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Abstract: While current therapies for chronic HBV infection work well to control viremia and stop the
progression of liver disease, the preferred outcome of therapy is the restoration of immune control of
HBV infection, allowing therapy to be removed while maintaining effective suppression of infection
and reversal of liver damage. This “functional cure” of chronic HBV infection is characterized by
the absence of detectable viremia (HBV DNA) and antigenemia (HBsAg) and normal liver function
and is the goal of new therapies in development. Functional cure requires removal of the ability
of infected cells in the liver to produce the hepatitis B surface antigen. The increased observation
of transaminase elevations with new therapies makes understanding the safety and therapeutic
impact of these flares an increasingly important issue. This review examines the factors driving the
appearance of transaminase elevations during therapy of chronic HBV infection and the interplay of
these factors in assessing the safety and beneficial nature of these flares.
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1. Introduction

Exposure to the hepatitis B virus (HBV) causes a predominantly hepatotropic infection,
which in its acute state commonly causes liver inflammation and dysfunction and in its
chronic state fibrosis, cirrhosis and hepatocellular carcinoma (HCC) [1–3]. While >80%
of people infected with HBV achieve immune control and self-resolve their infection,
reactivation of latent infection [4] in the livers of these individuals can still occur with
immunosuppressive therapy [5,6]. Unfortunately, HBV infection remains chronic in more
than 292 million people worldwide [7] and is responsible for 870,000 deaths annually [8].
This chronic infection results from (1) the inhibition of the immune response to HBV via
the maintenance of abundant circulating HBsAg by the production of a large excess of
non-infectious subviral particles (SVP) over virions [9], (2) the ability of the HBV genome to
form a closed covalent circular DNA (cccDNA) “minichromosome” that can reside inside
the nucleus of infected cells in an inactive “latent” state [10] and (3) the integration of HBV
DNA into the chromosomes of liver cells [11,12], which progresses with continued chronic
infection, becoming a significant source of SVP [9,13–15].

The current challenge in the treatment of chronic HBV infection is to restore immune
control allowing suppression of viral infection to be maintained in the absence of therapy,
thereby allowing liver damage to regress and the risk of developing hepatocellular carci-
noma to decline. This “functional cure” of chronic HBV infection requires the reconstitution
of immune control and is characterized by the absence of circulating HBV surface antigen
(HBsAg) without therapy [16–20]. Since HBsAg is almost entirely derived from SVP [9],
establishing a functional cure of HBV infection requires not only clearing SVP from the
blood but removing the SVP producing capacity in the liver by the silencing of cccDNA
and the removal of hepatocytes with integrated HBV DNA [14,15].

Since the clearance of hepatocytes with integrated HBV DNA from the liver is a
critical milestone in achieving functional cure, the resulting damage in the liver is also
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expected to result in elevations in serum concentrations of liver enzymes. This creates a
clinical challenge as liver enzyme flares are known to occur with a variety of other liver
diseases where they are associated with hepatoxicity. Given the current focus on achieving
a functional cure of HBV with new therapeutic agents, this review explores how liver
enzyme flares during the treatment of chronic HBV infection affect liver function and the
potential utility of these flares to predict positive therapeutic outcomes.

2. Distribution of HBV Infection in the Liver

During acute (initial) infection, HBV infection appears infrequently in individual
hepatocytes where HBsAg is located primarily in the cytoplasm [21]. These cells presum-
ably also contain replicating virus. Transition to chronic infection (Figure 1) appears to be
accompanied by translocation of HBsAg to the cell margins [21]. The number of cells in
an initially infected liver is unknown, as symptoms of acute infection are considered to
occur weeks to months after the initial infection event. In chronic infection, the bulk of
infected cells in the liver are hepatocytes, but infection is also present to a lesser extent in
the bile duct epithelium as well as endothelial and smooth muscle cells of hepatic blood
vessels [22]. Scattered HBsAg positive hepatocytes are accompanied by HBcAg positivity
approximately 70% of the time, and HBsAg is found both in the cytoplasm and at the cell
margin [21,23]. With the transition from HBeAg positive to HBeAg negative infection,
HBsAg distribution becomes mainly distributed in clusters of hepatocytes predominantly
in the cytoplasm [24], in which HBcAg is less frequently detected (Figure 1). This clustered
HBsAg+, HBcAg- pattern persists in inactive HBV infection with mostly cytoplasmic HB-
sAg localization [21,23]. These patterns are consistent with the progressive establishment
of HBV infection in the liver during the natural history of HBV infection, with transition
from individual hepatocytes producing virus and SVP to clusters of infected cells, which
include hepatocytes containing only integrated HBV DNA and producing only SVP.
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In chronic HBV infection, numerous studies have confirmed the heterogenous pattern
of infected hepatocytes in chronic HBV infection (Figure 1) where infection is spread
intermittently throughout the liver in patches comprised entirely of infected cells [21,23–28]
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or in sparsely infected regions [21,24,25,27,29,30]. In many instances, HBsAg expression
is detected in cells devoid of HBV DNA or HBcAg [26,28,31–33] (Figure 1), which signals
the presence of cells containing integrated HBV DNA, producing HBsAg efficiently (as
SVP) but not HBV pgRNA (and HBV DNA) or other viral antigens [11]. Based on the best
available biopsy estimates, the extent of liver infection (cells containing either cccDNA or
integrated HBV DNA) in chronic HBV infection varies from 35% [34] to 70% [21]. While
these studies demonstrate the expansion of HBV infection throughout the liver, they also
demonstrate the preservation of normal functioning hepatic tissue throughout the natural
history of HBV infection.

3. Impact of HBV Infection on Hepatocyte Function

Although HBV infection is not directly cytopathic, HBV infection of hepatocytes is
followed by extensive metabolic reprogramming. These effects are summarized in Table 1
and consist of alterations in lipid metabolism leading to intracellular lipid and cholesterol
accumulation [35–45], increased oxidative stress [39,46] and glucose metabolism [43,45],
altered cell cycle regulation [44,47,48] and increased intracellular protein recycling [49–51].
HBV infection also sensitizes hepatocytes to apoptotic signaling [52,53]. These changes
signal a reduction in the reservoir of normal liver infection driven by HBV replication in
hepatocytes during acute and chronic HBV infection. These alterations may also be respon-
sible in part for the reduced liver function observed with the expansion of HBV infection.

Table 1. Impact of HBV infection on hepatocyte function.

Parameter Specific Change Reference

Lipid
metabolism

Downregulation of multiple apolipoproteins (A, B,
C, E, F, H and M) [35–38]

Upregulation of fatty acid synthesis [39]

Increased cholesterol uptake and metabolism [40]

Increased lipogenesis, membrane biogenesis and
intracellular lipid/cholesterol accumulation [41–45]

Cellular
Metabolism

Increased oxidative stress [39]

Downregulation of mitochondrial electron
transport function and increased mitochondrial

production of reactive oxygen species
[46]

Upregulation of glycolysis and the Krebs cycle [43,45]

Cell cycle Transition from G0 to G1 [44,47,48]

Uptake/secretion
Upregulation of endocytosis and autophagy [49,50]

Upregulation of ER-associated protein degradation [51]

4. The Molecular Basis of Liver Enzyme Elevations in the Blood.

Alanine aminotransferase (ALT), also known as glutamic–pyruvic transaminase (GPT),
is a cytosolic enzyme involved in gluconeogenesis that catalyzes the amination of α-
ketoglutarate from alanine to produce pyruvate and glutamate. In humans, two distinct
ALT isozymes are produced from distinct but related genes, ALT1 and the more recently
characterized ALT2 [54], which both contribute to ALT activity detected in standard blood
testing [55]. These two ALT isozymes have different cellular and tissue distributions
(Figure 2), with ALT1 most enriched in the liver (ER and cytoplasm) and ALT2 most
enriched in skeletal muscle (ER and mitochondria) and absent in the liver [55–57]. Both
ALT isozymes are present in human plasma [55,57], but most of the catalytic ALT activity
detected in normal plasma appears to derived from ALT2 [55].
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Aspartate aminotransferase (AST), also known as glutamic oxaloacetic transaminase
(GOT), catalyzes the reversible transfer of an amino group between aspartate and glutamate.
There are two AST isozymes dervied from distinct genes which produce the ALT forms
found either in the cytoplasm (AST1) or mitochondria (AST2) [58]. These isozymes also
have different tissue distributions (Figure 2): AST1 is found predominantly in the heart [59]
and striated muscle [56], and AST2 is found predominantly in the liver [60].

γ-glutamyl transferase (GGT) cleaves the γ-glutamyl moiety from glutathione and
transfers this moiety to a variety of acceptors (including water to form glutamate). There
are two GGT genes (GGT 1 and GGT 2), each producing GGT precursor protein; however,
only the GGT1 precursor undergoes autocleavage to become catalytically active [61]. GGT
(GGT1) is membrane associated and primarily found in the kidneys (in proximal renal
tubules) but also in significant levels in the liver in the biliary epithelial cells with lower
levels present in the canicular and sinusoidal surfaces of hepatocytes [62–64] (Figure 2).

In subjects with previously characterized viral hepatitis, elevations of ALT, AST and
GGT in the blood are driven by release of these enzymes from cells in the liver. This
release can occur via rupture of plasma membrane blebs formed in response to cellular
stress or inflammation [65], from cellular necrosis [66] or due to immune-mediated cellular
damage [67,68]. Chronic HBV infection is accompanied by elevations of serum levels of ALT
and AST [69], the latter of which is used to guide the initiation of antiviral therapy under
current treatment guidelines for chronic HBV infection [70–72]. Elevations in GGT have
also been linked to the progression of liver disease [73], mortality [74] and clinical outcomes
from treatment of HBV infection [75]. Elevations in these enzymes during the natural course
of HBV infection can be accompanied by alterations in the reservoir of liver synthetic and
secretory function [76] reflected in increased serum bilirubin, decreased serum albumin,
decreased platelet count and/or increased INR (biochemical flare). Although circulating
ALT is not only derived from the liver, it is uniformly present in hepatocytes, and elevations
observed during HBV infection are considered the most sensitive marker for cellular
damage to hepatocytes.

5. Transaminase Flares and the Hepatic Reservoir during Natural History of HBV
Infection

Definitions of clinically significant transaminase elevations including flares range from
>2–5x the upper limit of normal (ULN) [77–80] or >3x higher than baseline levels [77,79].
All of these definitions have been shown to be associated with impacts on disease, indicat-
ing that all transaminase elevations should be regarded as clinically significant during the
natural history or treatment of chronic HBV infection. ALT elevations can occur throughout
the natural history of chronic HBV but are rarely accompanied by biochemical flare or by
hepatic decompensation, which is characterized by severe biochemical flares accompanied
by jaundice, ascites or encephalopathy, or signs of severe anticoagulation (easy bruising
or bleeding) [81,82]. Elevations are more frequently observed in HBeAg positive infec-
tion [83,84], where they are preceded by increased viremia [85] and followed by increased
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immune activity [81,86–91], indicating that these flares are driven by immune-mediated
damage/clearance of infected hepatocytes. Biochemical flare, hepatic decompensation
and additional extrahepatic manifestations [92] accompanying ALT elevation (in up to
30% of cases) are mainly observed in acute HBV infection and HBeAg positive chronic
infection [86] when HBV DNA exceeds 1.55 × 109 copies/mL (2.66 × 108 IU/mL) [93]. ALT
elevations during the natural course of HBV infection are typically followed by declines
in HBV DNA and/or HBeAg seroconversion [82,94] concomitant with a reduction in the
activity and hepatic burden of covalently closed circular DNA (cccDNA [95] and integrated
HBV DNA [96].

From the initial establishment of HBV infection in the liver and its spread during the
evolution of chronic HBV infection, elevations in liver enzymes are driven by hepatocyte
damage and loss from: (1) the increased apoptotic sensitivity in hepatocytes resulting
from HBV infection, (2) inflammation driven by the innate immune response to HBV
infection and (3) specific targeting of infected hepatocytes by the HBV specific adaptive
immune response, both B-cell [97] and T-cell mediated [91]. These effects drive reduction
in the reservoir of normal hepatic function, fueling biochemical flare and decompensation.
However, the liver has well-established regenerative properties [98–101] and clonal expan-
sion of normal hepatocytes has been characterized throughout HBV infection [102,103],
although the extent and rate of this clonal expansion has yet to be determined [12]. Thus,
the available reservoir of normal liver function during the progression of HBV is governed
by the balance of the loss of normally functioning hepatocytes due to HBV infection and
the clearance of HBV infected hepatocytes with the restoration of normally functioning
hepatocytes due to regeneration (Figure 3). In this context, ALT elevation accompanied
by biochemical flare and/or hepatic decompensation likely reflects the expansion of viral
infection and the accompanying hepatocyte loss from inflammation and immune-mediated
clearance at a rate faster than can be compensated for by regeneration (Figure 4A). Host-
mediated transaminase flares likely represent aspects of immune control of infection being
established with the net removal of infected hepatocytes not impacting liver function
(Figure 4B). However, without complete immunological control being established, even
slow chronic HBV reinfection and hepatocyte turnover can lead to the development of
fibrosis, which will eventually erode the reservoir of normally functioning hepatocytes,
leading to biochemical flare and hepatic decompensation.
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6. Transaminase Flares during Therapy

The control of liver enzyme elevations is an important consideration during the
management of chronic HBV infection as they can lead to hepatic decompensation, which
is of special concern in patients with advanced fibrosis and cirrhosis who have only a
fraction of the normal reservoir of hepatic function. As such, transaminase elevations,
even if they may be beneficial, are generally recognized as an important indicator to
initiate antiviral therapy to control liver dysfunction and the progression of liver disease.
Current treatment guidelines with approved therapies [70–72] indicate the introduction of
nucleos(t)ide analog inhibitors of the HBV reverse transcriptase (NUCs) only when chronic
HBV infection is accompanied by HBV DNA > 2000 IU/mL and ALT elevation > ULN with
the goal of providing long-term therapy for chronic suppression of infection. The use of
pegylated interferon is also indicated for the treatment of chronic HBV infection with proper
patient selection when the therapeutic goal is finite therapy leading to immunological
control of infection (virologic response, as defined as normal ALT with HBV DNA <
2000 IU/mL).

6.1. Nucleos(t)ide Analogues

The guanine nucleoside analog entecavir (ETV), the adenosine nucleotide analog
tenofovir disoproxil fumarate (TDF) and its more recent derivative tenofovir alafenamide
(TAF) are the currently recommended NUC therapies [104] for the control of liver disease
due to chronic HBV infection. These are bifunctional agents, having direct antiviral ac-
tivity via inhibition of the HBV reverse transcriptase and indirect antiviral effect via the
stimulation of innate immunity [105–112]. Transaminase flares observed during therapy
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with earlier generation NUCs such as lamivudine are typically associated with viral flare,
and in some cases hepatic decompensation, as a result of the evolution of drug resistance
to these early NUCs [113,114]. In these cases, a viral flare signals the expansion of infec-
tion in the liver and concomitant transaminase flares signal the removal of infected cells
and/or cellular injury, resulting in net removal normal liver function at a pace greater
than can be compensated for by regeneration (Figure 4A). The development of drug re-
sistance to ETV and TDF/TAF is rare [115–117], and as a result, transaminase flares are
less frequent with these NUCs but also not accompanied by biochemical flare or hepatic
decompensation [79,114,118,119]. Flares during therapy with these later-generation NUCs
are frequently associated with declines in HBV DNA, HBeAg seroconversion [79,119]
and, in rarer instances, HBsAg loss [80,120], indicating an immunological basis for these
flares. In these cases of transaminase flares during NUC-mediated HBV suppression, liver
regeneration can match or outpace hepatocyte injury/infected hepatocyte loss (Figure 4C),
preventing progression of fibrosis and hepatic decompensation.

6.2. Removal of NUC Therapy

Transaminase elevations often accompany removal of NUC therapy in HBeAg nega-
tive patients [121,122]. With older-generation NUCs such as lamivudine, these off-therapy
flares were accompanied by biochemical flare and hepatic decompensation when HBV
DNA levels were elevated [123,124]. Transaminase flares following withdrawal of TDF
appear to occur earlier than withdrawal from ETV [125], but withdrawal from ETV or TDF
is rarely accompanied by biochemical flare or hepatic decompensation [121,122,126,127].
Notwithstanding this, these host-mediated flares are not associated with sustained control
of viremia, and re-treatment with NUCs is usually required [128].

6.3. Pegylated Interferon

Pegylated interferon (pegIFN) is a multifunctional immunotherapy that stimulates
both innate [129,130] and adaptive immune responses [131,132] but also erodes T-cell
function [131] as exposure increases. Transaminase flares are more frequently observed
during pegIFN therapy than with NUCs and are driven either by viral flares which are
more likely to be accompanied by biochemical flares and/or hepatic decompensation, or
the host-mediated clearance of infected cells from the liver, which is followed by declines
in HBV DNA [133,134] and has similar effects on the overall reservoir of liver function as
observed with NUCs. Stronger host-mediated flares during pegIFN are associated with
increased likelihood of HBV DNA decline, HBeAg seroconversion and increased rates of
HBsAg loss and are not accompanied by biochemical flare or hepatic decompensation in
non-cirrhotic patients [133–139].

6.4. Thymosin Alpha 1

Thymosin alpha 1 is synthetic form of a naturally occurring thymic peptide hormone
that acts primarily as a T-cell agonist [140–142]. Treatment of chronic HBV infection with
thymosin alpha 1 is also accompanied by transaminase flares, which either resolve during
therapy [143] or appear and self-resolve after therapy [144] with no biochemical flare or
hepatic decompensation and are associated with HBeAg seroconversion [143,144].

6.5. RNAi/Antisense

These oligonucleotide-based compounds are designed to target the cleavage of HBV
mRNA via the RISC complex (in the case of RNAi) or via RNAse H (in the case of antisense).
The specificity and activity of both these classes of oligonucleotides is strictly dependent
on the perfect homology between the single-stranded (antisense) or double-stranded
(RNAi) oligonucleotide and the target region of the mRNA. While in vivo data have been
consistent with this mechanism, clinical studies with a variety of these compounds have
indicated that off-target stimulation of innate immunity is playing a role in the clinical
responses observed [9,145]. Limited data are available from ongoing trials with these
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compounds. However, the lipid-nanoparticle-formulated ARC-520 RNAi therapy was
associated with mild transaminase flares during or after therapy, which self-resolved
without biochemical flare or hepatic decompensation and in some cases were associated
with declines in HBsAg [146]. Therapy with the GalNAc conjugated RNAi RG6346 (DCR-
HBVS) was associated with transaminase flares in 3/6 participants at the 3 mg/kg dose
in NUC-suppressed participants and accompanied by declines in HBV DNA and weaker
declines in HBsAg [147].

6.6. Nucleic Acid Polymers

Nucleic acid polymers are broad spectrum antiviral agents [148] that selectively in-
hibit the assembly and secretion of HBV subviral particles without affecting secretion of
HBeAg or virus [149,150]. Rapid and multilog HbsAg declines following NAP monother-
apy in HBeAg positive infection are accompanied by strong, asymptomatic host-mediated
transaminase flares, which are in turn accompanied by declines in HBV DNA, HBeAg
seroconversion and HBsAg loss and seroconversion [151]. These flares are likely driven by
rapid reduction in intrahepatic HBsAg, which restores innate immune function resulting
in the clearance of infected cells and/or clearance of circulating HBsAg, which removes
the exhaustion of the HBsAg-specific immune response, allowing the targeting of cells
in the liver harboring both cccDNA and integrated HBV DNA [9]. In HBeAg negative
co-infection with HDV, similar HBsAg declines are associated with much weaker host-
mediated flares [152]. Introduction of pegIFN or thymosin alpha 1 greatly increases the
strength and frequency of these host-mediated flares [151]. In the latest study of TDF,
pegIFN and REP 2139 or REP 2165, 95% of participants experienced transaminase flares
(ALT and AST) as well as GGT flares, all of which were host-mediated [153]. Recent analy-
sis of the effects of these high rates of flares on therapeutic outcomes in this latest study
indicated that transaminase flares occurring during HBsAg clearance were associated with
partial or functional cure, while transaminase flares occurring in the presence of HBsAg
were associated with viral rebound after removal of therapy [154]. In cases of transami-
nase flares with HBsAg loss, HBsAg-specific exhaustion is absent, suggesting that these
transaminase flares are associated with removal of all HBsAg reactive hepatocytes, those
with active cccDNA or with integrated HBV DNA (Figure 4D). Recent compassionate use
of REP 2165 and TDF in a cirrhotic patient with HBV/HDV co-infection was accompanied
by an early, host-mediated transaminase (ALT/AST) and GGT flare with no biochemical
flare or hepatic decompensation [155].

6.7. Transaminase Flares during Therapy with Cirrhosis

The benefit/risk of transaminase flares in the presence of cirrhosis is an important
consideration as cirrhotic patients represent a small but significant proportion of patients
of HBV monoinfection [156], with faster onset and greater prevalence in HBV/HDV co-
infection [157,158]. Flares are beneficial in cirrhotic patients with antiviral response to non-
pegylated INF, but in the absence of an antiviral response, flares are frequently accompanied
by severe hepatic decompensation leading to death or liver transplantation [29,159]. With
pegIFN, transaminase flares associated with hepatic decompensation were less frequent but
still more commonly found in cirrhotic patients [133]. In these cases, additional depletion
of the already diminished hepatic reservoir by reduction in functional hepatocytes from
expansion of infection or increased hepatocyte loss drives severe hepatic decompensation
(Figure 5A).
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However, recent data have demonstrated that transaminase flares are beneficial in
cirrhotic patients who achieved HBV suppression on NUC therapy, with increased HBeAg
seroconversion, reduced incidence of ascites, esophageal varices, splenomegaly and death
or liver transplantation and were not accompanied by biochemical flare or hepatic de-
compensation [160]. Moreover, combination therapy with TDF + pegIFN in patients with
advanced cirrhosis with chronic HBV/HDV co-infection was also accompanied by host-
derived transaminase flares, none of which were accompanied by biochemical flare or
hepatic decompensation [161]. These more recent observations suggest that with the main-
tenance of effective HBV suppression, host-mediated transaminase flares do not impact
the limited hepatic reservoir in cirrhotic patients (Figure 5B) and can be a means to safely
achieve functional cure in cirrhotic patients.

7. Perspectives

With the overall goal of functional cure requiring the removal of hepatocytes with
integrated HBV DNA and active cccDNA, transaminase flares are likely an essential
milestone in this process and will be required for the achievement of HBsAg loss with
currently approved therapies and therapies in development. The current clinical data
indicate that with maintenance of viral suppression, transaminase flares appear to be
universally host-mediated, do not negatively impact liver function and are associated with
both improvement in virologic status and liver function and correlated with increased
rates of functional cure of HBV, even with cirrhosis. As such, viral suppression during
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experimental therapies (such as NAPs) which yield both high rates of transaminase flares
and functional cure should be accompanied by NUCs such as ETV, TDF or TAF to ensure
safety during therapy.

However, higher-frequency monitoring of transaminases, GGT as well as markers
of liver function should continue to be both essential data gathered during clinical trials
for agents in HBV and be reported in detail to increase the available clinical database,
especially during treatment of cirrhotic patients. Of important note here is GGT; although
it is not considered as hepato-specific as ALT and AST, its elevation in the blood can signal
effective targeting of infected cells in the bile duct epithelium and endothelial and smooth
muscle cells of hepatic blood vessels. The reporting of changes in this liver enzyme should
be included not only to indicate the targeting of non-hepatocyte reservoirs of HBV infection
in the liver but also to better exclude a link between GGT elevations and other potential
safety concerns.

In the interim, the current clinical experience with transaminase flares indicates
a common approach for interpreting these events with all antiviral agents (Figure 6).
Transaminase flares driven by reduction of normal functioning hepatocytes due to increased
viral activity in the liver or drug-induced liver injury outpace the regenerative capacity
of the liver and lead to biochemical flare and/or hepatic decompensation. These flares
are grounds for the introduction of HBV suppressive NUC (ETV/TDF/TAF) therapy or
for dose reduction of immunotherapies or experimental antiviral agents. On the other
hand, host-mediated flares are easily identified by the presence of an antiviral response
and lack of biochemical flare or hepatic decompensation. These fares are highly correlated
with HBV DNA reduction, HBeAg seroconversion and silencing/reduction of cccDNA
and should not be grounds for halting therapy or dose reduction of experimental therapies
in development. Strong flares with HBsAg loss may signal more efficient targeting of
integrated HBV DNA and appear to be a marker for the establishment of functional cure
with pegIFN and/or NAPs. This event may be required to establish high rates of functional
cure in all patient populations, regardless of therapeutic approach. In the case of cirrhotic
patients, the current clinical data suggest that transaminase flares are safe and well tolerated
(even pegIFN-mediated) when effective HBV suppression (NUC therapy) is in place and
that these flares are associated with improved virologic status. However, additional clinical
data will be required to reinforce the observations of these recent studies.

1 
 

 
Figure 6. Identification and impact of detrimental and beneficial transaminase flares during the
natural history or treatment of chronic HBV infection.
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