenesis of cholestatic fibrosis, their unique features, and outline the potential
mechanism of targeting aPFs in fibrotic liver.
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INTRODUCTION

Hepatic fibrosis is the outcome of chronic liver diseases, including cholestatic liver disease (primary
sclerosing cholangitis (PSC), primary biliary cirrhosis (PBC), and secondary biliary cirrhosis (SBC))
(Lazaridis and LaRusso, 2016) and toxic liver injury (hepatitis B virus (HBV), hepatitis C virus
(HCV), alcoholic liver disease and non-alcoholic steatohepatitis (NASH)) (Friedman, 2008; Dranoff
andWells, 2010). It is characterized by extensive deposition of extracellular matrix (ECM). Activated
hepatic myofibroblasts, which are absent in the healthy liver, are the major source Collagen Type I
which form the fibrous scar (Friedman, 2008). Hepatic stellate cells (HSCs) and portal fibroblasts
(PFs) are believed to serve as the major source of the fibrous scar in the injured liver (Bataller and
Brenner, 2005).

Cholestatic fibrosis is caused by chronic cholestatic injury (Lazaridis and LaRusso, 2016),
hepatocyte apoptosis, ductular proliferation, inflammation, and activation of myofibroblasts.
Both activated PFs (aPFs) and activated HSCs (aHSCs) (Dranoff and Wells, 2010) can produce
myofibroblasts that drive cholestatic fibrosis. Despite extensive studies, the origin and contribution of
hepatic myofibroblasts to cholestatic fibrosis remains controversial. Several studies in humans and
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experimental models of cholestatic fibrosis implicated aPFs in the
pathogenesis of cholestatic fibrosis, suggesting that aPFs might
serve as the primary targets for anti-fibrotic therapy (Dranoff and
Wells, 2010; Wells, 2014). In support, aPFs contribute to the
fibroproliferative responses in patients with primary and
secondary biliary cirrhosis (PSC and SBC), but not in patients
with toxic liver fibrosis such as HBV/HCV (Koyama et al., 2017).

Under the physiological conditions, PFs comprise a small
population of cells that surround the portal vein to maintain
integrity of the portal tract (Dranoff andWells, 2010). Cholestatic
(but not toxic) injury (Desmoulière et al., 1997) causes their
proliferation and differentiation into Collagen Type I-producing
myofibroblasts( (Dranoff and Wells, 2010), (Desmoulière et al.,
1997), (Yata et al., 2003)), suggesting that aPFs are the “first
responders” to the cholestasis-induced fibrogenic liver injury.
Using the reporter Col-GFP mice (in which Collagen-1α(I)
promoter drives expression of the GFP reporter gene in real
time), aPFs were shown to comprise 70% of myofibroblasts at the
onset of cholestatic fibrosis caused by the obstruction of the
common bile duct (BDL), that mimics mechanical bile duct
occlusion by liver stones or tumor mass. Similar results were
obtained using another model of cholestatic injury, Mdr2-/- mice
(Smit et al., 1993) (deficient for canalicular phospholipid flippase,
Mdr2/Abcb4), which develop disruption of bile duct tight
junctions and basal membranes, causing bile leakage, and
periportal cholestatic fibrosis (Smit et al., 1993) that resembles
PSC (Fickert et al., 2002; Fickert et al., 2004; Popov et al., 2005;
Fickert et al., 2009; Baghdasaryan et al., 2010; Mair et al., 2010),
and mimics MDR2 deficiency in patients (Jacquemin, 2001;
Fickert et al., 2004; Popov et al., 2005). Moreover, cholestasis-
activated aHSCs share more resemblance with aPFs than with
CCl4-activated aHSCs, suggesting that fibrogenic responses
caused by cholestatic fibrosis differ significantly from those
induced by toxic injury, and therefore the mechanism of the
cholestatic fibrosis progression should be studied in further detail
(Iwaisako et al., 2014).

The contribution of aPFs to liver fibrosis of different etiologies
remains not well understood, mainly because of difficulties with
the isolation of PFs and myofibroblasts. The most widely used
method of aPF isolation is based on enzymatic digestion followed
by size selection (Wen et al., 2012), as well as cell outgrowth from
dissected bile and enzymatically digested liver segments(Uchio
et al., 2002), (Kruglov et al., 2002). aPFs are identified by
expression of Elastin, Col1a1, and other fibrogenic genes.
Expression of specific markers such as Thy-1 (Knittel et al.,
1999; Dudas et al., 2007; Yovchev et al., 2009; Katsumata
et al., 2017), Fibulin 2 (Knittel et al., 1999), IL-6, Elastin
(Goodpaster et al., 2008), the ecto-AT-Pase nucleoside
triphosphate diphosphohydrolase-2 (NTPD2) (Dranoff et al.,
2002), and coffilin 1 (Bosselut et al., 2010) was originally
identified in aPFs, demonstrating that these cells are different
from desmin, cytoglobin, GFAP, p75NGFr, and Vitamin A
expressing HSCs (Bataller and Brenner, 2005; Dranoff and
Wells, 2010; Fausther and Dranoff, 2011). The development of
flow cytometry-based techniques made it possible to sort purify
the population of hepatic Col-GFP+Thy-1+VitaminA−CD45−

aPFs, which can be distinguished from Col-GFP+Thy-

1−VitaminA+ aHSCs, and identified new markers of aPFs such
as Mesothelin (Msln), Muc16, CD34, Gpc3, Asporin, Bnc1
(Iwaisako et al., 2014; Nishio et al., 2021). Moreover, Msln
was shown to critically regulate fibrogenic activation and
proliferation of aPFs in response to cholestatic injury. This
review will summarize the potential role of Msln-Thy-1 and
Muc16 signaling in the activation of aPFs in experimental
models of cholestatic fibrosis, and discuss the emerging
strategies to target aPFs to treat cholestatic liver fibrosis.

CHOLESTATIC LIVER FIBROSIS

The etiology of cholestatic injury differs considerably from toxic
liver injury. Cholestatic injury results from genetic defects or
mechanical injury of the bile ducts, causing impaired
hepatobiliary production and excretion of bile, accumulation
of bile and liver tissue damage, apoptosis and proliferation of
mature cholangiocytes and hepatocytes, inflammation, and
biliary fibrosis (Fickert et al., 2009; Vavassori et al., 2009;
Wagner et al., 2010). Several experimental models are
routinely used to dissect the mechanism of cholestatic fibrosis,
such as Mdr2-/- mice (Smit et al., 1993) and BDL. Despite
different etiologies, these models exhibit common
pathophysiological features. Reversal of the etiological cause of
cholestasis may result in regression of liver fibrosis.

ACTIVATED PORTAL FIBROBLASTS PLAY
A KEY ROLE IN CHOLESTATIC LIVER
FIBROSIS
Activation of fibrogenic Collagen Type I producing
myofibroblasts is the key event leading to the progression of
cholestatic fibrosis. Myofibroblasts are characterized by a spindle
or stellate shape and expression of abundant intracellular proteins
(vimentin, α-smooth muscle actin (α-SMA), non-muscle myosin)
(Eyden, 2008), rough endoplasmic reticulum (rER) and a Golgi
apparatus producing collagen (Gabbiani et al., 1971; Majno et al.,
1971; Schürch et al., 1998; Eyden, 2008).

The Origin of Myofibroblasts in Cholestatic
Liver Fibrosis
The cell that secretes the fibrillary collagens leading to cholestatic
fibrosis has a long and controversial history (Dranoff and Wells,
2010; Mederacke et al., 2013). Due to lineage tracing studies by
our lab (Iwaisako et al., 2014; Koyama et al., 2017) and others
(Asahina et al., 2009; Asahina et al., 2011), there is a clear
consensus that endogenous mesenchymal cells activate to
become myofibroblasts that secrete the fibrous scar proteins.
Fate mapping studies have also demonstrated that epithelial
mesenchymal transition (EMT) (Scholten et al., 2010; Taura
et al., 2010; Chu et al., 2011), or recruited fibrocytes (Kisseleva
et al., 2006; Scholten et al., 2011; Iwaisako et al., 2014) are not
major contributors to the myofibroblast population. In turn, two
hepatic mesenchymal cells become myofibroblasts depending on
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the fibrotic stimulus (Iwaisako et al., 2014). Hepatotoxic liver
injury activates HSCs to become myofibroblasts, while cholestatic
liver injury activates both HSCs and aPFs (Dranoff et al., 2002;
Kruglov et al., 2002; Wen et al., 2012). aPFs comprise 70% of
myofibroblasts at the onset of bile duct ligation (BDL)-induced
injury, while aHSCs are increasingly activated with fibrosis
progression (Iwaisako et al., 2014; Karin et al., 2016)
(Figures 1A,B).

Hepatic Stellate Cells
Under physiological conditions, quiescent HSCs express
desmin, neural markers (glial fibrillar acidic protein
(GFAP), synaptophysin (Bataller and Brenner, 2005), NGF
receptor p75 (Sachs et al., 2007; Kendall et al., 2009)), and
Vitamin A droplets( (Iredale, 2007; Geerts, 2001; Senoo et al.,
2007)) and reside in the space of Disse (Figure 1A), but in
response to injury differentiate into aHSCs/myofibroblasts
expressing vimentin, and collagens (Kisseleva and Brenner,
2006; Fallowfield et al., 2007).

Portal Fibroblasts
In normal liver, portal fibroblasts (PFs) comprise a small
population of “periductular mesenchymal cells” that surround
the portal vein and maintain integrity of the portal tract

(Figure 1B) (Desmoulière, 2007; Dranoff and Wells, 2010;
Wells, 2014). In response to cholestatic injury (but not toxic
carbon tetrachloride (CCl4)-induced injury) (Desmoulière
et al., 1997), activated portal fibroblasts (aPFs) proliferate,
upregulate Col1a1, TIMP1, Spp1, TGFβRI, TGFβ2, and secrete
extracellular matrix (ECM) (Desmoulière et al., 1997; Yata
et al., 2003; Dranoff and Wells, 2010). aPFs are identified by
expression of Thy-1( (Knittel et al., 1999; Dudas et al., 2007;
Yovchev et al., 2009)), Fibulin 2 (Knittel et al., 1999), Elastin
(Goodpaster et al., 2008), NTPD2 (Dranoff et al., 2002),
coffilin 1 (Bosselut et al., 2010), Msln, Muc16, Apsorin,
Bnc1, Upk1β, Calca, Gpc3 ((Koyama et al., 2017), (Iwaisako
et al., 2014)). We have recently demonstrated that Msln,
Muc16 (Koyama et al., 2017), and Thy-1 (Katsumata et al.,
2017) play a critical role in regulation of aPF biology.

UNIQUE FEATURES OF ACTIVATED
PORTAL FIBROBLASTS

Based on gene expression profiling, BDL-activated aPFs
expressed genes that distinguish them from CCl4-activated
aHSCs, and were identified as “signature genes” for aPFs. In
concordance with previous studies (Kawada et al., 2001; Bosselut
et al., 2010), aPF signature genes included Thy-1, Elastin, Gremlin
1, Fibulin 2, and NTPD2 (Dranoff and Wells, 2010; Forbes and
Parola, 2011), but also the newly identified genes, Msln, and
Muc 16, Calca, Upk1β, Bnc1 and others. Human
MSLN+THY1+αSMA+ aPFs also express aPF-specific markers
(UPK1b, CD200, EMILIN2, BNC1, ASPN, GPC3, and GREM1)
similar to that observed in mouse aPFs, suggesting that
upregulation of these specific genes in activated PFs is
preserved among species. Some of these genes Msln, Calca,
Upk1β, Bnc1 were reported as signature genes of murine
hepatic mesothelial (Onitsuka et al., 2010) and epicardial cells
(Bochmann et al., 2010), supporting the theory that PFs originate
from mesothelial cells (Asahina et al., 2009; Asahina, 2012).
Expression of Msln and Muc16 is detected in Thy-1+ aPFs but
not in qHSCs, aHSCs, endothelial cells (EC), Kupffer cells (KC),
or cholangiocytes. The fact that expression of Msln was detected
only in isolated aPFs but not in other liver fractions suggests
(Iwaisako et al., 2014) that Msln expression might be important
for aPF biology.

HISTORICAL CHARACTERIZATION OF
MSLN, CA125 AND THY-1

Mesothelin
Msln (Chang and Pastan, 1996) is Glycosylphosphatidyl inositol
(GPI)-linked membrane-anchored protein (71 kDa, Msln
precursor). Originally, MSLN was identified as a tumor
marker. Human MSLN is strongly upregulated in several
human malignancies, including mesotheliomas and ovarian
cancer, and is a target for anti-cancer therapy. Anti-MSLN
Abs have been generated and are being tested in clinical trials
in patients with ovarian cancer.

FIGURE 1 | Portal fibroblasts/myofibroblasts (aPFs/MFs) and hepatic
stellate cells (HSCs). (A). PFs are located around portal triads, while HSCs are
located in the space of Disse, which is between sinusoidal endothelial cells
and hepatocytes cluster. (B). Bile ducts proliferate in response to bile
duct ligation, known as “ductular reaction.” PV, portal vein, CV, central vein,
HA, hepatic artery, BD, bile duct.
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Mucin 16
Muc16 is themurine analogue of human CA125 (McMullen et al.,
2005). Studies of patients with ovarian cancer have identified the
cancer antigen CA125 as a Msln ligand (Pastan and Hassan,
2014), which is widely used as a diagnostic marker (with the
exception of liver and lung cirrhosis which are considered as
“false positives” (Scholler and Urban, 2007). CA125 is a member
of the membrane-tethered family of mucins, which contains a
transmembrane domain with a short cytoplasmic domain, and
highly glycosylated at N-terminus (Pastan and Hassan, 2014) and
is a MSLN ligand (Gubbels et al., 2006; Kaneko et al., 2009).

Msln-Muc16 Signaling in Cancer Cells
Since its discovery in 1992 as a cancer antigen, the mechanism of
human MSLN signaling remains unresolved. Until recently,
CA125 (mouse Muc16) remained the only known ligand of
MSLN that activates Src/Akt signaling in cancer cells. In
cancer cells MSLN-Muc16 signaling increases cancer cell
proliferation and metastasis. Msln-mediated secretion of
MMP-7 in MUC16-expressing cancer cells occurs via a
p38 MAPK-dependent pathway. Depletion of MMP-7 or
inhibition of p38 activity abolishes MSLN-mediated cancer cell
motility and invasion. Knockdown of Msln suppresses tumor
invasiveness in xenograft models in mice (He et al., 2017).
Although, Msln-/- and Muc16-/- mice have a normal
phenotype until injury or stress (Bera and Pastan, 2000;
McMullen et al., 2005), when subjected to experimental model
of liver cancer, Msln-knockout mice developed a defect in
activation of cancer associated myofibroblasts (Zhang et al.,
2011).

Msln as a Mesothelial Marker
Expression of Msln is not restricted to cancer cells or cancer-
associated myofibroblasts but is also induced in aPFs. Msln also
serves as a mesothelial cell marker (Pastan and Hassan, 2014).
Msln is highly expressed during embryonic development (Majno
et al., 1971; Iwaisako et al., 2014) but minimally expressed in
adulthood (Pastan and Hassan, 2014). In adult mice and humans,
Msln-expressing stem-like cells reside in the mesothelial layer
lining of parenchymal organs and serosal cavities (Bera and
Pastan, 2000) in a dormant state, and do not proliferate until
injury or stress, and have a capability to give rise to the
mesenchymal and mesothelial cells, as well as fibroblasts.

Thy-1 (CD90, Cluster of Differentiation 90)
Thy-1 is a 25–37 kDa heavily N-glycosylated (GPI)-linked cell
surface protein (Nosten-Bertrand et al., 1996), with a single V-like
immunoglobulin domain, originally discovered as a thymocyte
antigen.Thy-1 is a GPI-anchored protein (like Msln) (Nosten-
Bertrand et al., 1996) expressed in fibroblasts, T cells and neurons,
and considered to be a specific marker for these cell types. Thy-1
was implicated in inhibition of TGFβ1 responses in tissue
fibroblasts. Studies of lung fibroblasts have demonstrated that
deletion of Thy-1 in mice exacerbated bleomycin-induced lung
fibrosis (Ramírez et al., 2011). Thy-1 was shown to signal via the
Src-family kinase (SFK) and focal adhesion kinase (FAK)
pathways (Bradley et al., 2009) to prevent TGFβ1-induced

fibroblast activation (Koyama et al., 2017) and inhibition of
extracellular activation of tissue-associated latent TGF-β1 via
interaction with αν-β5 integrins at the cell surface (Zhou et al.,
2010), suggesting that Thy-1 can function as a mechanosensor
(Fiore et al., 2015). Thy-1 expression in murine lung fibroblasts is
decreased with fibrosis progression (McIntosh et al., 1994;
Hagood et al., 1999; Hagood et al., 2005; Sanders et al., 2007;
Zhou et al., 2010; Sueblinvong et al., 2012). Thy-1 also modulates
lipid raft-associated signaling promoting fibroblast adhesion and
limiting migration (Bradley et al., 2009).

Thy-1 in Fibroblasts was Linked to Fibrosis
Thy-1 is silenced in lesional fibroblasts in IPF (Idiopathic
Pulmonary Fibrosis), and its expression in murine lung
fibroblasts is decreased with progression of experimental
bleomycin induced lung fibrosis (Hagood et al., 2005;
Sueblinvong et al., 2012). Thy-1 acts as a fibrosis suppressor
which prevents differentiation of lung fibroblasts into
myofibroblasts (including Collagen Type I expression, cytokine
and growth factor expression, migration, and cell survival). Upon
activation, lung myofibroblasts upregulate TGFβ1-responsive
genes (Activin and PAI-1) but downregulate expression of
Thy-1 (McIntosh et al., 1994; Hagood et al., 1999; Hagood
et al., 2005; Sanders et al., 2007; Zhou et al., 2010). Deletion of
Thy-1 exacerbates development of cholestatic fibrosis in mice
(Koyama et al., 2017; Nishio et al., 2021).

MSLN SIGNALING PLAYS A CRITICAL
ROLE IN ACTIVATION AND
PROLIFERATION OF ACTIVATED PORTAL
FIBROBLASTS

The molecular mechanisms underlying Msln signaling in
experimental models of cholestatic fibrosis have been
evaluated, and demonstrated that in addition to Muc16, Msln
can also bind to Thy1 in aPFs and form a signaling Msln-Muc16-
Thy-1 complex that regulates fibrogenic activation and
proliferation of aPFs.

Msln-/- and Muc16-/- Mice are Protected
From Cholestatic Liver Fibrosis
Although, Msln-/-, Muc16-/-, and Thy-1-/- mice exhibit no
obvious abnormalities under physiological conditions (Bera
and Pastan, 2000; McMullen et al., 2005), these molecules play
a critical role in the pathogenesis of cholestatic fibrosis. Thus,
cholestatic fibrosis (caused by BDL or Mdr2 deficiency) was
strongly attenuated by ≈ 50% in Msln knockout mice (Msln-/-

mice). In vitro analysis revealed that Msln regulates TGFβ1-
inducible activation of the wild type aPFs, and facilitates their
FGF-FGFRI-Act-mediated aPF proliferation (via inhibition of
FGFRI turnover and re-expression). Similarly, deletion of Muc16
(the binding partner of Msln and potentially the only
transmembrane signaling molecule in this complex) also
attenuates development of cholestatic fibrosis, outlining the
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importance of Msln-Muc16 interaction. Moreover, ductular
proliferation was reduced in cholestasis-injured Msln-/-Mdr2-/-

mice and Muc16-/-Mdr2-/- mice, suggesting that aPF activation
regulates cholangiocyte proliferation.

Thy-1-/- mice are more susceptible to cholestatic fibrosis.
Studies of the experimental models of cholestatic fibrosis in
wild type, Msln-/- mice, Muc16-/- mice, and Thy-1-/- mice have
demonstrated that Msln and Muc16 play pro-fibrogenic roles in
aPF activation, while Thy-1 exhibits anti-fibrogenic properties.
Consistently, cholestatic fibrosis is exacerbated in Thy-1-/- mice.
These findings were supported by in vitro comparison of primary
isolated mouse wild type, Msln-/-, Muc16-/-, and Thy-1-/- aPFs. In
resting aPFs, Thy-1 directly binds to TGFβRI and blocks TGFβ1
binding to TGFβRI, thereby preventing TGFβ1 signaling.

MSLN, MUC16 AND THY-1 REGULATE
NON-CANONICAL TGFβ1-TGFβRI
SIGNALING IN CHOLESTASIS-ACTIVATED
PORTAL FIBROBLASTS

Formation of Thy-1-TGFβRI in Resting aPFs
Prevents TGFβ1 Signaling
The relationship between Msln, Muc16, Thy-1, and TGFβRI
receptors in the wild type and Msln-/- aPFs was established
using immunoprecipitations (IPs) with specific antibodies
against each molecule. Although not quantitative, this

technique allowed to determine the dynamic changes in the
protein binding between Msln, Muc16 and Thy-1 in the
resting wild type aPFs and in response to TGFβ1 stimulation.
We have demonstrated that in resting (serum starved) aPFs Thy-
1 makes an inhibitory complex with TGFβRI receptor thereby
preventing TGFβ1 binding to the N-terminus of TGFβRI. Thy-1
also binds to Muc16 but has minimal interaction with Msln
(Figure 2). Meanwhile, Msln forms a strong complex with
Muc16, suggesting that Muc16 transmits intracellular signals
from Msln-Muc16 complex. TGFβ1 signaling is further
inhibited by Smad7 (transcription factor implicated in
suppression of TGFβ1 signaling), which is bound to the
C-terminus of the TGFβRI and prevents Smad2/3 docking and
phosphorylation on TGFβRI.

TGFβ1 Signaling in aPFs Promotes
Disruption of Thy-1-TGFβRI Complex and
Formation of Msln-Muc16-Thy-1 Complex
In turn, in response to stimulation of the wild type aPFs with
TGFβ1, binding of TGFβ1 to TGFβRI strongly increases the
affinity of Msln to Thy-1 causing dissociation of Thy-1 from
TGFβRI (Figure 3). Formation of Msln-Muc16-Thy-1 complex
results in disruption of Thy-1-TGFβRI interaction and removal of
Thy-1 from TGFβRI. TGFβI binds to TGFβRI and TGFβRII,
causing dissociation of Smad7 from TGFβRI and subsequent
binding of Smad2/3 to the C-terminus of TGFβRI where these
transcription factors are phosphorylated and activated.

FIGURE 2 | Proposed model of Msln-Muc16 and Thy-1-TGFβRI binding in resting wild type aPFs. Msln and Muc16 form a complex in resting aPFs. Thy-1 and
TGFβRI form a complex. Binding of Thy-1 to TGFβRI prevents TGFβ1 signaling, and retains Smad7 at the C-terminus of the TGFβRI.
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FIGURE 3 | Proposed model of Msln-Muc16-Thy-1 binding in TGFβ1-stimulated wild type aPFs. In response to TGFβ1 signaling Msln-Muc16 complex binds to
Thy-1 causing dissociation of Thy-1 from TGFβRI. TGFβ1 binding to TGFβRI and TGFβR2 causes receptor crosslinking, docking of Smad2/3 to the receptors. Upon
Smad2/3 phosphorylation, p-Smad2/3 dissociates from the receptors, forms a complex with Smad4, and translocates to the nucleus where it initiates transcription of
target genes.

FIGURE 4 | Proposed model of Msln-Muc16-Thy-1-TGFβRI signaling in Msln-/- aPFs. TGFβ1 signaling is impaired in Msln-/- aPFs because Thy-1 forms a stable
complex with TGFβRI, which hinders TGFβ1 binding to TGFβRI and TGFβR2. Smad7 is bound to the cytoplasmic tail of TGFβRI, thereby preventing docking and
phosphorylation of Smad2/3.
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Phosphorylated Smad2/3 are released from TGFβRI into the
cytoplasm where they form a complex with Smad4. p-Smad2/
3-Smad4 are translocated to the nucleus, where they bind to the
DNA and initiate transcription of the fibrogenic genes, including
Collagen Type I.

TGFβ1-TGFβRI Signaling is Suppressed in
Msln-Deficient aPFs
Deletion of Msln results in suppression of TGFβ1-TGFβRI
signaling in aPFs due to increased Thy-1 expression, and
higher affinity of Thy-1 binding to TGFβRI (than in the wild
type aPFs), indicating that Thy-1 serves as an inhibitory molecule
for the TGFβ1 signaling in aPFs (Figure 4). Under these
circumstances, Smad7 is constitutively bound to the
C-terminus of TGFβRI, suggesting that lack of Msln (or
increased Thy-1-TGFβ1RI binding) promotes Smad7 docking
to the cytoplasmic C-terminus of the TGFβRI. As a result,
activation and phosphorylation of Smad2/3 is reduced in
Msln-/- aPFs; production of fibrogenic genes and Collagen
Type I is suppressed.

TGFβ1-TGFβRI Signaling is Accelerated in
Thy-1-Deficient aPFs
Moreover, deletion of Thy-1 in aPFs results in strong
overexpression of Msln in Thy-1-/- aPFs, indicating that Thy-1
is a critical regulator of Msln. Indeed, Thy-1-/- aPFs produce more
Col1a1 mRNA in response to TGFβ1 stimulation, and this effect
is associated with increased phosphorylation of Smad2/3 and
expression of TGFβRI, while binding of Smad7 to TGFβRI is
decreased in Thy-1-/- aPFs. We speculate that genetic deletion of
Thy-1 gene results in exacerbation of Msln signaling caused by
the compensatory overexpression of Msln and its target genes. It
remains unknown if this effect can be solely attributed to the
strong upregulation of Msln (≈7 fold over the wild type aPFs) in
Thy-1-/- aPFs, and/or the loss of Thy-1 functions (such as binding
to TGFβRI suppression of Msln expression). Since Thy-1 is a
GPI-linked protein, Thy-1 might bind to another transmembrane
signaling receptor (distinct from Muc16), or utilize the lipid rafts
protein signaling to mediate its function.

TGFβ1-TGFβRI Signaling is Not Affected in
Double Knockout Msln-/-Thy-1-/- aPFs
Generation of double knockout Msln-/-Thy-1-/- aPFs revealed
that Thy-1 and Msln might regulate one signaling pathway, since
simultaneous deletion of Msln and Thy-1 abolished both
phenotypes, and double knockout Msln-/-Thy-1-/- aPFs
exhibited no obvious abnormalities. In support, simultaneous
deletion of Msln and Thy-1 genes yielded a phenotype similar to
that in the cholestasis-injured wild type mice, indicating that
Msln and Thy-1 might regulate opposing functions within the
same signaling pathway. These new findings suggest that Msln-
Muc16-Thy-1 signaling plays an important role in the regulation
of TGFβ1-TGFβRI signaling in cholestasis-activated aPFs.

MSLN AS A TARGET FOR ANTI-FIBROTIC
THERAPY

Thy-1+ and Msln+ aPFs are Expressed in
Livers of Patients With Cholestatic Liver
injury but not Toxic HCV Fibrosis
When the composition of myofibroblasts was analyzed in livers
of patients with liver fibrosis, the expression of MSLN and THY-
1 was upregulated in livers of PSC patients, patients with biliary
atresia, and biliary cirrhosis (but not in livers of patients with
HCV liver fibrosis). Expression of human THY-1 and MSLN
correlated with the stage of cholestatic fibrosis, suggesting that
MSLN+ aPFs can be a novel target for anti-fibrotic therapy. Msln
is widely expressed in embryonic mesothelium during
mammalian development (Akira et al., 2006). In turn, Msln
is minimally expressed in adult mice and healthy humans under
physiological conditions. Upregulation of MSLN in adult
humans is associated with cancer, and was recently linked to
the development of cholestatic fibrosis (Pastan and Hassan,
2014).

Potential Strategies to Target aPFs
Historically high expression of MSLN was linked to increased
tumor proliferation/invasion. Therefore, Msln serves as a target
for anti-cancer therapy. We tested if targeting MSLN could also
be beneficial for halting cholestatic fibrosis. Three classes of
potential Msln inhibitors have been generated and potentially
used to block MSLN-MUC16-THY-1 signaling pathway in
patients: anti-human MSLN Ab-immunotoxin (that causes
death of human MSLN+ cancer cells) (Hassan et al., 2007);
anti-MSLN blocking Abs can potentially suppress growth and
proliferation of aPFs (Onda et al., 2005); or recombinant human
soluble THY1 (hsTHY1, that neutralize reactivity to αν-β5
integrins, and bind to TGFβRI to prevent MSLN signaling)
(Tan et al., 2019). These tools can potentially be used in
patients with cholestatic fibrosis.

Immunotherapy to Target Cancer Cells
Immunotherapy-based strategy to target human cancer cells was
developed by Dr. Pastan and colleagues, pioneers in the field of
cancer research. Specifically, much progress has been made with
immunotherapy-based therapeutics of human MSLN+

malignancies. MSLN is differentially expressed between normal
and cancer cells, thus making it a strong candidate for anti-cancer
therapy with recombinant immunotoxins (RITs) (Liu et al.,
2012). Several generations of immunotoxins, such as SS1P and
LMB100, were engineered by conjugation of anti-human MSLN
SS1 Ab (Hassan et al., 2007; Hassan et al., 2014) to PE38
(truncated Pseudomo-nas exotoxin, that causes cellular
apoptosis) (Hassan et al., 2000), and successfully tested in
clinical trials in patients with mesothelioma, ovarian cancer
and pancreatic cancer (Liu et al., 2012; Kreitman et al., 2009;
Chowdhury and Pastan, 1999; Alewine et al., 2014))(https://
clinicaltrials.gov/ct2/show/NCT02810418) (Hassan et al., 2007;
Hassan et al., 2014; Kreitman et al., 2009). In detail, SS1(dsFv)
PE38 (SS1P) is a RIT that consists of a modified bacterial toxin
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Pseudomonas exotoxin A (PE38) that is bound to the anti-MSLN
Ab (SS1(dsFv)) directed against the MSLN antigen expressed on
the surface of the target cells (Chowdhury and Pastan, 1999).
Once bound to MSLN, the entire RIT molecule is internalized,
leading to the release of PE38 into the cytosol and cellular
apoptosis via inactivation of ADP-ribosylation/elongation
factor 2 pathway (Hassan et al., 2000; Pastan et al., 2007).

TargetingMsln+ aPFsWith immunotoxins as
Potential Strategy for Treatment of
Cholestatic Fibrosis
The question remains if a similar strategy can be used to ablate
aPFs to eliminate the source of Collagen Type I. Based on our
previous findings in mice, genetic ablation of aPFs (using
overexpression of Diphtheria Toxin α, DTA) causes aPF
apoptosis without causing structural liver damage, and
attenuates development of cholestatic fibrosis in BDL-injured
mice (Koyama et al., 2017), outlining that immunotoxin-based
ablation of human aPFs may become a novel strategy for
treatment of PSC patients. In accord, SV40-Large SS1P and
LMB100 immunotoxins (Hassan et al., 2007) can successfully
kill human primary cultured aPFs in vitro, but also in vivo in the
xenograft mice, generated by adoptive transplantation of human
primary aPFs into the livers of adult immunodeficient Rag2-/-

γc-/- mice (Nishio et al., 2021). Generation of “human aPF
xenograft” Rag2-/-γc-/- mice is novel, and might serve as a useful
model to study in vivo the variability of patient-specific
responses of human aPFs (fibrogenic activation/proliferation)
to specific MSLN inhibitors (Nishio et al., 2021).

A potential drawback is that repeated administration of RITs
(Kreitman et al., 2009) might lead to the formation of anti-drug
antibodies (ADAs) and accelerated clearance of anti-MSLN-
immunotoxins (Baker et al., 2010). LMB100 was engineered to
reduce immunogenicity in humans compared with SS1P (Liu
et al., 2012; Alewine et al., 2014). Both immunotoxins successfully
showed excellent anti-tumor activity in clinical trials in patients
with mesothelioma, ovarian and pancreatic cancer (Kreitman
et al., 2009; Hassan et al., 2014).

Blocking of Msln Expression in aPFs May
Attenuate Cholestatic Liver Fibrosis
Administration of blocking unconjugated anti-Msln As (Koyama
et al., 2017) might also be beneficial in suppression of aPF
proliferation and activation. Such strategy was explored in
BDL-injured mice, and repetitive administration of Msln-
blocking Abs (D233-3, 5ng, 10 ng, MBL Inc.; or B35 Ab,
10 ng, LSBio) was shown to inhibit aPFs and reduced
cholestatic fibrosis.

Human Soluble hsTHY-1-Fc Peptide
THY-1 exhibits anti-fibrogenic properties. Human soluble THY-
1 peptide shares high similarity with mouse soluble Thy-1 and
crossreacts with mouse ligands. Binding of hsTHY-1 (but not
hsTHY-1-RLE with mutated integrin-binding RGD-like motif)

(Tan et al., 2019) to αvβ5 integrin was shown to prevent
activation of latent TGFβ1 in lung fibroblasts (Zhou et al.,
2010). Based on our unpublished observation, administration
of hsTHY-1 peptide (1 μg/g in PBS) suppressed BDL-induced
aPF activation in BDL-injured mice and attenuated development
of cholestatic fibrosis (compared to mutant hsTHY-1-RLE- or
vehicle-treated mice). We can speculate that administration of
hsTHY-1 also prevents TBFβ1-TGFβRI signaling.

CONCLUSION

Investigation of the role of Msln, Muc16, and Thy1 in cholestatic
fibrosis revealed that Msln-/- mice are protected from cholestatic
fibrosis caused by Mdr2 deficiency, or BDL-induced obstruction
of the common bile duct. There is a growing evidence that Msln is
a critical activator of aPFs. Msln expression correlates with the
stage of liver fibrosis in patients with PSC. Anti-MSLN Ab-
immunotoxins, developed for cancer therapy, can potentially
be used to target human MSLN+ aPFs for treatment of
cholestatic fibrosis. Overall, immunotherapy-based ablation of
human aPFs might become a novel strategy for treatment of
cholestatic fibrosis. It might not cure patients with cholestatic
fibrosis but can decrease fibroproliferative responses to bridge
PSC patients to liver transplantation, or treatment of the
etiological causes.
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