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Autoimmune diseases can be chronic with relapse of inflammatory symptoms, but it can

be also acute and life-threatening if immune cells destroy life-supporting organs, such

as lupus nephritis. The etiopathogenesis of autoimmune diseases has been revealed

as that genetics and environmental factors-mediated dysregulated immune responses

contribute to the initiation and development of autoimmune disorders. However, the

current understanding of pathogenesis is limited and the underlying mechanism has

not been well defined, which lows the development of novel biomarkers and new

therapeutic strategies for autoimmune diseases. To improve this, broadening and

deepening our understanding of pathogenesis is an unmet need. As genetic susceptibility

cannot explain the low accordance rate of incidence in homozygous twins, epigenetic

regulations might be an additional explanation. Therefore, this review will summarize

current progress of studies on epigenetic dysregulations contributing to autoimmune

diseases, including SLE, rheumatoid arthritis (RA), psoriasis, type 1 diabetes (T1D), and

systemic sclerosis (SSc), hopefully providing opinions on orientation of future research, as

well as discussing the clinical utilization of potential biomarkers and therapeutic strategies

for these diseases.
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INTRODUCTION

Autoimmunity is a pathological condition that self-immune system cannot distinguish self-
antigens and attacks self-tissues and organs, resulting in inflammation and organ damages.
Autoimmune diseases, such as SLE, RA, and T1D are sometimes referred to as “invisible
disabilities” or life-threatening diseases, with high incidence rate of 11%. Approximately 600
million people suffer from a breakdown of immune tolerance. Aberrant differentiation and function
of immune cells are believed to be a key player in the pathogenesis of autoimmune diseases.
However, the molecular mechanism remains unknown.

Genetic susceptibility can partially explain some of the abnormalities of immune imbalance. For
instance, over 60 genes have been revealed in previous genetic studies as risk genes in lupus, and
some of them have been found to be related to antibody production, complementary deficiency
and renal involvements (1). However, genetic studies cannot completely explain the incidence rate
of SLE in homozygous twins ranges from 24 to 58% (2), indicating that in addition to genetics,
environment factors are also involved in the pathogenesis of SLE. As one of molecular mechanisms
of environmental factors, epigenetics has been proposed as a critical player in the diseases by
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accumulating evidence, and it might provide additional
explanation for the dysregulation of immune system. Therefore,
this review focuses on the current understanding of epigenetic-
mediated regulations on immune cell differentiation and
functions, summarizes the contribution of dysregulated
epigenetic modifications to autoimmune disorders, and discusses
the possibility of utilization of unique and specific epigenetic
modifications as potential biomarkers and novel therapeutic
targets for these diseases.

EPIGENETICS IN PATHOGENESIS OF
AUTOIMMUNE DISEASES

All cells and tissues in our body share the same set of
genomic DNA, however, cells display various morphology
and phenotypes due to the gene transcription mediated
by epigenetics. Epigenetics is a biological process that
recruits or removes reversible and potentially heritable
modifications in genomic DNA and/or chromatin but does
not change DNA sequence. It is mainly comprised of DNA
methylation, histone modifications, and non-coding RNAs-
mediated regulations. Epigenetic regulations participate
in numerous biological process, such as cell proliferation
and differentiation. and increasing evidence has shown
that dysregulated epigenetic modifications are involved in
pathogenesis of several autoimmune diseases (3–6). The
influence of environmental factors, such as UVB, and disease
predominance in female emphasizing the importance of
epigenetics in the pathogenesis of autoimmune disorders (7).
In addition, 5-azacytidine and procainamide (8) are capable of
inducing lupus via epigenetic alterations. Similar phenomena
have been found in other autoimmune diseases: dysregulation
of epigenetic modifications in RA synovial fibroblasts (RASF)
leading to abnormal gene expression (9), Epstein-Barr virus
(EBV) infection, sunlight (10, 11) and aberrantly expressed
miRNAs (12, 13) contributing to the pathogenesis of multiple
sclerosis (MS).

As the intensively studied epigenetic modification, DNA
methylation refers to a well-known biological process which
involves a recruitment of a methyl group to a cytosine or
adenine residue at the 5th position on the pyrimidine ring,
resulting in inhibiting the binding of transcription factors
on the promoter region of gene, which will repress the
gene transcription (14). This process is mainly regulated
by methyltransferase, including DNA methyltransferase 1
(DNMT1), DNMT3a, and DNMT3b. Each of methyltransferase
executes different functions. For instance, during cell replication
DNMT1 maintains the methylation levels, whereas DNMT3a
and DNMT3b promote methylation process (15). On the
contrary, DNA hydroxymethylation, and demethylation are
processes that re-activate transcription of silenced genes (16).
DNA hydroxymethylation is an instable status and in the
middle of demethylation process. DNA hydroxymethylation is
mediated by hydroxymethylation transferases, such as ten-eleven
translocation methylcytosine dioxygenase 1 (TET1), TET2, and
TET3 (17).

Histone modification is a covalent post-translational
regulation that modulates gene transcription by altering
the structure of chromatin. Histone modifications include
methylation, acetylation, ubiquitination, phosphorylation,
sumoylation, etc. (18). Acetylation and deacetylation are
intensively studied ones which can recruit or remove an
acetyl group on histones, thereby activating, or inhibiting
gene transcription. Mechanically, acetylation activates gene
transcription by opening the chromatin structure and facilitating
the binding of transcription factors, while methylation converts
opened chromatins into a restrictive structure, inhibiting the
binding of transcription factors via stereo hindrance, thereby
resulting in the repression of gene expression. Acetylation is
mediated by histone acetyltransferases (HATs), deacetylation
is regulated by histone deacetylases (HDACs) (19). However,
the effects of histone modifications vary depending on the
modification positions and the number of modifications.
For example, H3K4me3 promotes gene expression whereas
H3K9me3 and H3K27me3 represses gene transcription (20, 21).

microRNAs (miRNAs) are small non-coding RNAs, which
are usually 21-25 base pairs. It has been well established
that miRNAs modulate gene expression at posttranscriptional

and posttranslational level through binding to the 3
′

-UTRs of
target mRNAs, resulting in blocking gene translation by mRNA
cleavage and degradation (22–24). Besides, long ncRNAs are
recently identified non-coding RNAs, with the length of >200
nt. Differing from miRNAs, lncRNAs can either promote or
inhibit gene expression. LncRNAs usually act by complexes of
lncRNA: RNA, lncRNA: protein or lncRNA: chromatin (25, 26).
Accumulating evidence suggests that lncRNAs are involved in
numerous human diseases, such as cancer, by changing the
primary and secondary structure of DNA, thereby regulating
gene expression (27, 28).

DYSREGULATED EPIGENETIC
REGULATIONS IN AUTOIMMUNE
DISEASES

Abnormal DNA Methylation in Autoimmune
Diseases
DNA Hypomethylation in SLE
SLE is a multi-organ involved autoimmune disease that is
characterized by aberrant immune cells, such as dendritic cells,
B and T lymphocytes. Although the pathogenesis of SLE has
been studied for over a century, the exact cause of lupus remains
unknown. Increasing evidence from varies groups, including our
group, have reported that DNA methylation plays a critical role
in immune cells hyper-active in lupus conditions.

DNA hypomethylation in lupus T cells
The first evidence of epigenetic regulation in lupus is from
the observation that after a long-term administration of two
DNA methylation inhibitors, procainamide and hydralazine,
normal mice showed a lupus-like phenotype. In addition,
cells from thymus and lymph nodules from MRL/lpr mice
(spontaneous lupus mouse model) show lower DNAmethylation
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level compared with cells from MRL/mpj control mice (29, 30).
This evidence might provide an explanation for over-proliferated
and over-activated immune cells in lupus mice.

Lupus T cell auto-reactivity is found to attribute to DNA
hypomethylation (31). These findings were further confirmed
by the evidence that induction of auto-reactive CD4+ T cells
from healthy controls by the administration of 5-azacytidine
(31, 32), which followed prior evidence of the induction of IL-
2 and IFN-γ by the same drug (33). Accumulating evidence have
revealed the regulatory effects of DNAmethylation on individual
genes during the T cell activation and differentiation. IFN-γ
and IL-4 are signature cytokines for Th1 and Th2 program,
respectively. During Th1 and Th2 differentiation processes, DNA
hypomethylation level has been observed at Ifng and Il4 loci
(34, 35). In addition, compared to naïve T cells, decreased DNA
methylation level is found at the key transcription factor FOXP3
locus in regulatory T cells (Treg) (36). Furthermore, the key
transcription factor Bcl6 in Tfh cell has been reported to be highly
expressed but with a decreased level of 5hmC (37) during Tfh
cell differentiation, suggesting that Tfh cell differentiation is also
mediated by DNA methylation modification.

In addition, genomic DNA in lupus CD4+ T cells has
been found to show DNA hypomethylation (38, 39). DNA
hypomethylation has been observed on promoter region of lfa-1
in CD4+ T cells from active lupus patients and over-expressed
LFA-1 has been found on an autoreactive subset of T cells,
which produces perforin and granzyme B to lyse autologous
cells (31, 40), thereby inducing inflammation and tissue damages.
Epigenetic accessibility and transcriptional poising of interferon-
regulated genes in Naïve CD4+ T cells from SLE patients have
been shown in a genome-wide DNA methylation study (41).
In this study, DNA hypomethylation is observed on interferon-
regulated genes, such as IFI44L, which suggest that lupus T
cell progenitors have abnormalities (41). More interesting is
that our recent studies have proposed DNA hypomethylation
level on IFI44L promoter as a biomarker for the diagnosis of
lupus, which have both high sensitivity and specificity (42). In
a consequent study, different DNA methylation patterns have
been observed in organ-specific manner in lupus. For instance,
different DNA methylation patterns have been on lupus patients
with renal involvement vs. non-renal involvements, and malar
rash vs. discoid rash (43). Interesting, some protein such as RFX1
(44), high mobility group box protein 1(HMGB1) (45) and DNA
Damage-Inducible 45 alpha (Gadd45a) (46) have been revealed as
regulators for this epigenetic regulation by our previous studies.

Besides, in lupus CD4+ T cells, 5-hmC binds in transcriptional
regulatory regions of lineage-specific signature genes, such as IL-
17 and IFN-gamma, which promote inflammation.Mechanically,
TET2 protein, a hydroxymethylation transferase, is found to be
recruited to 5-hmC-binding regions of Il17 and Ifnr, and then
promotes the production of IL-17 and IFN-gamma (47).We have
recently observed that lupus CD4+ T cells display an increased
5-hmC level on whole genomic DNA compared with normal
controls, with the enhanced expression of TET2 and TET3. As
a consequence of DNA demethylation, transcription activator
CTCF binds to the promoter region of SOCS1 and therefore
promotes SOCS1 over-expression in SLE CD4+ T cells (48).

DNA hypomethylation in lupus B cells
SLE is an autoantibody-mediated autoimmune disorder. As the
main and unique origin of autoantibodies, numerous evidence
has well document that B cell plays an essential role in the
pathogenesis of SLE. Pre-clinical studies and clinical trials of
B cell-targeting treatments have proven to be effective to some
extent. Not to our surprise, DNA hypomethylation has been
also shown in lupus B cells (49), which might regulate B cell
development, differentiation, and auto-reactivity. For example,
abnormally expressed HRES1/p28 by lupus B cells is reported to
be regulated via DNA methylation (50). DNA hypomethylation
on LINE1 gene has been shown in lupus B cells (51). The
regulatory effect of DNA methylation in B cells is further
supported by the evidence that enhanced levels of anti-nuclear
antibodies can be induced by adoptive transferring of DNMT1
inhibitor-treated B cells (52). Although it is elucidated that
antibody production is attributed to DNA hypomethylation in
V(D)J region and Igh 3′-LCR (53), little has been revealed in
this process in the lupus condition. Furthermore, in auto-reactive
B cells, DNA hypomethylation might be a result of decreased
level of DNMT1 and DNMT3b, or active DNA demethylation
mediated by activation-induced cytidine deaminase (AID) (54).

Aberrant DNA Methylation in Psoriasis
Psoriasis is a chronic inflammatory autoimmune skin disease,
which is characterized by hyper proliferation of keratinocytes
and dysregulated T cells, especially Th17 cells (55). Similar with
SLE, genetic susceptibility is not the only factor for the onset
of this disease, due to that the concordance of psoriasis in
monozygotic twins is 35–72% (56), suggesting that epigenetic
regulations might be an additional factor. Increased evidence
has shown the critical role of DNA methylation in the hyper-
proliferated keratinocytes.

In our previous study, abnormal DNA methylation pattern
has been observed in skin lesions and PBMCs of patients
with psoriasis vulgaris (57, 58). On the gene specific level, the
abnormal methylation pattern on the promoter of p16INK4a

gene has been reported in psoriatic epidermis (59). Increased
DNA methylation level on promotor of secreted frizzled-related
protein (Sfrp4) has been observed in inflamed psoriatic skin
and in the IL-23-induced psoriatic mice, thereby reducing
the expression of Sfrp4, a negative regulator for keratinocyte
proliferation (60). Hypomethylation of LINE-1 has been found in
psoriatic keratinocytes. More importantly, manipulating LINE-1
methylation may change the gene expression, thereby resulting
in a phenotypic alteration of psoriatic skin (61). In addition,
aberrant DNA methylation pattern has also been revealed in
CD4+ T cells from psoriatic patients (62), indicating that
the epigenetic regulations on immune cells also attributing to
psoriasis pathogenesis.

Aberrant DNA Methylation Status in RA
RA is an autoreactive immune cell-mediated inflammation which
primarily affects joints. Autoreactive immune cells and synovial
fibroblasts (SF) are well defined as the critical players in the
pathogenesis of RA. Heterogeneity in RA patients is a hindrance
for rheumatologists and dermatologists to diagnose and treat
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patients. The treatment of RA is always delayed due to the current
criteria that in addition to meeting all diagnostic criteria, RA
patients need to consistently display arthritic symptoms for at
least 6 months (63). Early intervention is necessary because a
clinical trial on BeSt have shown that BeSt can delay the onset
of RA on several patients (64).

Increasing evidence has shown that DNA methylation
contributes to the pathogenesis of RA. Increased DNA
methylation variability has been observed in rheumatoid
arthritis-discordant monozygotic twins (65), indicating the
importance of DNA methylation in the pathogenesis of RA.
Abnormal genome-wide DNA methylation patterns have
been revealed in CD4+ T cells from Chinese Han patients
with rheumatoid arthritis (66). In PBMCs from RA patients,
decreased DNA methylation levels have been found at the
promoter regions of Il6 and ERa, which may be associated with
over-production of IL-6 and hyperactive ERa signaling (67–69).
Global DNA hypomethylation is also found in T cells from RA
patients (31, 70). On the gene specific level, CD40L gene has
found to be demethylated on CD4+ T cells from RA patients
(69). Moreover, DNA hypomethylation on promoter region of
L1 retrotransposon gene has been observed in RA fibroblast-
like synoviocytes (71, 72). Further, DNA hypomethylation on
CXCL12 gene has been shown in synovial fibroblasts, that may
result in cell infiltration in joints (73, 74). More interesting, DNA
methylation status has been proposed as biomarkers to predict
the drug responses (75).

Dysregulated DNA Methylation in Systemic Sclerosis

(SSc)
SSc is a relatively rare disease which is characterized by
damages of connective tissues mediated by autoreactive immune
cells. Its etiopathogenesis remains unclear. Abnormal epigenetic
modifications have been shown in SSc. In an integration study
of Genome-Wide DNA Methylation and Transcription, several
DNA methylation regulated-gene expression have been revealed
in SSc PBMCs (76) and dermal fibroblasts (77). Decreased DNA
methylation level has been observed in CD4+ T cells from SSc
patients and reduced expression of DNMTs have been found
in CD4+ T cells from these patients (78). DNA demethylation
on promoter regions of CD11a, CD70, and CD40L genes have
been found in CD4+ T cells from SSc patients (78–81). However,
hypermethylated genes, such as PRF1, CDKN2A, Foxp3, CD11a,
and CD70, have been observed in whole blood from black South
African patients with SSc (82). Moreover, as the key transcription
factor to Th17 cells, RORC1 and RORC2 have been found to show
hypomethylation and be correlated with inflammatory status in
SSc PBMCs (83). Furthermore, in dermal fibroblasts from SSc
patients, hypermethylation has been found in FLl1 and TGF-
beta-related genes, which are Wnt pathway antagonist genes
(84–86), accompanied by increased levels of DNMT1 (87) and
TET1 (88).

Abnormal DNA Methylation Levels in T1D
T1D is well-documented as an autoimmune disease, which
is mainly mediated by T cells by attacking beta cells. In an
epigenome-wide association study (GWAS) in 52 monozygotic

twins, epigenetic modification patterns have been mapped in
CD4+ T cells, CD19+ B cells, and CD14+ monocytes (89). This
study has identified a substantial enrichment of differentially
variable CpG positions (89), suggesting the involvement of DNA
methylation in T1D. In addition, differential DNA methylation
status on 88 CpG sites has been found in lymphoblast
cell lines which are derived from 6 pairs of monozygotic
twins concordant for T1D and 3 pairs of monozygotic twins
discordant for T1D, separately. In these cells lines, the altered
expression of genes, including Hla, Ins and Il2rb, are involved
in immune responses (90). Furthermore, dysregulated DNA
methylation have been found in Pdchb16, Magi2, and Fancc in
T1D-discordant monozygotic twins (91). DNA demethylation
on transcription factor HOXA9 has been observed in T1D
patients (92). DNA hypermethylation has been found in the
promoter region of Foxp3, which represses the binding of
transcription factor IRF-7 to Foxp3, resulting in the reduced
number of regulatory T cells in the peripheral blood from
T1D patients (93). More interesting, the serum levels of
unmethylated preproinsulin DNA might serve as a biomarker
for T1D (91). Dysregulated DNA methylation are listed
in Table 1.

Aberrant Histone Modifications in
Autoimmune Diseases
Dysregulated Histone Modifications in Lupus
Lupus CD4+ T cells show global histone H3 and H4
hypoacetylation (106). Abnormal histone modifications have
been found in the promoter region of TNFSF7 in T cells,
resulting in overexpression of CD70, which might be the one
cause of auto-reactivity of T cells (107). Administrating HDAC
inhibitors on healthy T cells results in decreased CD3ς chain
expression, thereby leading abnormalities in T cells (108). A
transcription factor CREMα might be involved in the process of
histone acetylation in active lupus T cells via inhibition of IL-2
production. This process might be mediated by recruiting HDAC
to Cre binding sites in the promoter region of Il2 (109). Besides,
abnormal H3K4me3 modification has been observed on lupus-
related candidate genes in lupus PBMCs (110). Lupus monocytes
show altered acetylation status of global H4. Among them, 63%
of these H4 acetylated genes are potentially modulated by IFN
regulatory factors (111), which are involved in the pathogenesis
of SLE.

In addition to the whole genomic modifications, histone
modification has been reported to modify specific gene
expression. For example, increased H3 acetylation level has been
found at the IL-17 locus and enhanced IL-10 production has been
revealed to be mediated by chromatin remodeling. This process
is further revealed to be mediated by Stat3 (112, 113). Moreover,
histone hyperacetylation has been shown to be a cause for an
increased serum level of TNF-α and an enhanced maturation
status of monocytes from lupus patients (114). However, it is
still unclear whether histone modifications are the initiator or
results of immune disorders, even though the contribution of
histone modifications in pathogenesis of lupus has been revealed
in mouse studies.
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TABLE 1 | Dysregulated DNA methylation in autoimmune diseases: SLE,

Psoriasis, RA, SSc, and T1D.

Disease Origens DNA methylation status References

SLE Whole blood IFI44L: hypomethylation

FOXP3 TSDR: hypermethylation

(48)

(42)

SLE PBMCs Global, ERa: hypomethylation (38, 67)

SLE T cells X chromosome genes, IL4, IL6:

hypomethylation

(94–96)

SLE CD4+ T cells Global, IFN-regulated genes, perforin,

PP2Aca, KIR2DL4, CD11a, CD70,

CD40L, IL10, IL13: hypomethylation

(97–104)

SLE Naïve CD4+ T

cells

IFN-regulated genes, MIR886,

TRIM69, CHST12: hypomethylation

(41, 43, 105)

SLE B cell IFN-regulated genes:

hypomethylation

LINE-1: hypomethylation

(98)

(51)

SLE Monocytes IFN-regulated genes:

hypomethylation

(98)

Psoriasis PBMCs, skin

lesion

Aberrant DNA methylation pattern (57, 58)

Psoriasis Keratinocytes p16INK4a: abnormal DNA

methylation level

Sfrp4: hypermethylation

LINE-1: hypomethlation

(59)

(60)

(61)

Psoriasis CD4+ T cells Aberrant DNA methylation pattern (62)

RA PBMCs IL6, ERa: hypomethylation (67–69)

RA T cells Global: hypomethylation (31, 70)

RA CD4+ T cells CD40L: hypomethylation (69)

RA Fibroblast-like

synoviocytes

Global, L1 retrotransposon:

hypomethylation

(71, 72)

RA Synovial

fibroblasts

Global, CXCL12: hypomethylation (73, 74)

SSc CD4+ T cells Global, CD40L CD11a, CD70:

hypomethylation

(78–81)

SSc Dermal

fibroblasts

FLl1, TGF-beta-related genes:

hypermethylation

(84–86)

T1D PBMCs HOXA9: hypomethylation (92)

T1D Treg cells Foxp3: hypermethylation (93)

Sirtuin-1 (Sirt-1) is a histone deacetylase, which has been
observed to be overexpressed by T cells from MRL/lpr mice
(115). Knocking down Sirt-1 in lupus mice leads to a temporary
enhancement of H3 and H4 acetylation, accompanied by
attenuated lupus symptoms such as reduced serum levels of anti-
dsDNA, IgG deposition in glomerular and histological changes
(38). TreatingMRL/lpr mice with HDAC inhibitors can attenuate
renal damage and decrease level of inflammatory cytokines (116).
A recent progress has been made from a genetic and epigenetic
mapping study which identifies candidate causal variants in
21 autoimmune diseases in different T cell subtypes, including
Th1, Th2, Treg, and Th17 cells (117). In this study, unique
H3K27 peaks are shown in the super-enhancer in Il2RA locus,
particularly in Treg and Th17 cells.

In our previous study, we have demonstrated that RFX1
inhibits Th17 cell differentiation via increased histone
H3 acetylation, decreased DNA methylation and H3K9
tri-methylation (118), thereby contributing to SLE pathogenesis.

More recently, the downregulation of TNF-alpha-induced
protein 3 (TNFAIP3), one of the major SLE susceptibility genes
involving in the regulation of inflammatory responses through
modulation of the nuclear factor-kappaB (NF-kappaB) pathway,
has been observed in lupus patients. This downregulation may
be mediated by reduced H3K4me3 in the gene promotor region
(119), providing a promising target for the treatment of SLE in
clinical practice.

In addition, some epigenetic targeting therapies also revealed
the importance of histone modification in pathogenesis of
autoimmune diseases. For example, selective HDAC6 inhibition
has been shown to attenuate early stage of lupus nephritis via
down-regulation both innate and adaptive immune responses
(120). Selective HDAC6 inhibitor also showed therapeutic effects
on lupus mice by improving renal function and survival (121). A
novel histone deacetylase 3-selective inhibitor has been reported
to inhibit IL-6 production by PBMCs from RA patients (122). As
well as in T1D, histone deacetylase inhibitors have been shown to
modify pancreatic cell fate determination and amplify endocrine
progenitors (123).

Aberrant Non-coding RNA Mediating
Regulations in Autoimmune Diseases
Aberrant Non-coding RNA Mediating Regulations in

Lupus

Dysregulated non-coding RNAs in lupus T cells
It has been well-documented that miRNAs can bind to various
regions but modulate the same gene expression. A large number
of miRNAs have been reported to be aberrantly expressed by T
cells. Some of these miRNAs have been found to target lupus-
related genes, such as Il10, Il17, and dnmt1. It has been reported
that the expression level of miR-21, miR-126 and miR148a is
observed to be reduced in lupus T cells and they are found
to target DNMT1, although they bind to different regions
of DNMT1(124, 125). Furthermore, the inhibition of miR-21,
miR-29b, and miR-148a in SLE T cells has been found to be
capable of attenuating lupus phenotypes, suggesting potential
therapeutic roles in SLE (125, 126). In addition, miR-21 has
been found to inhibit the expression of PDCD4 on lupus T
cells, thereby promoting T cell proliferation and the expression
of CD40L and IL-10 (127). Moreover, miR-142 (128) and miR-
31 (129) have been demonstrate to modulate T cell activity by
suppressing IL-4 and IL-10 production by T cells, inhibiting
the expression of CD40L and ICOS and enhancing secretion
of IL-2 by T cells. In addition to our previous studies on
aberrantly expressed miR-146a and−241-3p/5p by lupus T cells,
we have further found that mycophenolic acid, which has been
commonly utilized in clinic for lupus treatment, attenuates the
auto-reactivity of lupus T cells through miR-146a and−241-
3p/5p, suggesting the pathogenic role of these two miRNAs in
SLE (130).

More recently, in short time-series expression miner analysis,
some lncRNAs from lupus T cells have been found to be
correlated with SLE disease activity (131), suggesting that
the aberrant expression profile of lncRNAs may play a
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role in SLE pathogenesis. In addition, large intergenic non-
coding RNAs (lincRNAs), a specific type of lncRNAs, can
also modulate gene expression and is involved in various
biological processes and diseases. For example, lupus PBMCs
show lower level of linc0597and Linc0949, compared to
those from rheumatoid arthritis patients and normal subjects
(132). More importantly, the decreased level of linc0949 is
correlated with the level of C3, SLE disease activity index
(SLEDAI), and the appearance of lupus-specific organ damages.
More interesting is that the levels of linc0949 can increase
significantly depending on efficiency of treatment in lupus
patients, suggesting a role as a biomarker for SLEDAI and drug
response (132, 133).

Aberrantly expressed microRNAs in lupus B cells
As critical regulators in B cell development and differentiation,
miRNAs are also involved in the aberrant B cell expression
and functions. Lupus B cells shows increased levels of miR-
30a. The level of miR-30a in lupus B cells negatively correlates
with Lyn, which negatively regulates B cell activation (134).
It has been found that miR-155 and miR-181b negatively
regulate AID expression, thereby modulating antibody diversity
(135, 136). In lupus-prone mice, the levels of miR-15a in
regulatory B cells are positively correlate with the serum level
of anti-dsDNA antibodies (137). In our recent studies, increased
expression of miR-1246 has been observed in lupus B cells,
and it has been found to regulate EBF1 expression, thereby
promoting the expression of CD40 and antibody production
(138). Moreover, enhanced levels of miR-17-92 and miR-21
have been found in SLE B cells (139, 140). More interesting,
miRNA profiling of B cell subsets has been proposed as a
biomarker for lupus (141), indicating a critical role of miRNAs
in lupus abnormal B cells. Moreover, miR-150 is found to
be decreased in B cells from MRL-lpr mice, which might
be a result of a decreased acetylation level and inhibition
expression of the miR-150 host gene (142). miRNAs that are
dysregulated in other autoimmune diseases are summarized
in Table 2.

Aberrant Micro-RNA Mediating Regulations in

Psoriasis
Similar, some abnormally miRNAs have been reported in
psoriatic patients. In our previous studies, mir-210 is found to
be overexpressed by T cells filtrating in the dermis of psoriatic
lesions. Further, mir-210 is capable of inducing helper T (Th)
17 and Th1 cell differentiation but inhibiting Th2 differentiation
by repressing expression of STAT6 and LYN (145). In addition,
the upstream regulation has been revealed as that TGF-beta
and IL-23 enhance miR-210 expression by inducing HIF-1alpha,
which recruits P300 and promotes histone H3 acetylation in
the miR-210 promoter region (145). As Th17 cells playing a
critical role in pathogenesis of psoriasis, targeting mir-210 might
provide potential therapeutic strategies for psoriasis patients.
Besides, mir-17-92 cluster has been revealed to promotes the
proliferation and the chemokine production of keratinocytes
(146), mir-let-7b has been shown to inhibit keratinocyte
differentiation by targeting IL-6 mediated ERK signaling in

TABLE 2 | Dysregulated miRNA expressions in: SLE, Psoriasis, RA, SSc, and

T1D.

Disease Origins Levels of

miRNAs

Target genes References

SLE PBMCs miR-155: +

miR-146a: –

PP2Ac

IFNa and IFNb

(143, 144)

SLE T cells miR-21: +

miR-31: –

PDCD4

RhoA

(127, 129)

SLE CD4+ T cells miR-142-3p/5p: –

miR-21, 148a, 126

and 29b: +

SAP, CD84, and

Il10

DNMT1

(124–126,

128)

SLE B cells miR-30a: +

miR-1246: –

Lyn

EBF1

(134, 138)

Psoriasis T cells mir-210 STAT3, Lyn (145)

Keratinocytes mir-17–92 cluster – (146)

Mir-let 7b

Mir-194

Il6

Grainyhead-like 2

(147)

(148)

RA T cells miR-223: – IGF-1R (149)

RA CD4+ T cells miR-146a: + FAF1 (150)

RA Synovial

fibroblasts

miR-155: + MMP-3 (151, 152)

SSc Fibroblasts miR-21: +

miR-29a: −

miR-196a: +

Smad7

Type I and III

collagen

Type I collagen

(153–156)

T1D Plasma microRNA-16-

5p,−17-5p

and−20a-5p: +

— (157)

T1D Plasma-

derived

exosome

miRNAs signature — (158)

T1D Treg miR-125a-5p: + CCR2 (159)

T1D Beta cell microRNA-503: + mTOR pathway (160)

T1D Plasma miRNAs profile,

miRNA-320a and

mRNA-486

– (161, 162)

T1D Urine miRNAs profile Predict disease (163)

+, Increased; –, Decreased.

psoriasis (147), mir-194 has been demonstrated to regulate
keratinocyte proliferation and differentiation via Grainyhead-like
2 in psoriasis (148).

CONCLUSION

As the epigenetic era approaches, more and more evidence
has shown the importance of epigenetic regulations in the
pathogenesis of autoimmune diseases. Newly discovered non-
coding RNAs, such as LncRNA, extra RNAs and circle RNAs have
begun to undergo significant research into their roles in disease
pathogenesis. The specific epigenetic regulations in autoimmune
diseases might provide potential biomarkers for diseases. For
example, in our previous study, the DNA methylation level
of the IFI44L promoter is both sensitive and specific in lupus
patients and lower in nephritis patients than in patients without
renal damage (164), indicating an organ-specific biomarker to
predict LN. Another urgent need is to be able to translate
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research findings into clinical application. The most significant
challenges include complex techniques, time consuming, and
the high cost of DNA methylation arrays and bisulfite next-
generation sequencing. To solve this problem, as in our study of
IFI44L, rather than pyrosequencing of IFI44L DNA methylation
levels, we have developed a high-resolution melting (HRM)
analysis for detecting IFI44L DNA methylation levels, which
can be easily completed with QPCR. This new technique may
be more available for clinical use in the future. With regard to
treatment, as our new finding on miR-210 in mouse psoriasis
treatment (145), miRNAs might provide alternative options to
currently used drugs. The application of Crisper-Cas9 may shed
light by guiding epigenetic modifications on specific genes.
Together, epigenetic modifications provide additional tools for
broadening the understanding of autoimmune diseases, as well
as development of potential biomarkers and therapies.
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