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Abstract

Globally, non-small cell lung cancer (NSCLC) is the most common malignancy and its prog-

nosis remains poor because of the lack of reliable early diagnostic biomarkers. The competi-

tive endogenous RNA (ceRNA) network plays an important role in the tumorigenesis and

prognosis of NSCLC. Tumor immune microenvironment (TIME) is valuable for predicting

the response to immunotherapy and determining the prognosis of NSCLC patients. To

understand the TIME-related ceRNA network, the RNA profiling datasets from the Geno-

type-Tissue Expression and The Cancer Genome Atlas databases were analyzed to identify

the mRNAs, microRNAs, and lncRNAs associated with the differentially expressed genes.

Weighted gene co-expression network analysis revealed that the brown module of mRNAs

and the turquoise module of lncRNAs were the most important. Interactions among micro-

RNAs, lncRNAs, and mRNAs were prognosticated using miRcode, miRDB, TargetScan,

miRTarBase, and starBase databases. A prognostic model consisting of 13 mRNAs was

established using univariate and multivariate Cox regression analyses and validated by the

receiver operating characteristic (ROC) curve. The 22 immune infiltrating cell types were

analyzed using the CIBERSORT algorithm, and results showed that the high-risk score of

this model was related to poor prognosis and an immunosuppressive TIME. A lncRNA–

miRNA–mRNA ceRNA network that included 69 differentially expressed lncRNAs (DElncR-

NAs) was constructed based on the five mRNAs obtained from the prognostic model. ROC

survival analysis further showed that the seven DElncRNAs had a substantial prognostic

value for the overall survival (OS) in NSCLC patients; the area under the curve was 0.65. In

addition, the high-risk group showed drug resistance to several chemotherapeutic and tar-

geted drugs including cisplatin, paclitaxel, docetaxel, gemcitabine, and gefitinib. The differ-

ential expression of five mRNAs and seven lncRNAs in the ceRNA network was supported
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by the results of the HPA database and RT-qPCR analyses. This comprehensive analysis

of a ceRNA network identified a set of biomarkers for prognosis and TIME prediction in

NSCLC.

Introduction

Lung cancer is the leading cause of cancer-related deaths [1]. Non-small cell lung cancer

(NSCLC) accounts for approximately 83% of all lung cancers [2]; its two dominant histologi-

cal phenotypes include lung adenocarcinoma (LUAD, ~50%) and lung squamous cell carci-

noma (LUSC, ~40%) [3]. Although remarkable advances have been made for lung cancer

diagnoses and treatment strategies, 60-month overall survival (OS) rate and 5-year survival

rates remain poor (68% and 0%–10% at stages IB and IV, respectively) [4]. Thus, accurate

detection of NSCLC at an early stage can provide a good prognosis. However, localized dis-

eases at stages I or II are diagnosed in only 16% of patients [5]. A low-dose computerized

tomography scan is currently the most practical method for the early diagnosis of lung can-

cer [6]. However, its high false-positive rate of up to 96.4% [7] requires greater medical

attention than needed and is an unnecessary psychological burden for the patients. Diagnos-

tic precision can be enhanced by developing biomarkers that can accurately classify the

patients according to their probable disease risk, diagnosis, and prognosis or response to

treatment [8]. In addition, functional biomarkers with known underlying mechanisms

related to the disease can be used as potential therapeutic targets [8]. For instance, identifica-

tion of epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), c-ros

proto-oncogene 1 receptor tyrosine kinase (ROS1), kirsten rat sarcoma viral oncogene

homolog (KRAS), serine/threonine-protein kinase B-Raf (BRAF), mesenchymal-epithelial

transition factor (MET), proto-oncogene tyrosine-protein kinase receptor Ret (RET),

human epidermal growth factor receptor 2 (HER2), and neurotrophic receptor tyrosine

kinase (NTRK) tyrosine kinase inhibitors (TKIs) have improved the outcomes for oncogene-

predisposed NSCLC patients [9]. However, patient responses to TKIs are usually temporary

because tumors eventually develop resistance to targeted therapies through on- or off-target

mechanisms [10]. NSCLC patients show a positive response to immune checkpoint inhibi-

tors (ICIs) that target programmed cell death-1 (PD-1)/programmed cell death ligand-1

(PD-L1) interaction [11]. Nevertheless, most NSCLC patients do not show any initial

responses to ICIs, whereas others who respond for a certain period relapse due to an immu-

nosuppressive microenvironment [12]. Thus, future studies should focus on possible options

such as combination strategies involving an agent that can address a specific on- or off-target

resistance mechanism upfront or during disease progression [12,13]. Therefore, the identifi-

cation of novel molecular network biomarkers for early screen to improve prognosis and

treatment in NSCLC is needed.

Cellular and molecular immune markers in the tumor immune microenvironment (TIME)

play an important role in NSCLC development. The density and localization of tumor-infil-

trating immune cells greatly affect the OS in NSCLC patients [14]. In NSCLC patients, a high

intra-tumoral density of immature dendritic cells, regulatory T cells, and M2 macrophages has

been associated with poor prognosis, whereas a high intra-tumoral density of CD8+ T cells,

CD4+ T cells, M1 macrophages, mature dendritic cells, and natural killer cells has been corre-

lated with better prognosis [14]. PD-1 is the main immune checkpoint for immunotherapy in

NSCLC. Several meta-analyses have recently shown a possible link between the PD-1/PD-L1
axis and the prognosis of NSCLC patients [15]. The expression of chemokines, including

CXCL9, CXCL -10, and CXCL -16, is also correlated with the prognosis of these patients [16].
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Thus, the complex regulation of TIME in NSCLC must be examined to identify effective

immune targets for accurate prognosis and increase the efficacy of clinical immunotherapy.

Pandolfi et al. [17] first proposed the competing endogenous RNA (ceRNA) hypothesis.

Accordingly, a post-transcriptional regulatory network allows all RNA transcripts including

mRNAs, long non-coding RNAs (lncRNAs), and circular RNAs, to regulate each other, by

competing for shared microRNAs (miRNAs). miRNA response elements (MREs) are the

keystone for the competitive binding of miRNAs with lncRNAs and mRNAs [18]. ceRNAs

participate in the pathogenesis of multiple cancers, including NSCLC, and their abnormal

expression is substantially associated with the prognosis of the patients [19,20]. Jiang et al.
[21] constructed a ceRNA network to identify a prognostic signature in bladder cancer. Liu

et al. [22] developed the seven-lncRNA prognostic signature in melanoma through an inte-

grative analysis of the DElncRNA–DEmiRNA–DEmRNA ceRNA network. For the ceRNA

network of NSCLC, through gene expression studies, some biomarkers associated with

prognosis and tumor progression have been identified [23,24]. Based on the alternative

splicing events, Li et al. [25] developed a high-performance prognostic predictor model for

risk stratification in patients with NSCLC. The above studies have focused on the compara-

tive analyses between limited peritumoral samples and paired tumor samples from The

Cancer Genome Atlas (TCGA) database. However, this paradigm is far from ideal because

of the differences in the transcriptomic profiles between para-tumor and healthy tissues

[26]. The Genotype-Tissue Expression (GTEx) dataset is a large-scale public resource for

genome-wide association studies in healthy human tissues [27]. GTEx and TCGA databases

allow unprecedented studies of gene expression to address the limitation [28]. Weighted

gene co-expression network analysis (WGCNA) is an effective approach to examine the

intrinsic links between clinical outcomes and co-expression gene modules [29]; however,

only a few studies have employed this method to analyze the relevance of co-expression

patterns for ceRNAs.

In this study, a TIME-associated ceRNA regulatory network for the prognostic prediction

of NSCLC was constructed using the data from TCGA and GTEx databases by multiple bioin-

formatic analytic methods including WGCNA and The Cell Type Identification by Estimating

Relative Subsets of RNA Transcripts (CIBERSORT).

Results

Analysis of differentially expressed genes between TCGA and GTEx

samples

Fig 1 depicts the study design. The RNA expression levels in 944 NSCLC samples and 578 nor-

mal lung samples were evaluated. A total of 1838 significantly up-regulated mRNAs and 3097

down-regulated mRNAs were identified and termed as differentially expressed mRNAs

(DEmRNAs) in NSCLC; their distribution is shown in Fig 2A. Gene Ontology (GO) analysis

was performed to identify the enriched biological mechanisms underlying DEmRNAs, and the

GO enrichment results are shown in Fig 2B. In the biological process (BP), DEmRNAs were

significantly enriched in cornification, epidermis development, skin development, keratiniza-

tion, extracellular structure organization, and keratinocyte differentiation. The Z-score of GO

enrichment was closer to blue module, which indicated that most of the BPs were likely under-

represented (Fig 2C). Gene Set Enrichment Analysis (GSEA) showed that the N-glycan biosyn-

thesis, p53 signaling pathway, cell cycle, and DNA replication-related genes were up-regulated,

whereas calcium, VEGF, mTOR, and MAPK signaling pathways were significantly down-reg-

ulated (Fig 2D).
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Fig 1. Flow diagram of study process.

https://doi.org/10.1371/journal.pone.0260720.g001
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Fig 2. Analysis of DEmRNAs from TCGA and GTEx. (A) Volcano map of important DEmRNAs including 1838 up-

regulated and 3097 down-regulated mRNAs. (B) GO analysis showing the involvement of BP, CC, and MF in DEmRNAs. (C)

Distribution of DEmRNAs in BP. Red circles display up-regulated genes, and blue ones show down-regulated genes in the

scatter plot of outer circle. (D) KEGG-GSEA was applied to the signaling pathway enrichment of DEmRNAs. TCGA, the

Cancer Genome Atlas database; GTEx, the Genotype–Tissue Expression database; DEmRNAs, differentially expressed

mRNAs; BP, biological process; CC, cellular component; MF, molecular function; GO, Gene Ontology.

https://doi.org/10.1371/journal.pone.0260720.g002
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Analyses of mRNA modules by WGCNA

The top 80% mRNAs (14428 genes) obtained from variance comparison were used to con-

struct the gene modules using the WGCNA algorithm. Soft-thresholding was set at β = 8 and

module size cut-off at 25 to characterize a scale-free network. After the co-expressed genes

were categorized by average linkage clustering, a total of 35 gene color modules were identified

(Fig 3A). Unassigned genes were categorized into the gray module. A total of 1000 genes from

the mRNA color modules were randomly chosen to plot the network heatmap and visualize

the topological overlap matrix (TOM) (Fig 3B). Among the 35 color modules, the module

eigengene (ME) of the brown module showed the highest association with NSCLC and normal

traits (Fig 3C). Thus, the brown module containing 9041 genes was considered as the key mod-

ule for NSCLC. GO term enrichment analysis was performed for the mRNAs in the brown

module and the functional enrichment and gene interactions in BPs were identified (Fig 3D

and 3E). These genes were mainly related to the developmental processes in reproduction,

multi-organism reproductive processes, and cell cycle regulation; these were clustered in focal

adhesion, protein processing in the endoplasmic reticulum, mTOR signaling pathway, and

autophagy according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis (Fig 3F).

Analysis of lncRNA modules by WGCNA and prediction of target genes

The constructed lncRNA network was used to identify the hub modules. The top 60%

lncRNAs (8102 genes) obtained from variance comparison were analyzed by WGCNA. Soft-

thresholding was set at β = 3 and module size cut-off at 25. A total of 23 co-expressed lncRNA

modules were identified (Fig 4A). Among them, the turquoise module, which included 1587

lncRNAs as shown in Fig 4B, was the most significantly associated with NSCLC (r = 0.92). Fur-

thermore, lncRNAs in the turquoise module had the most remarkable correlation with gene

significance for NSCLC in all modules (Fig 4C, cor = 0.96). A total of 316 differentially

expressed miRNAs (DEmiRNAs) were obtained from the comparison of TCGA miRNA-seq

data between 961 NSCLC and 90 normal lung tissue samples (Fig 4D). The lncRNA–miR-

code–miRNA relationship between 1587 differentially expressed lncRNAs (DElncRNAs) in

the turquoise module and 316 DEmiRNAs was evaluated using the online miRcode tool. Over-

lapping miRNAs (60) between lncRNA–miRcode–miRNA (326) and DEmiRNAs (316) were

then obtained. Using miRNA target prediction tools, 60 common miRNAs from the intersec-

tion were used for subsequent analyses. A total of 8704 predicted target mRNAs were acquired

(Fig 4E). As shown in Fig 4F, 1094 mRNAs were obtained through the interactions of the 8704

predicted mRNAs and 4935 DEmRNAs (1838 up-regulated and 3097 down-regulated

mRNAs) with 9041 mRNAs in the brown module. The 1094 genes in 1577 samples are

shown using an expression heatmap in Fig 4G.

Construction of 13-mRNA-based prognostic model to predict

chemotherapeutic response

TCGA patient data including OS and clinical features were obtained for 944 NSCLC patients.

The clinicopathological characteristics of NSCLC patients are shown in Table 1. A univariate

regression analysis was performed to investigate the relevance of the expression levels of

the 1094 target genes with OS in NSCLC. The cut-off for significant association was set at

p< 0.05. As a result, 31 genes were obtained and further included in the subsequent multivari-

ate cox regression analysis (Table 2). A prognostic model for OS was constructed using the fol-

lowing 13 genes: FSTL3, CPS1, PTPN21, DEPDC1B, COL9A3, DSG2, LAMB1, STYK1, RBM6,
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Fig 3. Analysis of mRNA modules by WGCNA. (A) Dendrogram of mRNAs with top 80% variances clustered based on

topological overlap. (B) TOM heatmap plot of selected genes. Light colors denote low topological overlap, and dark colors

denote high topological overlap. (C) Correlation of gene color modules between NSCLC and normal samples. The ME of the

brown module was the most positively related to NSCLC. (D–E) GO-GSEA showing the gene symbols and gene interaction

in the brown module. (F) KEGG investigating the signal pathway enrichment in the brown module. WGCNA, weighted gene

co-expression network analysis; TOM, topological overlap matrix; NSCLC, non-small cell lung cancer; ME, module

eigengene; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes pathway analyses; GSEA, Gene Set

Enrichment Analysis.

https://doi.org/10.1371/journal.pone.0260720.g003
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Fig 4. Analysis of lncRNA modules by WGCNA and prediction of target genes. (A) Cluster dendrogram of lncRNAs with

top 60% variances clustered based on topological overlap. (B) Correlation of lncRNA modules between NSCLC and normal

samples. The ME of the turquoise module was the most positively related to traits. (C) Relationship between gene significance

and module membership in the turquoise module. (D) Volcano map of 316 DEmiRNAs (|logFC|> 1, P< 0.05) in NSCLC.

(E) Flow chart of target mRNA prediction. (F) Overlapped target mRNAs were analyzed by the predicted target mRNAs,

WGCNA-brown mRNAs, and the significantly up- or down-regulated mRNAs. (G) Expression heatmap displaying the 1094

predicted target mRNAs in NSCLC. WGCNA, weighted gene co-expression network analysis; NSCLC, non-small cell lung

cancer; ME, module eigengene.

https://doi.org/10.1371/journal.pone.0260720.g004
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DEPDC1, GTSE1, NAV3, and FKBP5. As shown in Fig 5A, DEPDC1, COL9A3, STYK1, DSG2,

GTSE1, and DEPDC1B were up-regulated, whereas RBM6, LAMB1, CPS1, NAV3, FKBP5,

FSTL3, and PTPN21 were down-regulated in patients with NSCLC. Fig 5B displays the correla-

tion between the expressions of each gene in the 13 gene-based model. The risk assessment

scoring was computed for each NSCLC patient, and the threshold for risk score was set at

1.006. Accordingly, the patients were divided into high- (n = 471) and low-risk (n = 473)

groups as shown in Table 3. The accuracy of the 13 gene-based prognostic model in predicting

NSCLC clinical outcomes were estimated by Kaplan–Meier (K–M) survival analysis, Cox pro-

portional hazard regression model, and ROC. As shown in Fig 5C, the K–M survival curves

showed that OS in the high-risk group was significantly shorter (P< 0.001) than that for

patients with low-risk prediction. Fig 5D shows the comparison between the risk score distri-

bution, survival status, and expression heatmap for 13 genes between the high- and low-risk

groups. According to the univariate analysis, OS was significantly associated with the risk

score and the TNM, T, N, and M stages (P<0.001) (Fig 5E). However, multivariate analysis

indicated that among the above-mentioned prognostic factors, the risk score was the only

independent prognostic predictor (HR = 1.960, 95% CI = 1.689–2.275, P<0.001) (Fig 5F). The

area under the curve (AUC) for the risk score was 0.690 (Fig 5G); higher than that for other

clinical factors. The relationship between the clinicopathological parameters and the 13 gene-

based prognostic model is shown in Fig 5H. The values for the prognostic prediction model

were higher in T3-4 than in T1-2 stages (P = 0.011); in N1-3 than in N0 (P< 0.001), and in

stages III–IV than in stages I–II (P< 0.001). The estimated half-maximal inhibitory concentra-

tions (IC50) of three commonly used NSCLC chemotherapeutic agents, including, cisplatin,

docetaxel, and paclitaxel, were compared between the low- and high-risk groups of patients

using the pRRophetic algorithm. The three drugs showed higher IC50 values and lower sensi-

tivity in the high-risk as compared to low-risk groups (all P< 0.01) (Fig 5I). Thus, the result

suggested that high-risk patients with NSCLC exhibit resistance to cisplatin, docetaxel, and

paclitaxel. Taken together, the prognostic model was effective in predicting the therapeutic

response of high- and low-risk NSCLC patients towards the three drugs.

Table 1. The clinicopathological characteristics of 944 NSCLC patients.

Parameters LUSC (n = 489) LUAD (n = 455) Total(n = 944)

Gender

FEMALE 127 (25.97%) 248 (54.51%) 375 (39.7%)

MALE 362 (74.03%) 207 (45.49%) 569 (60.3%)

Smoking history

No 75 (15.34%) 142 (31.21%) 217 (23.0%)

Yes 414 (84.66%) 313 (68.79%) 727 (77.0%)

Age

Mean(SD) 66.4847 (9.3926) 65.778 (9.318) 66.1441 (9.3584)

Median[Min, Max] 67 [33, 88] 67 [38, 90] 67 [33, 90]

Survival status

Dead 278 (56.85%) 282 (61.98%) 560 (59.3%)

Alive 211 (43.15%) 173 (38.02%) 384 (40.7%)

TNM Stage

Stage I 239 (48.88%) 246 (54.07%) 485 (51.4%)

Stage II 158 (32.31%) 110 (24.18%) 268 (28.4%)

Stage III 85 (17.38%) 75 (16.48%) 160 (16.9%)

Stage IV 7 (1.43%) 24 (5.27%) 31 (3.3%)

https://doi.org/10.1371/journal.pone.0260720.t001
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Construction of a ceRNA network

Fig 1 shows the established lncRNA–miRNA–mRNA ceRNA network obtained through the

prognostic mRNA signatures, predicted miRNAs, and DElncRNAs. First, 29 miRNAs were

obtained through prediction using the 13 mRNAs. After the analysis of lncRNA expression

data from TCGA database, 69 DElncRNAs [|log (fold change)| (|logFC|) > 4, P< 0.05] were

identified through the empirical analysis of digital gene expression in R (edgeR) (Fig 6A).

However, only three miRNAs were further selected. These three miRNAs were retained after

overlapping with the 29 predicted miRNAs. Thus, five mRNAs were obtained from the 13

prognostic mRNAs which corresponded to the three miRNAs (Fig 6B). Finally, a ceRNA net-

work containing five mRNAs, three miRNAs, and 69 lncRNAs was constructed as shown in

Fig 6C. The relationships between clinicopathological parameters and expression of the five

mRNAs in the ceRNA network are shown in Fig 6D.

Table 2. Univariate and multivariate cox proportional hazard regression analysis of 31 genes.

Gene Univariate Multivariate

HR(95%CI) P HR(95%CI) P
FSTL3 1.195(1.109–1.288) <0.0001 1.178(1.078–1.287) 0.000294 ��

ANLN 1.156(1.067–1.252) 0.0004

HMMR 1.162(1.060–1.273) 0.0014

PRR11 1.154(1.057–1.260) 0.0014

ARNTL2 1.099(1.034–1.169) 0.0024

DSG2 1.158(1.053–1.273) 0.0025 1.118(0.993–1.259) 0.065513

CPS1 1.048(1.016–1.080) 0.0028 1.053(1.018–1.089) 0.002604 ��

DEPDC1B 1.119(1.035–1.209) 0.0046 1.226(1.046–1.437) 0.012009 �

PKM 1.219(1.062–1.399) 0.0049

DCBLD2 1.131(1.037–1.232) 0.0053

NAV3 1.104(1.028–1.186) 0.0067 1.066(0.981–1.158) 0.130179

KIF4A 1.115(1.029–1.207) 0.0076

AURKA 1.137(1.034–1.250) 0.0080

GTSE1 1.112(1.026–1.205) 0.0096 1.154(0.979–1.361) 0.087804

NGEF 1.081(1.018–1.149) 0.0117

PTPN21 1.150(1.030–1.283) 0.0129 1.203(1.044–1.386) 0.010568 �

FKBP5 1.115(1.022–1.218) 0.0149 1.075(0.977–1.183) 0.137657

CLSPN 1.104(1.018–1.198) 0.0164

DEPDC1 1.094(1.016–1.178) 0.0167 0.864(0.733–1.019) 0.083033

LAMB1 1.118(1.017–1.230) 0.0211 0.890(0.785–1.009) 0.068225

STYK1 1.109(1.015–1.212) 0.0218 1.092(0.989–1.206) 0.081164

NDC80 1.095(1.010–1.187) 0.0271

ITIH4 0.922(0.855–0.993) 0.0320

RBM6 0.856(0.741–0.989) 0.0346 0.860(0.726–1.019) 0.082

CDC6 1.087(1.005–1.175) 0.0364

ADAMTS6 1.095(1.005–1.193) 0.0376

COL9A3 1.055(1.002–1.111) 0.0401 1.067(1.009–1.129) 0.024166 �

AASS 0.917(0.845–0.996) 0.0408

MCM10 1.077(1.002–1.158) 0.0436

NEXMIF 0.956(0.915–0.999) 0.0455

SCIN 0.952(0.907–1.000) 0.0489

https://doi.org/10.1371/journal.pone.0260720.t002
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Fig 5. Construction of the 13-mRNA-based prognostic model to predict chemotherapeutic response. (A) Differential

expression of 13 selected genes between NSCLC and normal samples. (B) Relationship of each gene in the 13 gene-based

model. (C) Risk score distribution in patients with NSCLC, survival status in different groups, and heatmap of the

expression of 13 genes. (D) K–M plot represents that patients in the high-risk group had significantly shorter OS than those

in the low-risk group. (E) Forest plot of univariate Cox regression analysis showing the association between risk factors and

NSCLC survival. (F) Forest plot of multivariate Cox regression analysis showing that the 13-mRNA signature was an
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Relationship between the risk score from ceRNA network and tumor

immune microenvironment

The differences in the 22 infiltrating immune cell types were determined between low- and

high-risk NSCLC patients using the CIBERSORT algorithm. Fig 7A summarizes the propor-

tion of immune cell types in 944 patients from the TCGA database. The high-risk patients had

higher infiltration levels of activated CD4 memory and follicular helper T cells (Fig 7B and

7D), whereas greater infiltration of CD4 memory resting T cells, M0 macrophages, resting

dendritic cells, and neutrophils were observed in low-risk patients (Fig 7B and 7E–7H). Given

the important role of chemokines and immune checkpoints in TIME and immune response,

we analyzed the correlation between the expression of these molecules and the risk score. The

expression of PD-1, positively associated with the risk score, was significantly upregulated in

the high-risk group as compared to the low-risk group (Fig 7I and 7J). In addition, the expres-

sion of chemokines for immune activation (i.e., CXCL9, CXCL10, and CXCL16) was signifi-

cantly lower in the high-risk group than in the low-risk group (Fig 7K). These results indicated

that ceRNA risk signatures may be implicated in the NSCLC immunosuppressive

microenvironment.

independent predictor of prognosis in NSCLC. (G) ROC curve showed that AUC of 13-mRNA prognostic model was 0.690.

(H) Clinicopathological significance of 13 gene-related prognostic model in NSCLC. (I) Relation of the risk score to the

estimated IC50 of cisplatin, paclitaxel, and docetaxel. NSCLC, non-small cell lung cancer; K-M, Kaplan–Meier survival

analysis; ROC, receiver operating characteristic curve analysis; AUC, the area under the curve; IC50, half maximal inhibitory

concentration.

https://doi.org/10.1371/journal.pone.0260720.g005

Table 3. The association between risk score of the 13-gene-based prognostic model and clinicopathological characteristics.

Parameters Low risk (n = 473) High risk (n = 471) χ2 P Value

Age

� 65 215 (52.31%) 196 (47.69%) 1.4163 0.234

> 65 258 (48.41%) 275 (51.59%)

Gender

FEMALE 210 (56.00%) 165 (44.00%) 8.6454 0.0033 ��

MALE 263 (46.22%) 306 (53.78%)

Subtype

LUSC 224 (45.81%) 265 (54.19%) 7.4972 0.0062 ��

LUAD 249 (54.73%) 206 (45.27%)

Smoking history

No 119 (54.84%) 98 (45.16%) 2.5246 0.1121

Yes 354 (48.69%) 373 (51.31%)

T stage

T1-2 406 (51.20%) 387 (48.80%) 2.3649 0.1241

T3-4 67 (44.37%) 84 (55.63%)

N stage

N0 333 (53.54%) 289 (46.46%) 8.5866 0.0034 ��

N1-3 140 (43.48%) 182 (56.52%)

TNM stage

Stage I-II 393 (52.19%) 360 (47.81%) 6.4734 0.0109 �

Stage III-IV 80 (41.88%) 111 (58.12%)

https://doi.org/10.1371/journal.pone.0260720.t003
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Fig 6. Construction of a lncRNA–miRNA–mRNA ceRNA network. (A) Volcano map of 69 significant DElncRNAs. (B)

Correlation between the five prognostic mRNAs and their corresponding miRNAs. (C) A ceRNA network was constructed

containing five mRNAs, three miRNAs, and 69 lncRNAs for NSCLC prognosis. (D) Clinicopathological significance of FKBP5,

DEPDC1, CPS1, COL9A3, and PTPN21 in NSCLC. ceRNA, Competing endogenous RNA; DElncRNAs, differentially expressed

lncRNAs; NSCLC, non-small cell lung cancer.

https://doi.org/10.1371/journal.pone.0260720.g006
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Fig 7. Relationships between the risk score of ceRNA network and tumor immune microenvironment. (A)

Landscape of immune cell infiltration between low- and high-risk patients with NSCLC. (B) Fractions of significantly

differential immune cell types between low- and high-risk patients with NSCLC. (C–H) Correlations between risk

score and infiltration levels of significantly different immune cell types. (I) Comparison of PD-1 expression level

between low- and high-risk patients with NSCLC. (J) Correlations between risk score and PD-1 expression levels. (K)

Comparison of expression level of chemokines between low- and high-risk patients with NSCLC. NSCLC, non-small

cell lung cancer; PD-1, programmed cell death protein 1.

https://doi.org/10.1371/journal.pone.0260720.g007
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Construction of seven-lncRNA-based prognostic model from ceRNA

network to predict drug resistance in cancer

The results of lncRNA analysis were similar to the findings through mRNA analysis. Univari-

ate regression analysis was performed to evaluate the relevance of the expression of the 69

lncRNAs from the ceRNA network with OS. Nine lncRNAs were obtained by setting the cut-

off for significant association at P< 0.05. These were further included for the subsequent mul-

tivariate cox regression analysis (Table 4). A prognosis model for OS was constructed with

the following seven lncRNAs: LINC00707, LINC00460, FEZF1-AS1, LINC00593, OTX2-AS1,

LINC01833, and CASC8. The risk score was calculated for each NSCLC patient, and the

threshold was set at 0.9755. Accordingly, the patients were classified into high- (n = 471) and

low-risk (n = 473) groups. Fig 8A shows the distribution of risk scores for NSCLC patients, the

survival status in different groups, and the heatmap of the expression of seven lncRNAs. The

accuracy of the seven-lncRNA-based prognostic model in predicting NSCLC clinical outcomes

was estimated by K–M survival analysis, Cox regression model, and ROC. As shown in Fig 8B,

the K–M survival curves showed that OS in the high-risk group was significantly shorter than

that in patients with low predicted risk (P< 0.001). According to the univariate analysis, the

risk score and TNM, T, N, and M stages were significantly correlated with OS in NSCLC

(P<0.001) (Fig 8C). However, multivariate analysis results showed that among them, only

the risk score was an independent prognostic predictor (HR = 2.050, 95% CI = 1.702–2.470,

P<0.001) (Fig 8D). The AUC for risk score was 0.650 (Fig 8E); higher than those for other clin-

ical factors. Fig 8F illustrates the relationship between the clinicopathological parameters and

the seven-lncRNA-based model. Higher prognostic prediction values were found in T3-4 than

in T1-2 (P = 0.007) stages; in N1-3 than in N0 (P = 0.012), and in stages III–IV than in stages

I–II (P = 0.013). Gefitinib, gemcitabine, and cisplatin are drugs commonly used in NSCLC

treatment [30]. The estimated IC50 values of these drugs for the low- and high-risk patients

were compared using the pRRophetic algorithm. All three drugs had higher IC50 values and

lower sensitivity in the high-risk patients as compared to those for low-risk patients (all

P< 0.01) (Fig 8G). This result indicated that high-risk NSCLC patients were resistant to gefiti-

nib, gemcitabine, and cisplatin. Based on the seven-lncRNA signature, a prognostic ceRNA

network involving five mRNAs of the 13 gene-based prognostic model and three miRNAs

were extracted (Fig 8H).

Validation of the risk mRNAs and risk lncRNAs in ceRNA network

We analyzed the immunohistochemical staining data obtained from the Human Protein Atlas

(HPA) database to compare the expression levels of five risk genes (FSTL3, CPS1, PTPN21,

Table 4. Univariate and multivariate cox proportional hazard regression analysis of 9 lncRNAs.

lncRNA Univariate Multivariate

HR(95%CI) P HR(95%CI) P
LINC00707 1.092(1.045–1.141) 0.0001 1.051(1.004–1.099) 0.0316 �

LINC00460 1.073(1.033–1.115) 0.0003 1.044(1.004–1.085) 0.0314 �

FEZF1-AS1 0.944(0.911–0.980) 0.0021 0.964(0.927–1.002) 0.0650

LINC00593 0.937(0.898–0.977) 0.0024 0.943(0.902–0.986) 0.0094 ��

OTX2-AS1 0.907(0.850–0.968) 0.0034 0.902(0.842–0.968) 0.0039 ��

LINC02535 1.079(1.025–1.136) 0.0039

LINC01833 1.050(1.015–1.087) 0.0049 1.055(1.020–1.092) 0.0021 ��

CASC8 1.061(1.014–1.110) 0.0097 1.054(1.004–1.106) 0.0331 �

LINC00601 1.059(1.001–1.120) 0.0465

https://doi.org/10.1371/journal.pone.0260720.t004

PLOS ONE Immune microenvironmental prognostic ceRNA in NSCLC

PLOS ONE | https://doi.org/10.1371/journal.pone.0260720 December 2, 2021 15 / 30

https://doi.org/10.1371/journal.pone.0260720.t004
https://doi.org/10.1371/journal.pone.0260720


Fig 8. Construction of the seven-lncRNA-based prognostic model from ceRNA network to predict resistance to

cancer drugs. (A) Risk score distribution in patients with NSCLC, survival status in different groups, and heatmap of the

expression of seven lncRNAs. (B) K–M plot represents that patients in the high-risk group had significantly shorter OS

than those in the low-risk group. (C) Forest plot of univariate Cox regression analysis showed the association between risk

factors and survival of NSCLC. (D) Forest plot of multivariate Cox regression analysis showing that the seven-lncRNA

signature was an independent predictor of prognosis in NSCLC. (E) ROC curve showing that the AUC of seven-lncRNA
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DEPDC1B, and COL9A3) from the seven-lncRNA-based ceRNA network. The results showed

that the expression at the protein level for two risk genes (DEPDC1B and COL9A3) was signifi-

cantly higher in LUSC or LUAD tissues than in normal lung tissues (Fig 9D and 9E); two

genes (FSTL3 and PTPN21) showed an opposing trend (Fig 9A and 9C), which was also con-

sistent at the transcriptional level (Fig 5A). Only CPS1 expression at the protein level was not

detected in both the normal lung and NSCLC tissues in the HPA database (Fig 9B).

In the GTEx and TCGA databases, the gene expression levels of six OS-related lncRNAs

(LINC00707, LINC00460, FEZF1-AS1, LINC00593, OTX2-AS1, LINC01833, and CASC8) were

significantly lower in NSCLC as compared to the normal lung tissues (Fig 6A). The results of

reverse transcription-quantitative polymerase chain reaction (RT-qPCR) showed that the gene

expression levels of LINC00707, LINC00460, OTX2-AS1, LINC01833, LINC00593, and CASC8
were significantly lower in PC-9, H1650, and H1975 cells as compared to the BEAS-2B cell line

(Fig 10A–10F).

Discussion

NSCLC is one of the leading causes of cancer-related death, worldwide [31]. Despite the rapid

development in immunotherapy and targeted therapy for NSCLC, the 5-year overall survival

of NSCLC patients remains low, due to the lack of availability of effective biomarkers for early

diagnosis and a poor understanding of the pathogenesis of NSCLC. Powerful computational

models to predict potential disease-related non-coding RNAs for experimental validation are

helpful for in-depth interpretation of the pathogenesis and processes underlying NSCLC

development and improving related treatment strategies, and may dramatically decrease the

time and expenditure on biological experiments [32–35]. The ceRNA network hypothesis was

proposed to describe a new RNA regulatory crosstalk where different RNA transcripts can

potentially regulate each other through MREs [17]. This concept unfolds a novel paradigm for

the lncRNA–miRNA–mRNA regulatory network that may explain the mechanism underlying

tumorigenesis. Recently, the advancement in interaction prediction studies using computa-

tional biology provides valuable insights into the development of lncRNA-mediated ceRNA

network [36–38]. TIME composition is strongly associated with neoplastic progression, anti-

tumor immune response, and clinical outcome in NSCLC [14,39]. Therefore, an immune-

related ceRNA network must be explored to improve the accuracy of prognostic prediction

and clinical response to immunotherapy. To the best of our knowledge, this is the first study

that establishes an immune-related ceRNA prognostic model based on GTEx-TCGA data,

WGCNA, pRRophetic algorithm, and TIME in NSCLC.

In this study, the RNA-Seq data from 944 NSCLC and 578 normal lung specimens were

acquired from TCGA and GTEx databases, respectively. Key mRNAs and lncRNA signatures

associated with NSCLC prognosis were identified using bioinformatic methods, including

edgeR, WGCNA, GO term enrichment analysis, GSEA, KEGG pathway enrichment analysis,

ceRNA network construction, and Cox regression analyses. A ceRNA network containing five

mRNA signatures, seven lncRNA signatures, and three miRNAs were significantly related to

OS in NSCLC patients. Additionally, correlations between the risk score of ceRNA prognostic

model and TIME, and with sensitivity towards cancer drugs were investigated. Finally,

prognostic model was 0.650. (F) Clinicopathological significance of seven-lncRNA-related prognostic model in NSCLC.

(G) Relation between the lncRNA risk score and the estimated IC50 of gefitinib, gemcitabine, and cisplatin. (H) Hub

ceRNAs from coregulatory network involving five mRNAs from the 13gene-based prognostic model and three miRNAs

from the seven-lncRNA signature. ceRNA, Competing endogenous RNA; NSCLC, non-small cell lung cancer; K-M,

Kaplan–Meier survival analysis; ROC, receiver operating characteristic curve analysis; AUC, the area under the curve.

https://doi.org/10.1371/journal.pone.0260720.g008
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Fig 9. Validation of the risk mRNAs in ceRNA network by using the human protein atlas database. (A-E) Validation of

FSTL3, CPS1, PTPN21, DEPDC1B, and COL9A3 by The Human Protein Atlas database (IHC) at the protein level. ceRNA,

Competing endogenous RNA; IHC, immunohistochemistry.

https://doi.org/10.1371/journal.pone.0260720.g009
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Fig 10. Validation of lncRNAs by RT-qPCR. (A-F) Relative expression levels of LINC00707, LINC00460, LINC00593,

LINC01833, and CASC8 in normal and NSCLC cell lines. Experiments were performed in triplicate, � P< 0.05, ��

P< 0.01, ��� P< 0.001, ���� P< 0.0001 by ANOVA. RT-qPCR, quantitative reverse transcription polymerase chain

reaction; NSCLC, non-small cell lung cancer.

https://doi.org/10.1371/journal.pone.0260720.g010
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immunohistochemical data from the HPA database and RT-qPCR were used to validate the

findings from this study.

The lncRNA–miRNA–mRNA ceRNA network has an important influence on NSCLC

pathogenesis and prognosis. Wang et al. [23] investigated a ceRNA network including 113

DElncRNAs, 12 DEmiRNAs, and 36 DEmRNAs with significant association with NSCLC.

Wang et al. [40] constructed a ceRNA network involving 155 lncRNAs, 30 miRNAs, and 68

mRNAs to identify novel targets and pathways in NSCLC. In both these studies, the tumor

and non-tumor samples were obtained from the same patients from the TCGA database to

accurately elucidate the ceRNA interactive mechanism underlying NSCLC biology. Their find-

ings highlight the prognostic value of ceRNA for NSCLC patients. However, the number of

normal samples in the TCGA-NSCLC cohort is limited. Biomolecules secreted by cancer cells

can be engulfed by the neighboring normal cells, thereby altering the gene expression and bio-

logical processes in these two cells [41]. The idea that cancer-related genetic aberrancy also

exists in para cancer tissues adjacent to the highly genetically abnormal tumor tissues may be

biased [42]. Hence, the use of a large number of normal samples from individuals with no

tumors is necessary [43]. In the present work, edgeR was used to identify the DEmRNAs

between NSCLC and normal lung samples. KEGG–GSEA results showed that DEmRNAs

were enriched in the cell cycle, DNA replication-related genes, and the mTOR pathway. Fur-

ther WGCNA analysis showed that the brown gene modules were significantly related to

NSCLC. GO term enrichment results showed that the mRNAs in the brown modules were

involved in cell cycle regulation, and KEGG analysis showed that they were clustered in the

mTOR signaling pathway and DNA replication processes. PI3K/Akt/mTOR signaling com-

monly occurs in tumors and controls DNA replication and replisome stability, thereby regulat-

ing cell cycle progression [44]. Therefore, PI3K/Akt/mTOR signaling may be an essential

mechanism underlying NSCLC initiation and progression.

Only a few ceRNA network studies discuss the relationship of expression patterns among

ceRNAs associated with NSCLC. WGCNA was used to identify the co-expression modules in

NSCLC using the data from the TCGA and GTEx consortia. GTEx provides abundant data on

gene expression from healthy people, thus benefitting the tumor purity quantification of the

samples [41]. The WGCNA-brown mRNA module and the WGCNA-turquoise lncRNA mod-

ule were the key modules for NSCLC. Among the predicted mRNAs, DEmRNAs, and mRNAs

in the brown module, 1094 overlapping mRNAs were identified. Furthermore, a survival prog-

nostic model with 13 genes (FSTL3, CPS1, PTPN21, DEPDC1B, COL9A3, DSG2, LAMB1,

STYK1, RBM6, DEPDC1, GTSE1, NAV3, and FKBP5) was constructed for NSCLC through K–

M estimator and Cox proportional hazard regression model.

Non-coding RNAs can promote PD-L1/PD-1 expression through ceRNA regulation of

NSCLC mechanisms [45]. However, given the complexity of the immune system, knowledge

of a single biomarker that can precisely identify patients who can potentially benefit from ICIs

is lacking. Immune-related gene signatures, immune infiltrating cells, and chemokines are

important in predicting the clinical response to immunotherapy and prognosis of NSCLC

patients [14]. A previous study shows that activated memory CD4 T cells and helper T cells are

positively correlated with improvement in survival AMONG lung cancer patients [14]. By con-

trast, suppressive immune cells, including resting dendritic cells, M0 macrophages, and neu-

trophils, form an immunosuppressive microenvironment [46] and indicate a poorer

prognosis. Integrated analysis of the correlation between ceRNA and TIME is necessary to

improve the accuracy of prognostic predictions. The ceRNA signature in NSCLC is related to

immune infiltrating cell types and PD-1 expression. Results from the execution of the CIBER-

SORT algorithm showed that the proportion of activated CD4 memory T cells and follicular

helper T cells was positively correlated with the risk score of 13 gene-based ceRNA network,
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and the proportion of CD4 memory resting T cells, M0 macrophages, resting dendritic cells,

and neutrophils was negatively associated with the 13 gene-based ceRNA risk score. Chemo-

kines, especially CXCL9, CXCL-10, and CXCL11/CXCR3 axis, play key roles in TIME and

immune response [39]. Reduced levels of CXCL9 and CXCL10 are correlated with the immu-

nosuppressive microenvironment, negative responses to ICIs, and poor prognosis among can-

cer patients [47]. In the present study, CXCL9 and CXCL10 were downregulated in the high-

risk group, which further promoted immunosuppressive TIME. Taken together, our ceRNA

risk model may effectively predict the TIME in NSCLC patients.

Furthermore, five mRNAs were obtained from the 13 gene-based prognostic model which

corresponded to the three miRNAs selected from the prediction from among the 69 DElncR-

NAs. Based on these five mRNAs (FKBP5, DEPDC1, CPS1, COL9A3, and PTPN21), a ceRNA

network that included 69 DElncRNAs and three DEmiRNAs (miR-17-5p, miR-20b-5p, and

miR-429) was further established. Survival analysis revealed that seven DElncRNAs

(LINC00707, LINC00460, FEZF1-AS1, LINC00593, OTX2-AS1, LINC01833, and CASC8) in

the ceRNA network were associated with the OS in NSCLC patients. Finally, the prognostic

ceRNAs from a coregulatory network involving five mRNAs from the 13-gene-based prognos-

tic model and three DEmiRNAs were identified based on the seven-lncRNA signature.

Although chemotherapy and targeted anti-cancer therapies have improved the outcomes in

NSCLC patients, resistance to chemotherapeutic and targeted drugs pose a serious challenge.

The mechanisms of drug resistance remain unclear owing to the lack of approaches to accu-

rately predict clinical responses to drugs. In this study, we predicted the association between

agents and signatures in the ceRNA network using the pRRophetic algorithm. Our results

demonstrated that the signatures in the ceRNA network were correlated with resistance to che-

motherapeutic and targeted drugs, including cisplatin, paclitaxel, docetaxel, gemcitabine, and

gefitinib, thus allowing prediction of drug response for developing personalized treatment of

NSCLC patients.

In the five-gene signatures in the ceRNA network, the expression levels of DEPDC1, CPS1,

COL9A3, and PTPN21 were significantly different between early- and advanced-stage tumor

tissues. Meanwhile, FKBP5 was associated with a subtype of NSCLC. In progressive stages of

NSCLC, DEPDC1, CPS1, and COL9A3 were overexpressed, while PTPN21 was down-regu-

lated. DEPDC1 is a putative oncogene [48] that can function as a transcriptional co-repressor

during transcriptional regulation [49]. The results of a previous study strongly indicate that

DEPDC1 expression is positively related to the poor prognosis in NSCLC [50], which is consis-

tent with the findings of the present study. Another previous study reports that DEPDC1 pro-

motes angiogenesis and invasion by activating chemokines in hepatocellular carcinoma [51].

CPS1 is the mitochondrial enzyme involved in the first committed step of the urea cycle [52].

Its expression is positively correlated with tumor growth and is also associated with poor

NSCLC prognosis [53]. COL9A3 encodes instructions for generating one of the three alpha

chains of type IX collagen [54] and is highly expressed in salivary adenoid cysts, breast basal-

like carcinomas, and melanoma [55]. However, its function in cancer remains unknown. The

correlation between COL9A3 and NSCLC has not yet been reported. The present study is the

first to show that abnormal COL9A3 expression is associated with the tumor size in NSCLC

patients. PTPN21, also called PTPD-1, is a member of the protein tyrosine phosphatase (PTP)

family and controls cell growth, migration, and oncogenic transformation [56]. Given its

inverse correlation with tumor invasion in bladder cancer tissues [57] and its immunosuppres-

sive function [58], PTPN21 may influence the early stages of tumor progression by inhibiting

the immunosuppressive TIME and tumor invasion. This phenomenon could explain the high

expression of PTPN21 in the N0 stage.
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miR-17-5p, miR-20b-5p, and miR-429 are all involved in lung cancer [59–61]. miR-429, a

member of the miRNA-200 family, functions as a tumor promoter in human NSCLC cells

[62]. It is also positively correlated with the expression of immune checkpoints in NSCLC

patients [63]. miR-429 is known to regulate six lncRNAs (LINC00707, LINC00460, FEZF1-AS1,

LINC00593, LINC01833, and CASC8) out of the seven lncRNAs in the proposed prognostic

model. Among them, LINC00707 is a novel long intergenic non-coding RNA that enhances

sensitivity towards cisplatin in NSCLC cells [64], regulates mRNA stability, and can function

as a potential diagnostic and prognostic marker in gastric cancer [65]. LINC00460 promotes

cell migration and invasion in NSCLC; it is a potential prognostic marker and a treatment tar-

get for patients with NSCLC [66]. FEZF1-AS1 can promote the proliferation and invasion in

tumor cells by suppressing Wnt/β-catenin signaling in NSCLC [67]. lncRNA CASC8A is a

potential diagnostic biomarker for cancer [68] which can predict treatment response to plati-

num-based therapy and toxicity in patients with lung cancer [69]. Previous research findings

corroborate our prediction of the ceRNA network and the prognostic models. Using the

13-mRNA-based prediction model and the seven-lncRNA-based prognostic model, we esti-

mated the risk scores of NSCLC patients. The AUC of the ROC curve was > 0.65, which indi-

cated that the prediction value had high accuracy in these prognostic models. Patients with

NSCLC belonging to the high-risk group exhibited a high risk of progression according to the

ceRNA network. Thus, these results provide a strong basis for the potential use of these novel

predictive biomarkers for NSCLC prognosis and may guide molecular treatment approaches

and further clinical research in NSCLC.

However, there were some inherent limitations in this study. First, was the lack of robust

experimental verification. The function and mechanism of key ceRNAs should be further

explored in the in vivo and in vitro settings. Second, was the need for prospective clinical trials

to validate the prognosticators of the five-mRNA and seven-lncRNA signatures in the ceRNA

network. Third, some superior computational algorithms could be used for biomarker identifi-

cation [32–35] and prediction of miRNA-lncRNA interactions [36–38] in NSCLC. Finally,

only the correlation between the 13-gene-based ceRNA prognostic model and NSCLC TIME

was investigated, but further research on the predicted effect of the relevant lncRNAs in the

microenvironment remains unknown. Despite these limitations, this study provided reliable

prognostic markers that could be used to predict TIME and outcome in NSCLC patients. A

multi-dimensional perspective was also proposed for the molecular regulatory mechanism of

NSCLC through the TIME-related ceRNA network.

Materials and methods

TCGA and GTEx RNA sequencing datasets

The RNA-seq data for 455 LUAD samples and 489 LUSC samples were obtained from the

TCGA dataset (https://gdc.cancer.gov/). All data for normal tissue samples were obtained

from the GTEx Analysis V8 release version (https://gtexportal.org/home/datasets) which

included a total of 578 lung samples. The miRNA sequence data of 455 tumor tissues with 45

control samples from LUAD patients and 489 tumor tissues with 45 adjacent non-cancerous

lung tissues from LUSC patients were retrieved from the TCGA database.

Identification of differentially expressed genes

The ensemble IDs of NSCLC samples were transformed into gene symbols using The Human

GENCODE Gene Set-Release 34 version (https://www.gencodegenes.org/human/). The

trimmed mean of the M-values was used to normalize the raw RNA-seq data. DEmRNAs,

DElncRNAs, and DEmiRNAs between NSCLC and normal lung tissues were identified using
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the edgeR package in the Bioconductor project (version 3.11; http://www.bioconductor.org/).

Absolute |logFC| > 1.5 and statistically adjusted P value of< 0.05 (P< 0.05) were considered

as statistically significant DEmRNAs; |LogFC| > 1 and P< 0.05 were considered as statistically

significant DEmiRNAs, and |LogFC| > 4 and P< 0.05 were considered as statistically signifi-

cant DElncRNAs. The volcano map of DEmRNA and DEmiRNA expressions was visualized

using the ggplot2 package (version 3.3.1, https://github.com/tidyverse/ggplot2) in R.

Gene function and pathway enrichment analysis

ClusterProfiler R package [70] was used to perform GO functional annotation, KEGG pathway

enrichment, and GSEA analyses for DEmRNAs. GO analysis was conducted to describe gene

functions including BPs, cellular components (CCs), and molecular functions (MFs).

KEGG-GSEA was performed for identification of the enriched signaling pathways, and

P< 0.05 was considered as statistically significant enrichment.

Co-expression network construction by WGCNA

The WGCNA package in R [71] was utilized to establish a co-expression network and identify

the co-expression modules of mRNAs and lncRNAs. First, the variances of mRNAs and

lncRNAs were computed by analyzing the variance across LUAD and LUSC samples. The top

80% mRNAs and the top 60% lncRNAs with the highest variances in WGCNA were chosen.

Second, an appropriate soft-thresholding power (β) and a scale-free fit R^2> 0.9 were set to

establish a weighted adjacency matrix based on the scale-free topology criterion. After the

modules with the highest correlation coefficient were analyzed, the adjacency matrix was

transformed into a topological overlap matrix [72]. Co-expression modules were obtained

using the dynamicTreeCut package in R, and their expression was analyzed by ME. After

merging the highly correlated modules, the gene’s connectivity was calculated using the

WGCNA package in R. Finally, GO-GSEA and KEGG analyses showed the functional

enrichment of mRNAs in key modules.

Prediction of target mRNAs

miRcode (http://www.mircode.org/) was used to predict interactions between the DEmiRNAs

and the lncRNAs in the key modules that were most relevant to NSCLC. StarBase (http://

starbase.sysu.edu.cn/), miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/), miRDB (http://

www.mirdb.org/), and TargetScan (http://www.targetscan.org/) databases were used to iden-

tify the target DEmRNAs from the predicted miRNAs.

Construction of target mRNAs-related prognostic model

Clinical data of NSCLC patients were obtained to validate the potential prognostic applications

of the target genes. The correlation between gene expression and patient survival was identi-

fied through univariate cox proportional hazard regression analysis using the “survival” pack-

age in R. Multivariate Cox proportional hazards regression model was subsequently utilized to

construct the prognostic gene-based model. The risk score was calculated for each patient

using the following formula:

Risk score ¼ expmRNA1 � βmRNA1 þ expmRNA2 � βmRNA2 þ � � � þ expmRNAn � βmRNAn

A high-risk score indicated a high risk of poor prognosis. The coefficient of genes, “β”, was

calculated using the multivariate Cox regression model, and the expression of the correspond-

ing mRNAs was represented as “exp” [73]. Patients with NSCLC were categorized into high-
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and low-risk groups with the medium value set as the demarcation point. Survival differences

between the two groups were examined by K–M analysis and log-rank test. A ROC curve of

risk score and the clinical features, including age, gender, and T, N, M, and TNM stages were

plotted using the “survival ROC” package in R. The accuracy of the predictions of the prognos-

tic model was evaluated using ROC curves. Associations between risk score or identified genes

and clinical features were evaluated by stratified analysis. R software (version 3.6.1) was used

for all statistical analyses.

Analyses of tumor-infiltrating immune cells, PD-1, and chemokines

The fractions of 22 types of infiltrating immune cells, PD-1, and chemokines were identified

using the gene expression data of NSCLC patients from the TCGA database to establish the

relationship between ceRNA network and TIME. The differential immune infiltration levels

were compared between the low- and high-risk groups using the CIBERSORT algorithm as

previously described [74]. Only immune cells with a CIBERSORT P< 0.05 were selected for

subsequent correlation analysis. The correlation coefficient between risk mRNAs in the

ceRNA network and immune cell infiltration was evaluated through Pearson analysis.

Construction of the ceRNA co-expression network

Competing endogenous RNA (ceRNA) networks were constructed using prognostic mRNA

signatures, predicted miRNAs, and DElncRNAs. mRNA–miRNA interactions were identified

using the miRDB, miRTarBase, StarBase, and TargetScan databases. The potential target

lncRNAs for DEmiRNAs were identified using miRcode. Overlaps between mRNA–miRNA

and lncRNA–miRNA interactions with prognostic mRNAs, DEmiRNAs, and DElncRNAs

were further used to construct the ceRNA network. The open-source Cytoscape platform

(https://cytoscape.org/) was used to visualize the regulatory relationships in the ceRNA

network.

Cox regression analyses for lncRNAs

A Cox proportional hazard regression analysis was performed for lncRNAs and mRNAs. Rele-

vant associations between the lncRNAs in the ceRNA network and the OS in NSCLC patients

were evaluated through the univariate Cox proportional hazard regression model. Prognostic

lncRNAs were identified by the multivariate Cox regression model. The risk score formula for

lncRNA was identical to that of mRNA and was as follows:

Risk score ¼ expmRNA1 � βmRNA1 þ expmRNA2 � βmRNA2 þ . . .þ expmRNAn � βmRNAn

A high-risk score indicated a high risk of poor prognosis. The regression coefficient of

lncRNAs, “β”, was obtained through the multivariate Cox regression model. The expression of

the corresponding lncRNAs was represented as “exp” [73]. ROC curve and clinicopathological

correlation analyses were used to estimate the potential applicability of the prognostic signa-

tures for predicting the NSCLC outcomes.

Estimation of the sensitivity towards chemotherapeutic and targeted

molecular agents

The IC50 values and sensitivity of chemotherapeutic and targeted therapeutic drugs were com-

pared between the NSCLC subgroups classified by risk scores using the “pRRophetic” package

in R. TCGA mRNA and lncRNA expression levels were analyzed based on the mRNA and

lncRNA risk scores, respectively.
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Validation of the risk signatures from ceRNA network at protein level

The HPA database was used to validate the protein level expression of five risk mRNAs and

compare them at the gene transcriptional level.

Cell culture, RNA extraction, and RT-qPCR

The normal human bronchial epithelial cell line, BEAS-2B [75] was obtained from the State

Key Laboratory of Oncology in South China. The cells were cultured in RPMI Medium 1640

(C11875500BT, Gibco, USA) supplemented with 10% fetal bovine serum (A31008-02, Gibco,

USA) and 1% penicillin-streptomycin (PB180120, Procell Life Science & Technology Co. Ltd.,

China) in a 5% CO2 incubator at 37 ˚C. NSCLC cell lines, including PC-9 [76] (ZQ0487,

Zhong Qiao Xin Zhou Biotechnology Co. Ltd., China), H1650 [77] (CL- 0166, Procell Life Sci-

ence & Technology Co. Ltd., China), and H1975 [78] (CL-0298, Procell Life Science & Tech-

nology Co. Ltd., China), were cultured in Dulbecco’s Modified Eagle Medium (C11995500BT,

Procell Life Science &Technology Co. Ltd., China) supplemented with 10% fetal bovine serum

(A31008-02, Gibco, USA) and 1% penicillin-streptomycin (PB180120, Procell Life Science &

Technology Co. Ltd., China) in a 5% CO2 incubator at 37 ˚C. Cells in the logarithmic growth

phase were harvested for RNA extraction. Total RNA was isolated from the cells using the TRI-

zol reagent (15596026, Invitrogen, USA) and reverse transcribed into cDNA using the first-

strand cDNA template through the PrimeScript RT reagent Kit with gDNA Eraser (RR047A,

TaKaRa, Japan). SYBR Premix Ex Taq II (RR820A, TaKaRa, Japan) was used for amplification

on the CXF96 System (BioRad, United States). ACTB served as the endogenous control. The

primer designs are listed in S1 Table. lncRNA expression was normalized to that of ACTB and

calculated using the 2−ΔΔCq method.

Statistical analysis

Statistical analyses for bioinformatic experiments were performed using the previously men-

tioned R packages in the R software (v.3.6.3). Differential expression levels between groups

through RT-qPCR analyses were compared using the parametric one-way ANOVA in Graph-

Pad Prism version 8.0 (GraphPad Software) and SPSS 23.0 software (IBM). Statistical signifi-

cance was considered at P< 0.05.

Supporting information

S1 Table. Real-time quantitative PCR primer sequences used in this study.
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