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Abstract

Alzheimer’s disease (AD) is the most common type of dementia, and no disease-modifying treatments are available
to halt or slow its progression. Amyloid-beta (Aβ) is suggested to play a pivotal role in the pathogenesis of AD, and
clearance of Aβ from the brain becomes a main therapeutic strategy for AD. Recent studies found that Aβ
clearance in the periphery contributes substantially to reducing Aβ accumulation in the brain. Therefore,
understanding the mechanism of how Aβ is cleared in the periphery is important for the development of effective
therapies for AD. In this review, we summarized recent findings on the mechanisms of Aβ efflux from the brain to
the periphery and discuss where and how the brain-derived Aβ is cleared in the periphery. Based on these findings,
we propose future strategies to enhance peripheral Aβ clearance for the prevention and treatment of AD. This
review provides a novel perspective to understand the pathogenesis of AD and develop interventions for this
disease from a systemic approach.
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Background
Alzheimer’s disease (AD) is the most common form of
dementia, and disease-modifying therapies are not avail-
able to date. The extracellular senile plaques formed by
the deposition of amyloid-beta (Aβ) peptide are the spe-
cific hallmark of AD. Aβ is generated from sequential
cleavages of the amyloid precursor protein (APP) by
BACE-1 and the γ-secretase complex. Compelling evi-
dence supports the pivotal role of Aβ in the pathogen-
esis of AD. This evidence includes the following: (1)
overproduction of Aβ in the brain owing to mutations of
APP or presenilin genes 1/2 (PS1/2) in familial AD and
an additional copy of the APP gene in Down syndrome

clearly causes AD-like dementia [1]. (2) Reduction of Aβ
production due to a missense mutation (p.A673T) in the
APP gene results in a reduced risk for AD in an Ice-
landic elderly population [2]. (3) The apolipoprotein E
(ApoE) ε4 allele, the strongest genetic risk factor for AD,
is closely involved in the regulation of Aβ metabolism
[3]. (4) In the trajectory of AD, abnormal Aβ accumula-
tion precedes neurodegeneration and cognitive decline
in both familial AD and sporadic AD [4, 5]. This evi-
dence suggests that the abnormal metabolism of Aβ in
the brain plays a central role in the pathogenesis of AD.
Converging data from animal models and clinical stud-

ies have demonstrated that abnormal Aβ accumulation
in the brain causes neurodegeneration, neuroinflamma-
tion, impaired neuronal function, and ultimately cogni-
tive decline. This process is mainly caused by the
overproduction of Aβ due to mutations in the APP and
PS1/2 genes in familial AD, which accounts for 1% of
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total AD patients, while dysfunction of Aβ clearance is
hypothesized to be the main reason for Aβ accumulation
in sporadic AD, which accounts for 99% of total AD pa-
tients [6]. Therefore, improving Aβ clearance has be-
come a promising therapeutic strategy for AD [7].
Indeed, several potential pathways have been shown to
be involved in Aβ clearance from the brain, including
phagocytosis and endocytosis by various cells, such as
microglia, perivascular macrophages and astrocytes, and
proteolytic degradation by enzymes, including neprilysin
(NEP), insulin-degrading enzyme (IDE) and matrix me-
talloproteinases (MMP). Recent studies have shown that
high levels of Aβ could flow from the brain to the per-
iphery, and physiological catabolism of brain-derived Aβ
in the peripheral system has been revealed in both
humans and mice [8], providing a novel perspective for
understanding the pathogenesis of and developing thera-
peutics for AD. The aim of this review is to discuss the
recent findings on the peripheral clearance of Aβ and its
potential for AD prevention and treatment.

Main text
Mechanisms of Aβ efflux from the brain to the periphery
Several pathways, including the blood-brain barrier path-
way, lymphatic-related pathway and arachnoid granule
pathway, have been shown to mediate Aβ effluxes from
the brain into the periphery.

Blood-brain barrier pathway
Numerous studies have suggested that pathological
changes in the neurovascular unit, which includes clus-
ters of glial cells, neurons and pericytes, contribute to
the onset and progression of AD and support a link be-
tween blood-brain barrier (BBB) dysfunction and neuro-
degeneration [9]. In addition, the capillary length in the
mouse and human brain is approximately 0.6 km and
650 km, respectively, which accounts for > 85% of the
total cerebral blood vessel length, providing a large
endothelial surface area for substance exchanges be-
tween the blood and brain. The BBB is, therefore, con-
sidered to be the primary approach to eliminate
pathological molecules such as Aβ from the brain [10].
Aβ efflux is normally mediated via its receptors on the

brain endothelium, and the clearance mechanism is
mainly mediated by cell surface proteins, mainly low
density lipoprotein receptor-related protein 1 (LRP1),
which localizes predominantly on the abluminal side of
the cerebral endothelium [11]. Some LRP1 ligands co-
deposit with Aβ in senile plaques and are involved in Aβ
clearance, such as ApoE, α2-microglobulin (α2M), and
tissue-type plasminogen activator [12]. The affinity of
Aβ40 for LRP1 is higher than that of Aβ peptides with a
greater β-sheet content, such as Aβ42, leading to Aβ42
peptides being less efficiently cleared from the brain

[13]. Furthermore, the LRP1-mediated Aβ clearance
across the BBB was shown to be very rapid, with a rate
of 0.21 pmol Aβ/minute/g interstitial fluid (ISF) for
Aβ40 and 0.11 pmol Aβ/minute/g ISF for Aβ42 [14].
LRP1 works closely with phosphatidylinositol-binding

clathrin assembly protein (PICALM) to clear Aβ mono-
mers, oligomers, and aggregates from the brain across
the BBB. Another key protein, P-glycoprotein (Pgp, also
known as ABCB1), which localizes predominantly on lu-
minal membranes of brain endothelial cells, also medi-
ates the active efflux of Aβ from the brain to blood. Due
to its special anatomical location, LRP1 has been sug-
gested to facilitate the initial uptake of Aβ from the ISF,
followed by Pgp pumping Aβ out of the endothelial cells
into the blood [15, 16]. In addition, LRP2, the largest re-
ceptor of the low-density lipoprotein receptor (LDLR)
family, facilitates the endocytosis of Aβ as well as its
clearance across the BBB after binding to apolipoprotein
J (ApoJ, also named clusterin) [13]. In addition to these
mechanisms, some other receptors mediate Aβ efflux,
such as insulin-sensitive transporters and ANP-sensitive
transporters [17]; however, the relative contribution of
these receptors remains unclear, and more research is
required to elucidate their role in the pathogenesis of
AD.
In contrast, circulating Aβ enters the brain mainly

through receptor for advanced glycation end products
(RAGE), a multiligand influx receptor in the immuno-
globulin superfamily that is expressed on the luminal
surface of brain vessels [18]. The BBB levels of LRP1,
Pgp, and RAGE are changed in AD models before Aβ
deposition, which may contribute to Aβ accumulation in
the brain [10].

Arachnoid granule-venous sinus pathway
The role of the BBB in material exchange and transpor-
tation is well known; however, there are still other ways
to transport brain-derived metabolites to the periphery.
Several lymphatic-related clearance routes and arachnoid
granule pathways drain solutes from the brain into the
periphery.
Cerebrospinal fluid (CSF) is also directly drained to

peripheral blood via arachnoid villi and granulations in
the walls of major venous sinuses [19]. The bulk flow of
CSF into the blood appears to occur via large vacuoles
that form on the abluminal side of the endothelial cells,
passage through the cells and release of the contents
into the venous blood [20]. The majority of the CSF in
humans appears to drain by this route; however, in new-
born lambs, the nasal pathway is the primary route, as
arachnoid villi do not develop until later in development
[21, 22]. In addition, there is considerable species vari-
ation in the size and structure of arachnoid villi and
granulations; for instance, arachnoid villi of experimental
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animals are much smaller and simpler than human
arachnoid granulations, suggesting that animal studies
may not truly reflect human physiological condition.
Therefore, the contribution of arachnoid granule-venous
sinus pathway in transporting Aβ and other metabolites
from the brain to the periphery in human needs to be
investigated.

Lymphatic-related pathways
The first lymphatic pathway is the meningeal lymphatics
at the bottom of the rodent skull, which are specialized
to drain CSF to deep cervical lymph nodes, allowing
wastes and other macromolecules to leave the brain
[23]. However, the contribution of lymphatics in drain-
ing Aβ out of the brain is unclear, although disruption
of meningeal lymphatics accelerates AD pathologies in
the brain of animal models [24]. The meningeal lym-
phatics have also been revealed in human beings [25],
their physiological functions in maintaining the brain
homeostasis and their aberrant alterations in the patho-
genesis of AD remain largely unknown. But the finding
of meningeal lymphatics provides a novel perspective to
understand the process of Aβ clearance from the brain
and suggests a new intervention approach for AD.
The second lymphatic pathway is the perineural out-

flow pathways through which CSF drains to deep cer-
vical lymph nodes. Emerging evidence has shown that
CSF outflows along the cranial nerves, especially in the
nasal or optical regions [26, 27]. More specifically, peri-
neural drainage along the olfactory nerve, the first cra-
nial nerve (CN I) through the cribriform plate to reach
the nasal mucosa is considered to be the most important
CSF lymphatic outflow route in several species [27–30].
In addition, the optic nerve (CN II) and trigeminal nerve
(CN V) exhibit a perineural pattern [27]. All these path-
ways are potential drainage routes to clear toxic pro-
teins, such Aβ, from the brain.
The third lymphatic pathway is the perivascular path-

way which drains ISF from the brain to the cervical
lymph nodes through basement membranes in the walls
of capillaries, the tunica media of arteries, and the wall
of the internal carotid artery in the neck [19]. Aβ in the
basement membranes of capillaries and artery walls in
cerebral amyloid angiopathy (CAA) almost certainly
blocks the perivascular drainage pathways, leading to in-
creasing impedance of solute drainage from the brain.
With advancing age, the artery walls become less elastic,
and stiffening may interfere with perivascular drainage
of ISF and solutes in elderly individuals [31].
The fourth lymphatic pathway is the paravascular

space which is a narrow space between the irregular sur-
face of the leptomeningeal and the outer basement
membrane of the vessel walls and that of the glia endfeet
[32, 33], and it has been proposed to be part of the

glymphatic pathway [34]. This cortical paravascular
route was referred to as the Virchow-Robin space (VRS);
however, the exact boundaries of the VRS are not clearly
defined to date. Paravascular drainage of solutes from
the CSF appears to be dependent on the expression of
aquaporin 4 (AQP4) and on efficient arterial pulsations,
suggesting that pulsations in artery walls may generate
the motive force for the transport of solutes out of the
brain [35, 36].
There appears to be a difference in the drainage path-

way between the CSF and ISF, and little is known about
the proportion of ISF that drains into the CSF. A previ-
ous study indicated that 10–15% of the ISF drains into
the CSF in rats [37], and a similar degree of drainage
may occur in humans [19]. In addition, another research
demonstrated that direct transport of Aβ across the BBB
accounts for ∼25% of Aβ clearance, and absorption of
Aβ in the CSF accounts for ∼25% of the total CNS Aβ
clearance in humans [38]. However, the main mechan-
ism through which Aβ leaves the brain and the exact
contributions of each of these pathways to overall Aβ
clearance remain unknown. Nevertheless, these path-
ways work synergistically to drain pathological proteins,
such as Aβ, from the brain to the periphery, indicating
that the peripheral tissues and organs are physiologically
related to the metabolism of brain-derived wastes [39].

Clearance of brain-derived Aβ in the periphery
It is estimated that Aβ clearance via the BBB is reduced
by approximately 30% in AD patients [40]. However, the
amount and mechanisms of Aβ clearance in the periph-
ery are poorly understood. Previous studies have sug-
gested that approximately 40%–60% of brain-derived Aβ
is cleared in the periphery [8, 41, 42]. A recent study
showed that deep cervical lymph node ligation aggra-
vates the AD-like pathology of APP/PS1 mice [43], sug-
gesting that blockage or dysfunction of the brain
drainage routes is one of the factors that contribute to
AD progression. Targeting meningeal lymphatics with
vascular endothelial growth factor C (VEGFC), an essen-
tial growth factor for lymphatic endothelial cells, en-
hances the meningeal lymphatic drainage of CSF
macromolecules and improves learning and memory
performance in animals [24, 44].
All these findings imply that there are physiological

mechanisms to transport pathological molecules from the
brain to the periphery for clearance and suggest that per-
ipheral clearance has a crucial role in removing brain-
derived Aβ. In the following section, we discuss where and
how brain-derived Aβ is cleared in the periphery.

Blood component-mediated Aβ clearance
A recent study demonstrated that bone marrow trans-
plantation reversed the age-related impairments in
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cognitive function and synaptic plasticity in aged mice
[45]. Another study showed that bone marrow-derived
cells contribute to the recruitment of microglial cells in
response to Aβ deposition in APP/PS1 mice [46]. In-
deed, multiple components in the blood have been
shown to participate in circulating Aβ clearance.

Enzymes Secreted enzymes, which have an affinity for
specific domains within the Aβ amino acid sequence and
an ability to cleave these peptides to shorter, more be-
nign forms, are critical for the catabolism of circulating
Aβ. These proteins include insulin-degrading enzyme
(IDE), neprilysin (NEP) and its homologue endothelin-
converting enzyme (ECE), angiotensin converting en-
zyme (ACE), matrix metalloproteinase-9 (MMP-9), and
plasmin, the key enzyme of the plasminogen system.
IDE is a well-validated Aβ-degrading enzyme that was

originally isolated as a molecule regulating plasma insu-
lin levels. It is mainly a soluble cytoplasmic enzyme, al-
though it also exists in a secreted form [47]. IDE activity
levels were inversely correlated with brain Aβ burden
[48], and IDE knockout animals showed a significant in-
crease in the brain Aβ levels, suggesting that loss of this
activity may contribute to AD pathology [49].
NEP is a ubiquitous circulating protease and is abun-

dant in the kidney and the lung. NEP is considered to be
the most potent Aβ-degrading enzyme [50, 51]. NEP
dysfunction elevates endogenous Aβ levels in the mouse
brain in a gene dose-dependent manner [52]. These
findings suggest that NEP may have profound effects on
AD pathogenesis by promoting Aβ clearance.
ACE is significantly expressed by the endothelium

throughout the body and is known for regulating salt
balance; this enzyme has also been shown to degrade Aβ
and, more importantly, cleave Aβ42 into the less toxic
Aβ40 [53, 54]. Genetic studies have revealed a link be-
tween reduced plasma ACE levels and increased AD risk
[55, 56]. Furthermore, ACE overexpression by myelomo-
nocytes leads to a reduction in brain Aβ levels [57], indi-
cating the potential role of ACE in Aβ clearance. In
addition, ECE-1, plasmin, and MMP-9 also participate in
Aβ degradation [58, 59], and compelling data support a
major role of MMP-9 in the degradation of Aβ compact
plaques [60, 61], demonstrating its potent role in Aβ
clearance.

Monocytes Monocytes are a key component of the in-
nate immune system and have multiple functions, such
as the removal of debris and dead cells via phagocytosis.
Multiple lines of evidence highlight the crucial role of
monocytes in AD. Circulating monocytes give rise to
various tissue-resident macrophages throughout the
body and specialized cells, such as microglia in the brain.
Peripheral monocytes are found to be able to uptake Aβ

from the blood, and the phagocytosis of Aβ by mono-
cytes is compromised in AD patients [62, 63]. These
findings suggest that monocytes might play a substantial
role in clearing Aβ from blood, and deficits in phagocyt-
osis of Aβ by monocytes would contribute to the patho-
genesis of AD.
Indeed, a decreased capacity of peripheral monocytes

to capture Aβ resulted in increased Aβ levels [64]. In
addition, the expression of monocyte cell adhesion mole-
cules, such as ICAM-3 and P-selectin, was significantly
reduced in AD patients, demonstrating that peripheral
blood macrophages from AD patients displayed an im-
paired capacity to take up and digest Aβ [65–67]. More-
over, the expression of surface receptor TREM2, which
is involved in monocyte phagocytosis, and CD33, which
is involved in Aβ42 internalization, is altered in mono-
cytes of AD patients [68, 69], suggesting that Aβ clear-
ance by monocytes plays a substantial role in AD
pathogenesis. Recent research has demonstrated that de-
pletion of perivascular macrophages causes increased
vascular Aβ levels. However, stimulation of perivascular
macrophage turnover decreased the cerebral CAA load,
highlighting the importance of perivascular macrophages
in this AD-related disease [70]. Patrolling monocytes
have been shown to infiltrate the brain and differentiate
into activated macrophages in AD [71], and these circu-
lating monocyte-derived macrophages are more effica-
cious than resident microglia in clearance of Aβ plaque
in the brain [72]. The circulating monocyte subset could
adhere to the Aβ-rich vasculature in the brain and ef-
fectively eliminate Aβ microaggregates by internalizing
and transporting them from the brain vasculature to the
blood [71]. Taken together, these observations outline
the crucial role of the monocyte-mediated clearance of
Aβ in both the brain and the periphery in AD.

Erythrocytes Recent evidence suggests that Aβ is sub-
ject to erythrocyte-mediated immune adherence at every
step in the pathway, where Aβ activates serum comple-
ment, and complement-opsonized Aβ peptides are cap-
tured by erythrocytes via CR1 and transported to liver
and spleen for clearance [73, 74]. CR1 is deficient in
erythrocytes of AD patients, and the single nucleotide
polymorphisms (SNPs) associated with decreased
erythrocyte CR1 increase AD risk, whereas a CR1 SNP
associated with increased erythrocyte CR1 reduces AD
risk [75]. These findings are helpful to establish a mech-
anistic link between the CR1 polymorphisms and their
risks for AD [76]. Furthermore, it was recently found
that Aβ antibodies can dramatically increase comple-
ment activation and opsonization of Aβ, and therefore
enhance Aβ capture by human erythrocytes and macro-
phages [77]. These findings suggest that the peripheral
mechanism cannot be ignored for the Aβ clearance by
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immunotherapies, and infer the potential roles of inter-
action between autoantibodies to Aβ and erythrocytes in
the pathogenesis of AD. It is also found that the number
of erythrocytes is less in AD patients than in cognitively
normal control [78]. Taken together, these studies sug-
gest that erythrocyte-mediated clearance, a major path-
way for clearance of circulating pathogens, is a
substantial approach for the clearance of circulating Aβ.

Liver-mediated Aβ clearance
When flowing into the periphery, Aβ usually binds to
other molecules. Previous studies have demonstrated
many transport proteins, such as albumin, ApoE, ApoJ,
transthyretin (TTR), and α-2M could bind Aβ [79–83].
However, in human plasma, the soluble form of LRP1,
which sequesters 70%–90% of plasma Aβ, is the major
binding protein for circulating Aβ and mediates periph-
eral Aβ degradation in the liver, kidneys and spleen [84].
The liver has many functions, including endocrine

function, immunomodulation, lipid metabolism, and de-
toxification, which may all be involved in AD pathogen-
esis. It is proposed that once efflux from the brain
occurs, Aβ is transported to the liver by high-density
lipoprotein (HDL) particles [85–87], indicating the par-
ticipation of the liver in peripheral Aβ clearance.
Hepatocytes can act on circulating Aβ via LRP1, which
is highly expressed in hepatocytes, promoting its clear-
ance by degradation or through bile excretion [88].
Moreover, upregulating liver LRP1 expression could re-
verse the behavioural deficits and pathologies in the
brain of APP/PS1 models [89], indicating that targeting
peripheral organs, such as the liver, offers a unique
therapeutic approach for Aβ clearance. In addition, the
function of central circadian rhythms could influence Aβ
pathogenesis in a specific manner [90]. Given that the
liver is the main peripheral organ communicating with
brain via the liver-brain axis, the liver might affect Aβ
clearance by regulating the circadian rhythm [91]. These
findings highlight the importance of the liver in Aβ
clearance and the pathophysiology of AD.

Kidney-mediated Aβ clearance
Kidney is the main excretory organ and control levels of
metabolites via regulating and filtering minerals from
blood. Recent researches indicated that kidney may be
involved in circulating Aβ clearance. Indeed, radio-
graphic experiments have shown that after intracranial
or intravenous infusion of I125-labelled Aβ, radioactivity
was subsequently detected in the kidney and urine [8],
besides, soluble Aβ was also detected in human urine
[92]. These evidence all suggest that kidney might par-
ticipate in physiological clearance of Aβ by filtering Aβ
from the blood to the urine. In addition, the serum Aβ
levels and brain Aβ depositions were found to be

significantly increased in chronic kidney disease (CKD)
patients [93, 94], indicating that the reduced kidney-
mediated Aβ clearance may contribute to AD pathology
in brain. Furthermore, clinical studies demonstrated the
link between CKD and risk of cognitive impairment
[95–97], which even independent of cerebral small-
vessel disease [98], implying that Aβ accumulation
caused by aberrant kidney-mediated excretion may be
involved in cognitive impairment in CKD patients. These
studies suggest that kidney-mediated Aβ excretion have
a significant impact on removing Aβ in the brain.

Are intestine and skin involved in peripheral Aβ clearance?
A previous study reported the detection of Aβ deposits in
the non-neural tissues of AD patients, including the skin
and intestine in humans [99] and the gastrointestinal tract
in animals [100]. The source of Aβ deposits in the intestine
and skin is probably derived from circulating Aβ in the
blood, implying that the intestine and skin may participate
in peripheral Aβmetabolism.
The gastrointestinal tract is a lymphoid organ, which is

heavily laden with macrophages and other immune cells.
This implies that the gut has the potential capacity of clear-
ing Aβ. Increasing data demonstrate that gut microbiota is
altered in AD patients [101, 102], suggesting that the brain-
gut-microbiota axis is involved in the pathogenesis of AD.
It is intriguing to speculate that gastrointestine may have
the function of regulating Aβmetabolism in the periphery.
Skin has been defined as an immune organ for a long

time. The skin and brain, both derived from ectoderm of
embryo, are physiologically and pathologically con-
nected. Newly published data suggested that Aβ34, an
Aβ species with specific length, was found in the epider-
mal layer in human skin [103]. The deposition of Aβ
was also found in the skin of AD patients [99]. Although
APP expression was detected in situ in the mammalian
epidermis and predominantly in basal keratinocytes
[104, 105], it remains unknown whether these Aβ de-
posits are from circulating blood or local cells in the
skin. Our previous studies found that radiolabelled Aβ
mainly accumulated in the skin after intravenous injec-
tion [8]. These findings suggest that skin may be in-
volved in the metabolism of Aβ in the periphery. In the
skin there are many macrophages which may clear local
Aβ. In addition, the secretion of sweat is a potential ap-
proach to excrete Aβ. Nevertheless, whether skin func-
tions in Aβ clearance remains largely unknown. Future
studies are needed to address this topic.

Do systemic diseases increase the AD risk via the
peripheral Aβ clearance approach?
Disorders of systemic immunity and inflammation
Immune system abnormalities are now considered a
major pathological factor in AD, and innate immunity is
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compromised in patients with AD. Reduced expression
of Aβ phagocytic receptors and Aβ-degrading enzymes
and decreased phagocytic function in mononuclear mac-
rophages and neutrophils might impede Aβ degradation
and clearance [106–108]. In regard to adaptive immun-
ity, autoreactive antibodies related to AD pathogenesis
have been studied. Specifically, elevated levels of patho-
genic autoreactive antibodies and decreased levels of
protective antibodies could influence Aβ clearance and
deposition. In addition, compelling evidence suggests
that chronic systemic inflammation, such as rheumatoid
arthritis and periodontitis, promotes the AD pathogen-
esis [109, 110]. Proinflammatory molecules, such as
TNF-α, IL-6 and IL-1β, could compromise Aβ clearance
by affecting the functions of not only microglia but also
peripheral monocytes and Aβ-degrading enzymes [111].

Hepatic dysfunction
The liver is the major organ responsible for system-wide
protein synthesis and metabolic detoxification. Circulat-
ing Aβ is directly cleared by degradation in hepatocytes
or indirectly cleared by regulation of the liver-mediated
albumin level and Aβ-related lipid metabolism. Our pre-
vious study suggests that hepatic dysfunction, such as
liver cirrhosis, is accompanied by higher levels of circu-
lating Aβ. The reduced hepatic LRP1 levels in ageing
rats contributed to decreased peripheral Aβ clearance
[88, 112], suggesting that LRP1-dependent hepatocyte-
mediated Aβ clearance is potentially important [113]. In
addition, a recent study found that an elevated AST/
ALT ratio and decreased levels of ALT were associated
with AD brain biomarkers and poor cognitive perform-
ance [114], linking liver dysfunction to AD pathogenesis.
Increasing evidence suggests that abnormal lipid metab-
olism is associated with an increased risk of AD [115],
and some potential AD risk genes link to lipid metabol-
ism [116]. Furthermore, ApoE, a liver-synthesized pro-
tein critical for AD risk, could regulate Aβ clearance via
BBB transportation, enzymatic degradation and many
other pathways [117].

Renal dysfunction
The kidney is traditionally considered to be an excretory
organ, and soluble Aβ is a normal component of human
urine [92]. Patients with CKD have increased circulating
Aβ levels [93] and decreased cognitive functions [95,
118]. Aβ deposition is observed in the brains of CKD pa-
tients [94]. Furthermore, cerebral atrophy correlates with
measures of renal function in patients with CKD [119].
These findings imply that the reduction in renal function
may attenuate peripheral Aβ clearance. Therefore, it is
possible that cerebral Aβ accumulation may be involved
in the development of cognitive decline in CKD patients.

Diabetes mellitus
Numerous studies have demonstrated that patients with
diabetes have an increased risk of developing AD [120].
The underlying mechanisms that link the development
of diabetes with AD include the disorders of Aβ metab-
olism in both the brain and periphery. In patients with
diabetes, excess insulin can competitively inhibit IDE-
mediated Aβ degradation [49]. Moreover, diabetes also
influences Aβ clearance through other mechanisms, in-
cluding oxidative stress, BBB disruption, the activation
of inflammatory pathways, and hypercholesterolemia
[121]. In addition, insulin resistance compromises intra-
cellular translocation of LRP1 to the plasma membrane
in hepatocytes, potentially hindering hepatic clearance of
circulating Aβ [112].

Strategies for AD therapies via peripheral Aβ clearance
Many strategies aim to alleviate AD via peripheral Aβ
clearance. Here, we propose the following directions for
future research (Fig. 1): (1) Maintaining the function of
the BBB and brain lymphatic systems, which are critical
for transporting Aβ from the brain to the periphery,
could promote brain Aβ outflow and thereby attenuate
Aβ accumulation in the brain. (2) Peripheral organs,
such as the liver and kidney, are thought to physiologic-
ally participate in Aβ clearance. Whether liver or renal
dysfunction also improves the Aβ load in the brain re-
mains to be answered. However, it is known that
strengthening liver function via herbal medicine or kid-
ney transplant can reduce the plasma Aβ levels [94].
These findings suggest that improving the Aβ clearance
capacity of the liver and kidney has therapeutic poten-
tials. (3) Mounting evidence has demonstrated the roles
of the immune system in AD pathogenesis. A cluster of
AD risk gene mutations have been found to compromise
the phagocytic function of Aβ by monocytes [68, 122].
In terms of adaptive immunity, antibody-based immuno-
therapies have been tested for AD. In addition, immune-
PEGliposome and antibody-functionalized polymer
nanoparticle have been used to ameliorate the AD path-
ology in animal models [123, 124]. In these immuno-
logical modalities, the majority of antibodies locate in
the blood and sequester peripheral Aβ [125]. Therefore,
improving the clearance of Aβ by peripheral immuno-
modulation and immune cells will be a promising thera-
peutic strategy [126]. (4) Improving Aβ degradation by
peripheral degrading enzymes is also a promising ap-
proach. Continuous expression of NEP in skeletal
muscle or increased circulating NEP levels reduces the
Aβ burden in AD mice [127, 128]. Additionally, periph-
erally derived ACE-enhanced macrophages alleviate AD
pathology and behavioural defects [129]. These findings
suggest that strengthening peripheral Aβ degradation is
a potential AD therapeutic approach. (5) Erythrocytes
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and albumin enable physiological clearance of Aβ in the
blood. This function can be used to develop the therap-
ies to clear Aβ in the brain [130]. (6) Plasma albumin ex-
change decreases the Aβ burden in patients with AD
and improves AD-related cognitive function [131]. In
addition, patients who have undergone haemodialysis
exhibited a reduction in Aβ deposition in the brain [94].
Furthermore, peritoneal dialysis reduces blood Aβ levels
in humans and attenuates AD pathology in an APP/PS1
mouse model [132]. These observations indicated that
dialysis or plasma exchange would be a potential thera-
peutic approach [133].
All these data suggest that increasing efflux of brain-

derived Aβ and strengthening peripheral Aβ clearance
can help relieve AD pathology. In addition, peripheral
clearance is proposed to be a safer and easier therapeutic
approach for AD than the traditional central clearance
approach by introducing reagents into the brain [134].
In this regard, active removal of excess peripheral Aβ
seems to be a particularly promising therapeutic strategy
for AD .
However, it should be mentioned that some of the

peripheral clearance pathways are not absolutely specific
for Aβ. These approaches, such as Aβ-binding receptors
(i.e. LRP1 and RAGE)-mediated BBB transport, enzyme
(i.e. NEP and IDE)-mediated degradation, and
erythrocyte-mediated immune adherence, also work for
the clearance of other molecules or metabolites, imply-
ing that general enhancement of these clearance func-
tions might cause adverse effects due to disturbance to
the metabolism of other molecules. Therefore, Aβ-
specific clearance methods are desirable for the

development of AD therapies. Nonspecific mechanisms
of Aβ clearance could also be therapeutically tractable as
long as their impacts to other substrates is evaluated to
be safe. In addition, the Aβ levels in the blood reflect the
Aβ metabolisms in both the brain and the periphery. For
example, muscle cells can also produce and release Aβ
into the blood, and the Aβ clearance by liver and kidney
influences the Aβ levels in the blood. This is may explain
why Aβ levels in the blood do not accurately reflect the
amount of Aβ levels in the brain.

Conclusion
As there is a close interaction between Aβ metabolisms
in the brain and the periphery [39], dysfunctions of Aβ
metabolisms in the periphery might contribute to the
development of AD, and targeting peripheral Aβ clear-
ance represents a new opportunity for the prevention
and treatment of the disease.
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