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Antibody Fab-Fc properties outperform titer in
predictive models of SIV vaccine-induced protection
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Abstract

Characterizing the antigen-binding and innate immune-
recruiting properties of the humoral response offers the chance
to obtain deeper insights into mechanisms of protection than
revealed by measuring only overall antibody titer. Here, a high-
throughput, multiplexed Fab-Fc Array was employed to profile
rhesus macaques vaccinated with a gp120-CD4 fusion protein in
combination with different genetically encoded adjuvants, and
subsequently subjected to multiple heterologous simian immun-
odeficiency virus (SIV) challenges. Systems analyses modeling
protection and adjuvant differences using Fab-Fc Array measure-
ments revealed a set of correlates yielding strong and robust
predictive performance, while models based on measurements of
response magnitude alone exhibited significantly inferior perfor-
mance. At the same time, rendering Fab-Fc measurements math-
ematically independent of titer had relatively little impact on
predictive performance. Similar analyses for a distinct SIV
vaccine study also showed that Fab-Fc measurements performed
significantly better than titer. These results suggest that predic-
tive modeling with measurements of antibody properties can
provide detailed correlates with robust predictive power, suggest
directions for vaccine improvement, and potentially enable
discovery of mechanistic associations.
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Introduction

While vaccine efficacy is often distilled into a single-measure, anti-

body titer (Plotkin, 2010; Ohmit et al, 2011; Katzelnick et al, 2016),

the magnitude of the humoral response may not suffice to evaluate

or explain outcomes; rather, qualitative aspects may be critically

important (Abraham et al, 2002; Feng et al, 2009; Corey et al,

2015). For example, a recent study of two different RTS,S-based

malaria vaccines found both to be equally protective despite having

very different titer levels, leading to conjecture that antibody quan-

tity was compensated by quality (Kazmin et al, 2017). Similarly, a

study of three different Ebola vaccines revealed that while they

induced similar levels of anti-Ebola antibodies, only one yielded a

substantially better response providing total protection (Blaney

et al, 2013). Additionally, a recent SIV vaccine study identified a

number of specific antibody qualities that were associated with

protection whereas IgG response magnitudes were not (Ackerman

et al, 2018). Antibody quality has been frequently characterized in

terms of neutralization potency and breadth (Mascola & Haynes,

2013; Hraber et al, 2014), as well as specificity to particular epitopes

(Wrammert et al, 2011; Klein et al, 2013; Zolla-Pazner et al, 2014;

Frei et al, 2015; Ha et al, 2017). Beyond these, antibody qualities

such as opsonophagocytic activity, complement-dependent cytotoxi-

city, and NK cell-mediated cytolysis have often been assessed. These

activities are strongly influenced by properties of the Fc domain,
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including isotype, subclass, and glycan, suggesting the importance

of these factors in driving suitable effector function (Barouch et al,

2015; Gordon et al, 2016; Huang et al, 2016). Collectively, there is a

rich history of such qualitative antibody characteristics serving as

important correlates for control of natural infection and vaccine effi-

cacy (Johnson et al, 1999; Osier et al, 2008; Gómez Román et al,

2014; Weber & Oxenius, 2014; Ackerman et al, 2016; Zhong et al,

2016; He et al, 2017; Jegaskanda et al, 2017; Li et al, 2017; Rouers

et al, 2017). In general, in addition to better distinguishing observed

differences in immunity, expanded biophysical analyses of antibody

properties can provide a more refined understanding of characteris-

tics important for potent responses and potentially how to improve

them.

Systems approaches provide the opportunity to broadly

characterize immune responses and efficiently identify properties

associated with protection and differences between vaccine

compositions or immunization regimens (Querec et al, 2009;

Kuri-Cervantes et al, 2016). While gene expression profiles are

generally at the heart of systems biology, immunology-specific

approaches have been developed to measure and leverage biologi-

cal profiles (e.g., cytokines, multi-dimensional cellular markers,

metabolites) (Furman & Davis, 2015; Lin et al, 2015; Davis et al,

2017). In order to enable “systems serology” studies (Chung et al,

2015; Ackerman et al, 2017), we have recently developed a plat-

form, the “Fc Array”, to comprehensively dissect antibody profiles

of serum samples (Brown et al, 2012, 2017). By characterizing

antibodies in terms of simultaneous Fab and Fc properties (i.e.,

both antigen specificity as well as subclass and ability to bind

complement and different FccR receptors), the Fc Array has

provided a refined characterization of immune responses in a

variety of vaccination and natural infection studies (Lai et al,

2014; Choi et al, 2015; Ackerman et al, 2016, 2018; Vaccari et al,

2016; Bradley et al, 2017).

Here, we reconsider a recent non-human primate vaccine

study evaluating the efficacy of an intramuscular DNA immu-

nization followed by a protein boost (Fouts et al, 2015) (Fig 1A).

The DNA prime consisted of a plasmid DNA expressing rhesus

full-length single chain (rhFLSCsmE660), an immunogen comprised

of SIVsmE660 gp120 envelope glycoprotein fused to the rhesus

macaque CD4 D1D2 domain, and a plasmid DNA encoding

SIVsmE543 Gag and Pol. In addition to these HIV antigen-expres-

sion plasmids, groups of animals were treated with an additional

plasmid expressing none, either, or both of the two genetic adju-

vants: IL-12 and the catalytic A1 subunit of E. coli heat labile

toxin (LTA1). Following three DNA immunizations at weeks 0,

4, and 8, responses were boosted by intramuscular vaccination

with recombinant rhFLSCCCG7V protein (i.e., rhesus full-length

single chain for a different SIV strain) in an aluminum adjuvant

at week 44. Repeated low-dose rectal challenge with a heterolo-

gous SIVmac251 strain initiated at 2 weeks post-boost demon-

strated that animals immunized with IL-12-adjuvanted DNA had

significantly lower infection rates compared to animals in all the

other groups (Fouts et al, 2015). Previous analysis identified a

balance between strong antibody effector function, particularly

antibody-dependent cellular cytotoxicity (ADCC), and relatively

low cellular responses, as assessed by IFNc expression of stimu-

lated T cells, to be associated with protection (Fouts et al,

2015).

Seeking to further dissect the humoral component of the immune

response in this study, Fc Array data were collected for serum

samples on the day of first challenge and used to systematically

investigate the ability of computational models to distinguish adju-

vant groups, and predict and compare protection using (i) full anti-

body profiles to which titer may have contributed, (ii) titer-based

measurements alone, and (iii) antibody profiles from which the

contribution of titer has been mathematically removed (Fig 1B and

C). Beyond defining new correlates of protection, the resulting anal-

ysis showed that the characterization of antibody qualities can be

necessary to accurately model protection. Models based on charac-

terizations of antibody Fab and Fc properties, either with or without

an implicit titer component, significantly and substantially outper-

formed models using response magnitudes alone for differentiating

group-based responses and the extent of protection. Identifying such

properties provides the opportunity to hypothesize mechanisms of

protection that may be tested in further studies.

Results

Antibody profiles

Thirty-two serum samples (n = 8/group, differing by the adjuvants

used in the DNA priming immunizations, i.e., no DNA adjuvant

(Empty); LTA1; IL-12; and the combination IL-12 + LTA1) were pro-

filed on the Fc Array. The study also included 8 unvaccinated

control animals, which were not considered here for modeling, but

were instead used to set a baseline for signal in the experimental

data. Since the IL-12 group was previously found to be significantly

more protected compared to the other adjuvant groups, analyses

here compared the IL-12 group to the other three adjuvant groups

combined.

Each animal’s antibody response was characterized in terms of

two types of measurements, one which we call “titer features”,

measuring the overall magnitude of a particular antigen-specific

response, and one which we call “Fc Array features”, further

characterizing the antigen-specific response in terms of antibody

qualities, namely Fc properties. Both types of measurements are

numerical in nature, and “qualitative” indicates that a measure-

ment characterizes antibody qualities beyond magnitude. In fact,

all data were collected simultaneously using the Fc Array, which

multiplexes the characterization of Fab properties and Fc proper-

ties. Here, the Fc Array was used with reagents evaluating twelve

antigen specificities (one for Pol, two for Gag, and nine for Env:

gp120-140s and FLSC sequence variants comprising a variety of

SIV strains) (Appendix Fig S1A), along with eight different interac-

tions of the Fc domains of these antigen-specific antibodies with

Fc receptors (Appendix Fig S1B, “Response Quality”) and two anti-

IgG detection conditions (Appendix Fig S1B, “Response Magni-

tude”). Each simultaneous Fab:Fc measurement is termed a

“feature”. The anti-IgG detection reagent measurements have been

shown to correlate well with standard ELISA-based measurements

of titer (Brown et al, 2012) and thus were used here as the quanti-

tative titer features characterizing response magnitude, while the

rest comprised the qualitative Fc Array features characterizing

response properties. For modeling purposes, features were discarded

if they displayed no statistically significant difference compared to
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the control group animals, leaving a total of 82 features for model-

ing (Appendix Fig S1C).

Predictive analysis framework

In order to characterize the generalizability of our conclusions

regarding the utility of using response qualities in addition to

response magnitude, we employed a predictive analysis framework

in which models were trained using some subjects and then used to

make predictions for held-out subjects, thereby enabling evaluation

of the accuracy and robustness of the predictions. This approach

stands in contrast to statistical measures of correlation over all the

subjects, which may suffice to summarize some strong relationships

between features and outcomes in a given set of subjects, but do not

quantify the generalizability of such relationships to new subjects.

The features contributing to a robust, high-performance predictive

model can be expected to be reliable, but some features that appear

as correlates when characterizing all subjects may be omitted from

such a model because the correlation is not sufficiently generaliz-

able or because it does not add predictive value beyond other

features included in the model.

Predictive models of protection and adjuvant-specific group dif-

ferences were built from the titer and Fc Array data, such that the

models would predict an animal’s risk of infection and adjuvant

group based solely on the post-vaccination, pre-challenge antibody

profile (Appendix Fig S2A). Protection models employed a multi-

variate survival analysis based on Cox proportional hazards

(CoxPH) regression to predict an animal’s risk of infection, while

adjuvant group models used a regularized logistic regression

approach to predict, or classify, an animal’s adjuvant group. For

both objectives, modeling was performed separately for the titer

features and for the Fc Array features, as well as for a titer-adjusted

feature set generated by mathematically rendering the Fc Array

features uncorrelated with titer (Appendix Fig S2B). In the case of

Fc Array data, feature selection was performed to reduce the risk of

overfitting and enhance the interpretability of models derived from

this “wide” data with many more features than animals. Prediction

accuracy and robustness were evaluated with repeated cross-valida-

tion (i.e., training a model on a subset of the samples and making

predictions on the remaining samples) and permutation testing (i.e.,

training “negative control” models on data with the protection and

adjuvant group information permuted, or shuffled, with respect to

A

B C

Figure 1. Schematic overview for comparison of the predictive power of antibody response magnitude versus response quality data.

A Overview of the vaccine regimen (adapted from Fouts et al, 2015).
B Antibody profiles of subjects are assayed, post-vaccination but pre-challenge, capturing either response magnitude alone (quantity, titer) or Fab and Fc properties

(quality, Fc Array). These profiles are input into a predictive analysis framework that trains models to predict a subject’s risk of infection based on antibody profile.
C The accuracy of the models is evaluated by making predictions for subjects not used in model training and comparing observed infection rates (blue dashed) to

predictions, according to the models based on the two different antibody profile types (Fc Array in pink and titer in black).
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the antibody features). In order to visualize the features contributing

to the predictions, a final model was trained using all animals. The

process is summarized in Appendix Fig S2A, and details are

provided in Materials and Methods.

Antibody profiles are predictive of challenge outcome

Multivariate survival analysis was performed using the Fc Array

antibody profiles to model risk of infection for the immunized

animals and identify antibody features capable of robustly predict-

ing the challenge outcomes. The group-wise risk of infection accord-

ing to the final model closely mirrored the observed challenge data,

with the predicted Kaplan–Meier (KM) curves not significantly dif-

ferent from the observed ones by log-rank test (Fig 2A). Strikingly,

the IL-12 group was modeled to have a distinct survival trend from

the others, even though the modeling approach relied only on anti-

body profiles and did not explicitly include group information.

Moreover, predictions of risk for individual animals were also accu-

rate, with the animals predicted to be better protected generally

withstanding more challenges than those predicted to be at greater

risk, as evidenced by a concordance index (C-index) of 0.74

(P < 10�13) in a representative cross-validation run (Fig 2B). Over-

all, the animals in the IL-12-adjuvanted group were predicted to

have significantly lower risk of infection compared to the others,

again relying just on antibody profiles to explicate implicit group-

based differences (Fig 2C). The robustness of the modeling

approach was confirmed by repeated cross-validation and permuta-

tion testing, with models trained on actual data significantly

(P < 0.05) and substantially (Cliff’s D: large) outperforming the

models trained on permuted data (Fig 2D). This difference suggests

that the predictive performance of the model was due to meaningful

relationships between the features and protection rather than by

chance, since models trained on data with such relationships

disrupted by permutation did not perform nearly so well.

The modeling process identified a number of correlates of protec-

tion and risk. In particular, the final model was able to accurately

predict the challenge outcome using four such antibody features,

of which three were correlated with protection and one with

increased risk of infection (Fig 2E). Strikingly, all three protective

correlates were antibodies capable of binding the complement cascade

initiator C1q. Unexpectedly, these antibody protective correlates had

specificity for each of the antigen components in the DNA vaccine

(Env, Gag, and Pol). This diversity of antigen specificities was

surprising since only FLSC (i.e., the Env antigen) was included in the

protein boost, resulting in antibody titers to Env that were several

orders of magnitude greater than those for Gag or Pol at the time of

challenge. The Env- and Gag-related features were found to have

significantly elevated magnitudes in the IL-12-adjuvanted group (the

only significantly protected group) as compared to the others

(Appendix Fig S3A and B), whereas the Pol-specific feature was

elevated among all three adjuvanted groups compared to the non-

adjuvanted group (Appendix Fig S3C). In contrast, the correlate of

risk, an rhFLSC-specific response mediating FccR2A binding, was not

statistically different between any pair of groups (Appendix Fig S3D).

Since Gag and Pol were in the DNA prime, but not the boost, the

observed group-level differences are likely directly attributable to

DNA priming.

It should be noted that the features contributing to the final

model were identified by aggressive feature selection and thus are

likely not be the only pertinent correlates. In this regard, other

features could likely be incorporated into alternative models capable

of similar prediction accuracy. While it would be intractable to

assess all possible models, the backward feature elimination process

employed here for feature selection iteratively eliminated features

contributing little to training set performance and thereby yielded

features that are representative of the best correlative trends. In this

regard, it is expected that other features could be incorporated into

alternative models capable of similar prediction accuracy. Thus, we

performed a substitution analysis, replacing each of them one at a

time with alternatives. Substitution of other Gag-specific features

tended to maintain high accuracy in cross-validation testing

(Fig 2F), indicating that there was a broad range of Gag-specific

antibody-directed activity that was equally predictive of protection.

To further explore the potential importance of Gag-specific features,

we determined the extent to which model accuracy was impacted

by the exclusion of all Gag-specific features. The resulting “Gag-

less” models retained similar accuracy (C-index: 0.75 � 0.02) and

robustness (P < 0.05; Cliff’s D: large) as those trained using the

complete feature set. A similar exercise was carried out to estimate

the impact of elimination of Pol- and Env-specific antigens on the

prediction accuracy. While the “Pol-less” models maintained predic-

tion accuracy on par with the original models, the “Env-less”

models showed a significant drop in accuracy (Appendix Fig S4).

Taken together, these findings suggest that humoral responses

targeting Gag and Pol do not contribute to models of protection as

much as those targeting Env do.

▸Figure 2. Protection from challenge can be robustly modeled with antibody profiles.

A The predicted survival probabilities in the final model closely match observed KM curves for the IL-12 adjuvanted group (red) and for the others (blue). Log-rank tests
indicate insignificant difference between predicted (solid) and observed (dashed) curves. n = 8 for IL-12 and n = 24 for Others.

B The predicted relative risk of infection for each animal in the representative eightfold cross-validation run (relative to mean at 0, horizontal dashed line) closely matches
observed challenge data (concordance (C)-index). The colors represent the adjuvant groups (groupID) as shown in the central legend box to the right side of panel (D).

C Animals in the IL-12 adjuvanted group (red) have significantly lower predicted risk of infection than those in the combined other groups (blues) in the representative
eightfold cross-validation run (Wilcoxon–Mann–Whitney). n = 8 for IL-12 and n = 24 for Others. The colors represent the adjuvant groups (groupID) as shown in the
central legend box to the right side of panel (D). The horizontal line in the box represents the median, the upper and lower limits represent the 3rd and 1st quartiles
respectively, and the whiskers extends from the upper/lower limit to the highest/lowest value that is within 1.5 * (interquartile range) of the limit.

D The approach is robust, with models trained on actual data consistently obtaining high C-indices (100 repetitions of eightfold cross-validation yield mean
0.73 � 0.02) and significantly (tail probability) and substantially (Cliff’s D) outperforming those trained on permuted data (0.61 � 0.08) and baseline C-index for
random prediction (0.5).

E A small set of features (columns) contribute to the final model (coefficients in bars; top panel), with one predictive of risk and three of protection (Cox PH P-values:
**P < 0.01; *P < 0.05; -, not significant). The individual animals (rows) are colored by adjuvant group and ordered in ascending order of time-to-infection.

F Substitution analysis reveals co-correlates of the features from the final model (E), dominated by Gag specificities as well as ability to bind C1q.
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The previously published analysis of this study identified a

balance between humoral and cellular immunity as key to protec-

tion (Fouts et al, 2015). The survival models presented here already

performed well using only antibody features, and inclusion of cellu-

lar response features in the modeling inputs did not yield better

performance. However, the cellular response did prove to be useful

in explaining some of the misestimates of risk made in the survival

models (Appendix Fig S5). In particular, of the sixteen animals that

were predicted to have low risk of infection (risk < 0) according to

the representative humoral-based survival model, eight were

infected in four or fewer challenges. Of these eight, we found that

three had a high cellular response as characterized by IFNc expres-

sion by stimulated T cells (Appendix Fig S5A) and thus appear to

have suffered from a lack of immune balance as previously

described (Fouts et al, 2015). Similar analysis of the other previ-

ously described correlate, ADCC, did not provide additional insights

(Appendix Fig S5B), presumably because the antibody features

contributing to the predicted risk already captured the quality of the

humoral response well. With animals stratified according to the

combination of predicted risk representing the humoral response

and IFNc representing the cellular response, KM curves support the

importance of the previously observed balance between these two

components (Appendix Fig S5C, cf. (Fouts et al, 2015) Fig 4F).

Antibody qualities beyond titer are essential for robust
prediction of protection

Survival analysis identified a set of correlates focused on Fab

domain recognition of Env, Gag, or Pol and Fc domain interactions

with C1q, an initiator of the complement cascade, along with substi-

tutable co-correlates. However, it is possible that the main driver of

protection (and therefore largest contribution to the model) was

simply the magnitude of the response(s). We tested this possibility

in two ways, applying the same modeling approach to two different

sets of features, termed “titer” and “titer-adjusted”. A “titer-adjusted”

set of features was also derived from the original Fc Array data by

mathematically removing the influence of the corresponding anti-

gen-specific titer features by orthogonal projection (Appendix Fig S2B).

This procedure thereby yielded antibody features that were uncorre-

lated with titer. These titer-adjusted features thus served as a deeper

characterization of antibody qualities, in that they measured charac-

teristics of the response beyond magnitude. It should be noted that

these titer-adjusted antibody features remained quantitative, using

numerical values; the important point is that the resulting profiles

were uncorrelated with the titer profiles.

Models using only the titer features (i.e., magnitude of antibody

responses in the Fc Array) displayed much poorer performance

at predicting the group-level or animal-level risk of infection

(Fig 3A–C). Indeed, statistical comparisons from repeated cross-vali-

dation showed that models trained on actual titer-only data did not

do significantly or substantially (Cliff’s D: small) better at predicting

protection than those trained using randomly permuted titer data

(Fig 3G). In contrast, models trained using only the titer-adjusted Fc

Array features displayed performance that was as good as that of

the original models trained using Fc Array features (Fig 3D–F). The

C-indices from repeated cross-validation with titer-adjusted features

showed that those models have a predictive performance that is

similar to that of Fc Array-based models (Figs 3G and 2D). Though

the robustness tests did not show a statistically significant difference

(P: 0.09), the effect size confirmed a substantial difference (Cliff’s D:
large) between the actual and permuted models (Fig 3G).

Antibody profiles reveal adjuvant-specific responses
distinguishing groups

Since the IL-12-adjuvanted group showed a significantly lower infec-

tion rate than the combination of all other groups, we used a regu-

larized binomial logistic regression approach to build models

classifying the IL-12-adjuvanted group versus the others based on

antibody feature profiles, with and without titer components. The

regularized modeling process inherently enabled identification of

informative features, here components of the humoral response

specific to the IL-12-adjuvanted group. Cross-validated classifiers

trained on the original Fc Array features were able to clearly

discriminate the two groups (i.e., IL-12 versus all other animals), as

was evident from the accuracy of 75% (Fig 4A). Repeated cross-

validation and permutation testing indicated that the classification

approach was robust, showing both a statistical (P < 0.05) and

substantial (Cliff’s D: large) difference in performance between

models trained on actual and permuted data (Fig 4D). For inspec-

tion, a final classification model was trained using all animals rely-

ing on a small set of features to discriminate the IL-12 group from

the others (Fig 4B and C). Of the six Fc Array measurements

employed by the model, four were associated with the IL-12 group,

two of which (corresponding to the ability of Env- and Gag-specific

antibodies to interact with C1q) had also contributed to the protec-

tion models as correlates of protection, while two others (corre-

sponding to the ability of Env-specific antibodies to interact with

FccR3A) were indicative of a response common within the IL-12

group, but not necessarily of good protection (Appendix Fig S6).

▸Figure 3. Robust protection modeling depends on antibody qualities beyond titer.

A–F Models were trained using either (A–C) titer features or (D–F) titer-adjusted features. (A & D) Observed KM curves and predicted survival probabilities. The predicted
(solid) curves for the model using titer features (A) are significantly different from the observed (dashed) ones, while those for the model using titer-adjusted
features (D) are not (log-rank test). (B & E) Observed time-to-infection versus predicted risk of infection according to representative eightfold cross-validation runs.
Predictions from the titer-adjusted model (E) are much more concordant with observation (C-index) than those from the titer model (B). (C & F) Group-wise
differences in predicted risk of infection from the representative eightfold cross-validation runs. The titer model (C) does not predict the observed difference in
protection between groups (Wilcoxon–Mann–Whitney), while the titer-adjusted one does (F). n = 8 for IL-12 and n = 24 for Others.

G C-indices from repeated cross-validation and permutation testing, using the three different sets of features. Titer-adjusted data maintain substantial (Cliff’s D)
difference between using the actual data and the permuted data. There are also significant (tail probability) and substantial (Cliff’s D) differences between titer-
only cross-validation results and others, but not between the original Fc Array data and titer-adjusted data. The pair-wise comparison between actual models
using three feature sets was done by measuring the tail probability of the mean of one distribution with respect to the other. The horizontal lines represent the
mean C-index for each data type and for random prediction (0.5). One hundred repetitions of 8-fold cross-validation.
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A comparison of IL-12 group classification performance with

models trained on titer features and titer-adjusted features showed

that, as with survival analysis, features capturing antibody Fc binding

properties and not just titer were again necessary to robustly identify

adjuvant-associated attributes of the humoral response (Fig 4D).

Again, cross-validated models trained using only titer features

performed significantly (P < 0.01) and substantially (Cliff’s D: large)
worse than those trained on the original Fc Array features. In fact,

the permutation tests indicated that titer features performed no better

in distinguishing the true classes than in distinguishing permuted

classes (Fig 4D, center). On the other hand, the titer-adjusted features

(Fig 4D, right) performed comparably to the original Fc array features

(Fig 4D, left; see also Fig 2D). Thus, this analysis shows that anti-

body titer alone was not sufficient to identify adjuvant-associated

effects on the humoral response in this immunization study.

Up to this point, we have focused on distinguishing the best

protected group, IL-12, from the others, but high-resolution data

offer the chance to try to further distinguish among the other

A C

B D

Figure 4. Antibody profiles distinguish IL-12 adjuvant-specific responses from others.

A Predicted probability of being in the IL-12 group according to the binomial logistic classifier in the representative eightfold cross-validation run. Three animals
(points, colored by group) from the combined other adjuvant groups are predicted to be members of the IL-12 group (above the 0.5 decision boundary, dashed line),
and likewise 3 out of 8 IL-12 animals are misclassified as belonging to the “others” group. n = 8 for IL-12 and n = 24 for Others.

B The final model classified animals into groups based on a linear combination of a small set of features associated with the IL-12 group (positive coefficients, red) vs. others
(negative, blue).

C Two of the features in the final model clearly separate the other groups.
D Classifiers obtain robust performance using the original Fc Array features or the titer-adjusted features, but not the titer-only features, as revealed by tests of

significance (tail probabilities) and magnitude (Cliff’s D) in results from repeated cross-validation and from permutation. The pair-wise comparison between actual
models using three feature sets was done by measuring the tail probability of the mean of one distribution with respect to the other. One hundred repetitions of
8-fold cross-validation.
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groups. As such, a multinomial logistic regression approach was

used to classify which of the four adjuvant groups each animal

belonged to, based solely on feature profiles from the Fc Array. The

overall methodology followed that established for two-way classifi-

cation (IL-12 group versus all others), but using a multinomial

model instead of a binomial one in order to simultaneously classify

all groups. The resulting model’s accuracy was around 58% (com-

pared to the 25% baseline expected for a 4-group classification),

with animals from the LTA1 and LTA1 + IL-12 groups being the

most commonly confused (Appendix Fig S7A and B). The repeated

cross-validation performance was still robust compared to the

performance of models trained on permuted data (P < 0.01 and

Cliff’s D: large) (Appendix Fig S7C). The features identified in

the final multi-way classification model as being associated with

the IL-12 group were also all identified in the previous two-way

classification model, albeit with different relative magnitudes of the

coefficients (Appendix Fig S7D). The top two features (by coefficient

magnitude) associated with the IL-12 and Empty (i.e., no DNA

adjuvant) groups clearly separated them from the other groups

(Appendix Fig S7E and F). It should be noted that the top two

features for the Empty group were negatively associated with the

group indicating a reduced response compared to the other three

groups (Appendix Fig S7E).

Quality-based models outperform titer-based models in a
distinct SIV vaccine study

We next sought to evaluate the generality of the observation that

humoral response quality, beyond magnitude alone, is important in

analyzing protection. Recently, Fc Array and functional measure-

ments were collected for animals in a distinct SIV vaccine study

(employing a DNA prime-Ad5 boost vaccine regimen), and the

analysis pointed to strikingly different antibody properties and

correlates of protection associated with different routes of vaccina-

tion (Ackerman et al, 2018). In that study, animals vaccinated with

a SIVmac239 Env immunogen (administered either intramuscularly

or mucosally) exhibited significantly better protection against infec-

tion compared to those vaccinated with a mosaic Env immunogen.

Predictive survival analyses found that protection achieved via the

two routes of vaccination with SIVmac239 Env was associated with

two different antibody-mediated functional responses, monocyte

and neutrophil phagocytosis, and the FcgR2a and C1q binding

capacity of envelope- and variable loop peptide-specific antibodies.

The Fc Array data from that study provided an excellent opportu-

nity to further evaluate the predictive capacity of models trained on

IgG response magnitudes alone or those that also incorporated other

aspects of antibody qualities. We thus applied the same predictive

analysis framework to the data from that study, building and evalu-

ating survival models of protection and classification models of

vaccine group (three groups: intramuscular and aerosol based on a

SIVmac239 antigen, as well as intramuscular based on a mosaic

antigen). Comparisons of survival models revealed that those using

Fc Array or titer-adjusted Fc Array data performed significantly and

substantially better than those based on titer data alone, with essen-

tially random performance observed for titer-only models (Fig 5A).

For vaccine group classification, all three feature sets yielded

models significantly better than random, with Fc Array models

significantly and substantially better than the other two (Fig 5B).

Since titer plays a considerable role in distinguishing groups here, it

is important to maintain it in the models. We see that once again it

is the combination of quality and quantity that yielded the best

models.

A B

Figure 5. Models incorporating antibody quality data outperform those using titer alone in a distinct vaccine study (Ackerman et al, 2018).

A C-indices from repeated cross-validation and permutation testing, using the three different sets of features. The original and titer-adjusted Fc Array data maintain
substantial (Cliff’s D) differences between using the actual data and the permuted data. Their performance is also significantly (tail probability) and substantially
(Cliff’s D) better than that for titer-only models. The horizontal lines represent the mean C-index for each feature set and for random prediction (0.5).

B Classifiers are all better than random (comparing models with permuted data), but those with Fc Array data are significantly (tail probability) and substantially (Cliff’s
D) better than those with titer-only and titer-adjusted data, which show a significant drop in performance.
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Discussion

Systems approaches enable high-resolution characterization of key

factors associated with robust immune responses. Here, the high-

throughput Fc Array was used to dissect humoral responses to

vaccination in an SIV challenge study, revealing antibody properties

that were associated with protection as well as properties that were

different between vaccine groups. While the use of multi-dimen-

sional, “wide” data raises the risk of focusing on artifacts of a given

training set, the consistent results here from the models across

multiple cross-validation runs, and in contrast to models using shuf-

fled data, provide evidence of their generality, accurately and

robustly predicting results for unseen samples and identifying

features with potential mechanistic relevance. Survival and classifi-

cation analyses demonstrated that characterizing antibody Fab and

Fc properties played a much more critical role than measuring anti-

body titers alone. Antibody feature-based models, even with titer

components mathematically removed, consistently and robustly

predicted protection and distinguished between adjuvant groups,

whereas titer-only based models yielded essentially random perfor-

mance.

This result should not be interpreted broadly to suggest that the

titer, or magnitude of the humoral response, is not an important

factor in modeling or achieving protection from infection. Instead,

this work provides a framework and methodology by which to

assess the relative influence of qualitative and quantitative variabil-

ity in the humoral response and evaluate the extent to which partic-

ular antibody properties can enable better characterization of

responses. In cases where very divergent antibody types are elicited,

expected relationships between response magnitude and challenge

outcomes can be obscured. Importantly, in studies where different

vaccine candidates elicit similar quantities of antibodies, segregating

the response by antibody features can help factor those vaccine-

specific differences and reveal their relationships to protection.

Therefore, it can be highly beneficial to characterize and investigate

both quantity and quality of the response to identify correlates of

protection in vaccine studies.

Here, protection was modeled with a multi-dimensional, multi-

group CoxPH survival model, combining animals from all adjuvant

groups and employing aggressive feature filtering, to incorporate

only a small number of features. The use of a Cox modeling

approach follows that used in recent studies (Bradley et al, 2017;

Ackerman et al, 2018), so as to avoid having to discretize protec-

tion levels (Chung et al, 2015; Vaccari et al, 2016). We found that

to avoid overfitting, it was necessary to perform feature pre-filtering

and employ greedy feature elimination methods to narrow down

the number of features used by the Cox model (Frejno et al, 2017);

regularization techniques (Simon et al, 2011) displayed substan-

tially poorer performance, resulting in empty models (i.e., with no

features selected), likely due to the semi-parametric formulation of

the Cox PH model and the small sample size of the study. However,

we note that the greedy feature selection framework does not guar-

antee finding the “best” features and in addition could be computa-

tionally expensive in studies with larger feature sets. Recently,

other survival analysis methods, which model protection as a

complex non-linear function of the input features, with potentially

better prediction accuracy than the linear models, have been

proposed (Ishwaran et al, 2014). However, those methods did not

perform any better than linear models in this study, and hence, Cox

PH was favored for ease of interpretability. A final limitation of the

approach here is the use of a single model for animals from all

groups instead of group-specific models. This was required in order

to obtain a sufficient sample size for the model; interestingly, the

model reflected the group-level differences in its predictions even

without explicitly encoding group identification. If enough animals

were available to sufficiently power the analysis, group-specific

models could complement the unified model by factoring out major

differences between groups and thereby potentially enable identifi-

cation of additional correlates of protection associated with the indi-

vidual groups.

The predictive analyses in this work have enabled a deep explo-

ration of the effects of different adjuvants on the humoral responses

induced by the SIV antigens used here. In general, the predictive

modeling approach allows moving beyond characterizing high-level

differences in efficacy due to differences in adjuvants, providing

finer-grained insights into how responses varied consequently.

Here, the features identified by the group classifiers show that the

IL-12-adjuvanted group exhibited a stronger response for Gag- and

Env-specific antibodies binding complement (C1q). It is interesting

that the same two features were also identified by the survival

models as correlates of protection across all the groups. These two

results indicate that the IL-12-adjuvanted group exhibited a distinct

response compared to the other three groups, which also resulted

in better protection against SIV challenge as compared to the others.

Further, while the substitution analysis for survival models showed

that there was a broad range of antibody responses against the Gag

protein that correlated with protection, models restricted to exclude

these features performed equally well, suggesting that Gag-specific

features did not play a crucial role in models predicting risk. Alter-

natively, it is possible that the antibody responses to Gag that corre-

lated with protection could be a surrogate for another antibody

response or mechanism that directly contributed to protection.

Nonetheless, these findings reinforce the observation from previous

studies (Schadeck et al, 2006; Chong et al, 2007; Robinson et al,

2007; Jalah et al, 2012) that the IL-12 adjuvant not only elicits an

enhanced Gag-specific immune response, but also elicits a broad

protective response. Here, inclusion of the IL-12 adjuvant has

clearly helped provide better protection in this DNA prime, protein

boost regimen. Although studies in humans have reported that anti-

bodies against p24 Gag antigen are elevated in HIV-1 controllers

compared to the chronic progressors (Banerjee et al, 2010; French

et al, 2013), it is not known whether these anti-Gag humoral

responses directly contribute to viral suppression. Similarly, one of

the strongest features from our models that predicted protection

was Pol-specific antibodies binding C1q. However, this feature was

not unique to the IL-12 group. Follow-up studies would be required

to assess the intriguing possibility that the Gag- and/or Pol-specific

correlates of protection observed here directly contribute to protec-

tion or are a surrogate for another response that is directly responsi-

ble for protection. Our observation linking virus-specific antibodies

that interact with C1q to protection suggests the potential impor-

tance of complement-dependent anti-viral activities in vaccine-

mediated protection. To this end, it is intriguing to note that in the

RV144 study, polyclonal sera from uninfected vaccine recipients

demonstrated elevated complement activation as compared to that

from infected vaccinees (Perez et al, 2017). However, follow-up
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studies would be required to definitively link any of the observed

correlates to mechanisms of protection, and it is important to note

that the ability of different sets and combinations of features to

accurately model infection outcomes points toward the limitations

of equating models with mechanisms, particularly in a small-sample

study.

In summary, this experimental and analytical approach offers a

path forward in correlates analysis when the quality of the antibody

response is sufficiently diverse among individuals or between

regimens so as to mask or eliminate relationships between the

magnitude of response and degree of protection. Although the

analysis of this adjuvant study found antibody quality to be more

predictive of protection than antibody quantity, the result does not

discredit the general use of antibody titer in providing correlates of

protection; possessing high-quality antibodies alone would not be

sufficient to render protection without an adequate quantity of anti-

body present. However, this work suggests that even when anti-

body titer is a correlate of vaccine efficacy, and especially when it

is not, studies of antibody properties can yield deeper insights into

how the immune system responds. Ultimately, predictive modeling

of antibody qualities can provide detailed correlates with robust

predictive power, suggest directions for further vaccine improve-

ment, and enable the discovery of potentially mechanistic corre-

spondences across studies.

Materials and Methods

Multiplexed IgG titering and Fc Array

To characterize humoral responses in a high-throughput manner,

the Fc and Fab characteristics of circulating antibodies were simulta-

neously probed using the previously described Fc Array (Brown

et al, 2012, 2017). The assay utilized an on-bead, antigen-specific

purification step to capture circulating antibodies. Each unique anti-

gen was coupled to a fluorescently coded bead, thus allowing the

FlexMap3D instrument to distinguish antibody specificity in a multi-

plexed assay. After incubating the beads with the test samples,

unbound antibodies were removed and the Fc regions were

probed using phycoerythrin-conjugated detection reagents including

human and rhesus FccRs, human C1q, MBL, and anti-IgG (listed in

Appendix Fig S1). Samples were subsequently analyzed on a Flex-

Map3D instrument (Luminex) which reported antigen-specific,

median fluorescence intensities (MFI) for each of the detection

reagents. Fc Array measurements were pre-processed for quality

by eliminating measurements that did not show a significant

(Wilcoxon–Mann–Whitney, P < 0.01) difference between the unvac-

cinated control and any vaccinated group. Features for which the Fc

detection reagent was IgG, measured at two serum concentrations,

were considered to be “titer” features (Appendix Fig S1C) and were

held out from the main analysis on Fc Array measurements

(Appendix Fig S1B).

Survival analysis

Models were trained to predict the risk of infection at each challenge

point using a previously described multivariate survival analysis

approach (Bradley et al, 2017) based on Cox proportional hazards

(CoxPH) regression (Cox, 1972). In summary, the method employs

the following components:

Feature pre-filtering: To reduce the risk of overfitting by

CoxPH due to “wide” data (Vinzamuri & Reddy, 2013; Laimigh-

ofer et al, 2016), only the top 10% of features correlated with

protection by polyserial correlation coefficient (Drasgow, 2004)

were considered, and a non-redundant subset was selected so as

to eliminate correlated features (Pearson correlation coefficient

> 0.8).

Model training and feature selection: Models were trained and

tested in an eightfold cross-validation setting with animals randomly

split into folds using stratified sampling to ensure that animals from

each group were included in each test set. For a training set, CoxPH

models were trained using the R package “survival” (Therneau &

Grambsch, 2000). Greedy backward feature elimination (Guyon &

Elisseeff, 2003) was performed to iteratively reduce the set of

features contributing to models and thereby further reduce the risk

of overfitting. Features were eliminated as long as training likeli-

hood was no more than 25% worse than the initial model using the

pre-filtered features.

Risk prediction and performance evaluation: CoxPH models

were used to predict each animal’s risk of infection relative to

the mean risk over all animals. These relative risk predictions

enabled assessment of a model’s predictive performance versus

observed time-to-infection, according to the concordance index

(C-index) metric (Harrell et al, 1996). In order to estimate the

variation in performance, cross-validation was repeated 100 times

with different splits of animals. In order to provide “negative

control” models trained on incoherent data with the same charac-

teristics as the real data, a permutation testing approach (Ojala &

Garriga, 2010) was employed, where permuted data were gener-

ated by randomly shuffling the challenge labels and then follow-

ing the same exact evaluation process to filter features and train

and test models. Performance differences between models using

actual versus permuted data were characterized by (i) determining

the mean C-index of models using actual data and assessing the

tail probability of this value with respect to the distribution of C-

indices of models using permuted data, and (ii) the magnitude of

the differences between the C-index distributions of models using

actual data versus those using permuted data (effect size by

Cliff’s D).
Representative models: For inspection, a representative run of

eightfold cross-validation was performed using features that contrib-

uted to at least 90% of the models obtained over the repeated cross-

validation. The representative cross-validation run enabled plotting

of each animal’s predicted risk when it was part of the testing set.

Furthermore, to evaluate group-wise risk and plot aggregate KM

curves, a final model was trained using all the animals and the same

set of high-frequency features. The survival probabilities for each

adjuvant group were estimated by making predictions on “mean”

animals (i.e., with feature values taken as the mean values over

their respective groups).

Substitution analysis: To identify co-correlates, features corre-

lated to each feature in the final model (Pearson correlation coeffi-

cient > 0.75) were considered as possible substitutes. For each such

possible substitute, an eightfold cross-validation was performed to

assess performance of a variant of the final model using the substi-

tuted instead of the corresponding final feature.
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Titer-adjusted features

A set of features linearly independent of titer was developed by

means of linear orthogonal projection. Let ca be a mean-centered Fc

Array feature vector, over the subjects, for antigen a and some Fc

property. Let ga be the mean-centered, unit-length IgG feature

vector, averaged over low and high concentrations, for the same

subjects and the same antigen a. Compute ĉa as the orthogonal

projection of ca onto ga (Eqn 1). Then, c~?
a (Eqn 2) is independent of

(orthogonal to) the titer feature ga and is included in the titer-

adjusted feature set. The resulting titer-adjusted feature set consists

of Fc Array features that are linearly independent of antibody titer

(i.e., they are uncorrelated with titer measurements specific to the

respective antigen).

ĉa ¼ c~a � g~a

g~a � g~a

g~a (1)

c~?
a ¼ c~a � ĉa (2)

Classification of adjuvant groups

Least absolute shrinkage and selection operator (LASSO)-regular-

ized binomial logistic regression (Cox, 1958) was used to

develop models that linearly combine relatively sparse sets of

features in order to distinguish animals in the IL-12 group

versus the other three groups. Model training was performed via

the R package “glmnet” (Friedman et al, 2010) with default

options, and the penalty parameter (lambda) for regularization

that achieved the lowest classification error was used to train

the final model.

Modeling performance was assessed in terms of the balanced

accuracy (mean true positive rate) over 100 repetitions of eightfold

cross-validation. Training/testing splits were constructed so as to

ensure that each testing set included at least one animal from each

group. Robustness was evaluated with permutation testing,

namely, repeating the same process with randomly shuffled group

labels. Performance differences between models using actual

versus permuted data were again characterized as was done for

survival analysis, computing the tail probability and effect size.

Visual inspection of predicted classes was based on a single run of

eightfold cross-validation, while visual inspection of regression

coefficients was based on a final model trained using all the

animals.

For classification distinguishing all four adjuvant groups, the

same approach was employed but using glmnet’s multinomial

logistic regression model (Friedman et al, 2010) instead of its bino-

mial one.

Data availability

All data and R code to perform the described survival analysis,

group classification, and titer adjustment are available on Zenodo at

https://doi.org/10.5281/zenodo.2614007.

Expanded View for this article is available online.
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