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ABSTRACT
Background: Oral biofilms are the root cause of major oral diseases. As in vitro biofilms are
not representative of the intraoral milieu, various devices have been manufactured over the
years to develop Appliance Grown Oral Biofilm (AGOB).
Objective: To review various intraoral appliances used to develop AGOB for microbiological
analysis, and to judge the optimal means for such analyses.
Design: Four databases (PubMed, Science Direct, Scopus and Medline) were searched by two
independent reviewers, and articles featuring the key words ‘device’ OR ‘splint’ OR ‘appliance’;
‘Oral biofilm’ OR ‘dental plaque’; ‘in vivo’ OR ‘in situ’; ‘Microbiology’ OR ‘Bacteria’ OR ‘micro-
biome’; were included. The standard Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA) were adopted for data gathering.
Results: Of the 517 articles which met the initial inclusion criteria, 24 were deemed eligible
for review. The age of the AGOB, sampled at various intervals, ranged from 30 min to 28 days.
The most commonly used microbiome analytical methods were fluorescence microscopy,
total cell count using conventional, and molecular tools including Next Generation
Sequencing (NGS) platforms.
Conclusions: No uniformly superior method for collecting AGOB could be discerned. NGS
platforms are preferable for AGOB analyses.
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The human oral microbiome comprises a veritable habi-
tat of millions of microbes, mainly bacteria, that colonize
oral surfaces including abiotic tooth surfaces and biotic
surfaces such as the mucosae [1,2]. Dental plaque bio-
films attached to tooth surfaces, are particularly complex
mixed microbial habitats and comprise over 770 micro-
bial species, of which 57% are identifiable, as per current
data in theHumanOralMicrobiomeDatabase (HOMD).
Of these at least 13% are unnamed but cultivable, and
30% are known only as uncultivable phylotypes [3].

It is also known that diseases such as dental caries,
gingivitis, and chronic periodontitis result from the
concerted action of multispecies biofilm commu-
nities. Although the microbial composition of dental
plaques has been extensively researched for over a
century, a clear picture of their composition, archi-
tecture and the metabolism remains elusive.

The nature of the complexity of the oral biofilm
communities has led to the development, of a multitude
of methods for their evaluation. Traditionally, conven-
tional culture methods were employed to characterize
the oral microbiota. As it is estimated that at least one-
third of the latter are unculturable, there is a vast void in
the understanding of natural oral microbial commu-
nities, such as plaque biofilms [3,4].

There are advantages and disadvantages of both in
vitro and in vivo grown plaque methods. The former
enables investigators seek the outcome of biofilm
growth under standardized and simplified conditions
for defined questions, and the experiments are
relatively easy to conduct due to the simple standardi-
zation that may be achieved. On the contrary, the in
vivo experiments that mimic natural oral conditions are
inherently more complex but yield perhaps more rea-
listic outcomes. Hence, many of the previous investiga-
tors have examined plaque biofilms used culture
techniques that were extant during the period, using
mostly in vitro systems, rather than in vivo analyses.
However, the study of microbial communities within
their own natural habitat is critical to improve our
knowledge of disease processes such as caries and per-
iodontitis, which are the causes for the major tooth loss
in humans. Moreover, understanding plaque biofilm
architecture and functionality in nature, will have pro-
found impact on the delivery of chemicals and thera-
peutics for plaque biofilm control.

One of the major obstacles associated with the
study of the biofilm architecture and anatomy is the
difficulty to harvest intact, undisturbed natural pla-
que samples for analyses [5]. The literature is replete
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with various methods and devices for plaque biofilm
collection but a few of these have addressed the
quality of the biofilm obtained, and compared with
the natural biofilms and artificial plaque biofilms that
developed on these devices. Earlier workers have col-
lected plaque biofilm using paper points [6], cotton
rolls [7], or scalers [8–11], and clearly, these proce-
dures are likely to disrupt the delicate three-dimen-
sional relationships between the bacterial biomass,
the extracellular matrix and the substrate [12–14],
which directly influence the biofilm behavior.
Hence, there is a need for a plaque biofilm collection
method which does not disrupt the architecture of
the biofilm [13] as a deeper understanding of the
biofilm initiation, progression and maturation may
open new avenues for plaque biofilm control, parti-
cularly through chemicals and antiseptics.

In order to overcome the disadvantages of the
foregoing plaque collection methods, some authors
have used various intraoral appliances, e.g. orthodon-
tic appliances, as vehicles to study the naturally
grown biofilm [15,16]. However, there has been, to
our knowledge, no comparative analysis of the plaque
biofilm collection devices, and there are but scant
data on the relative superiority of one method over
the other. Indeed, there is an urgent need to develop
a benchmarked, universal method for evaluating in
situ biofilm growth. Additionally, there is to our
knowledge no critical review in the literature on the
advantages and disadvantages of the currently avail-
able appliances, and the possible confounders that
affect the outcomes. Hence, the aim of this review
was to systematically review the intraoral appliances
described in the literature for microbiological analysis
of in situ oral biofilm development.

Materials and methods

A systematic literature database search was conducted
using PubMed, Science Direct, Scopus and Medline.
The search included the following sets of key words:

– “Oral biofilm” or “dental plaque”
– “in vivo” or “in situ”
– “device” or “splint” or “appliance”
– “Microbiology” or “Bacteria” or “microbiome”

The search terms employed were key words classi-
fied under the general (all fields) category. The search
terms were combined with an ‘OR’ and categories
were combined using ‘AND’ or ‘NOT’ to create a
final search query. The following filters were applied
to these terms: Full text, published in the last 20 years
(since 1998), English and academic journals only.

The search was conducted from March 2017 to
August 2018 by two independent reviewers. Inclusion
criteria were all in vivo or in situ studies on oral biofilm

using intraoral device for microbiological analysis.
Exclusion criteria included studies using the volunteer’s
own prostheses such as denture or orthodontic appli-
ance or in vivo studies on implants or fixed prostheses.
Studies analyzing the microbial impact on enamel or
dentine caries or intracanal bacteria were also excluded.

Focus questions were:

(1) What were the materials used to construct the
intraoral appliance?

(2) Where was the location of the appliance? The
upper or the lower jaw?

(3) What were the substrates used, how many
substrates were used, what were the shape
and size of the substrate and the location of
the substrate?

(4) How many participants were involved in the
study? What were their characteristics?

(5) What was the age of the biofilm collected?
(6) Were chemical agents used in the study? What

were these agents?
(7) What were the study endpoints?
(8) What were the methods of analysis?
(9) What were the main findings?

A database was developed to compare and assess
the literatures based on the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA)
statement guidelines [17].

Search results

Initial database search identified 901 manuscripts. Six
manuscripts were identified through manual search.
After removing duplicate records, 517 which met the
inclusion criteria were included. After screening the
abstracts, 493 articles were dismissed/eliminated
based on the exclusion criteria. Finally, a total of 24
studies were included in this systematic review. The
article selection process is illustrated in Figure 1.

Analysis

A descriptive summary of the findings, tabulated and
based on the focus questions are provided in Tables 1–3.

Results

The number and age of the participants, the material
used for fabrication of the appliance and its location
in the oral cavity; the type, location, number, shape
and size of substrates used in the study, and the
biofilm age, outcome measures and methods of ana-
lyses are listed in Table 1. It should also be noted that
most studies quoted in Table 1 based on different
methodologies have reported high inter- and intra-
individual differences in biofilm formation. This is
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not surprising as the rate of biofilm development
considerably varies from individual to individual.
Whereas some are `slow` plaque formers, others are
`rapid` plaque formers [18]. Given the plethora of
methods, substrates, subjects/cohorts used by differ-
ent workers over the years (Table 1) it is extremely
difficult to state whether one method is superior to
another, and hence no uniformly superior method of
collecting AGOB has emerged, thus far.

The appliance and substrates used to collect
biofilm

With regards to fabrication of intraoral appliance,
comfort and aesthetics are important factors that
should be considered for improving the participant
compliance. For this reason, a number of authors
have used different types of individualised acrylic
splints for growing in situ biofilm [19–27].
However, Wood et al., [5,13] used the so-called
Leeds in situ device, for biofilm growth, composed
of a nylon ring holding an enamel substrate attached
to the tooth, which was a modification of a similar
previously described appliance by Robinson et al.
[28]. These devices were bonded to free buccal sur-
faces of the first or second upper molars by means of
a composite resin, providing a stagnation site for the
formation of the biofilm. More recently Prada-Lopez
et al., [29] developed the Intraoral Device of Overlaid

Disk-holding Splint (IDOD) in the lower jaw of the
volunteers. The device consists of a soft flexible inner
splint and a more rigid outer splint carrying the glass
substrate in between the two splints. Most workers
placed the appliance in one jaw only, either the upper
jaw [5,13,14,21–25,30–33] or the lower jaw
[19,27,29,30–34,37]. However, Auschill et al. [20],
Langfeldt et al. [26] and Tomas et al. [34] placed
the appliance in both jaws to investigate the differ-
ential characteristics of the biofilm growing in both
the upper and lower jaws.

Different solid substrates with varying properties
have also been used in these studies for instance
human enamel in the Leeds in situ device [5,13],
human enamel-dentine slab [30], bovine enamel/den-
tine [19,22–24,31], polished glass [14,20,21,25,29,34–
40], hydroxyapatite discs [27,32–34], or membrane
filters [26]. Although the roughness of the surface of
the substrate and its free energy are considered
important factors for in vivo growth of the biofilm,
Auschill et al. [20] and Netuschill et al. [41] found no
major differences in the thickness of 48-h biofilm
grown on enamel or glass discs. Additionally, some
authors opined using glass preferentially, to obviate
optical disturbance, associated with autofluorescence
of enamel [41].

The number of substrates used in each experi-
ment also varies substantially from 2 [5,13,19] to 15
[20]. Most workers used six substrates on the buccal
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side of the appliance, placing three substrates on
each side of the jaw [14,21–25,27,29–
31,33,34,37,39]. The latter workers employed either
cylindrical or cuboidal form substrates. The size of
the substrate was variable; as for the cylindrical
discs the diameter varied from 3 mm [20–22,25]
to 7 mm [34], while the height varied from 1 mm
[14,35,36,38,40] to 4 mm [30]. Interestingly, Wood
et al. [13] observed significant variations in the
thickness of the biofilms generated over the 4-day
period between each disc, depending on the sub-
strate architecture. For instance, the biofilm was
thicker at the enamel disc/ring junction (depth 75
to 220 µm) and thinner towards the center (depth
35 to 215 µm). This could be rather based on the
mechanical protection of the ring system around
the sample and should be taken into account in
the interpretation of such systems.

All authors quoted in this review placed the sub-
strates on the buccal aspect of the jaw when they used
upper or lower appliance except for Xue et al. [33],
who placed the hydroxyapatite substrate on the pala-
tal aspect covered with plastic mesh to protect the
device from mechanical disturbances while allowing
free contact with saliva. Auschill et al. [20] however,
demonstrated that the mean thickness of 48-hr bio-
film ranged from 14 to 150 µm and was not affected
by the location of the removable appliance in the oral
cavity (maxillary buccal region versus mandibular
buccal region) or by the position of the substrate
(distal versus mesial; right versus left). In addition,
Tomas et al. [34] reported the position of the
intraoral device and substrate did not affect the thick-
ness and vitality of the biofilm formed on the
substrate.

These rather conflicting findings on the thickness
of biofilms, surface colonization and bacterial adhe-
sion in the in situ devices described above could be
due to the many variables involved including
intraoral locale and variations in salivary flow and
dietary habits of individuals. Hence future workers
must pay heed to these confounders when conducting
in situ biofilm experiments.

Participants and biofilm age

Participants in the 24 studies analyzed healthy volun-
teers with an age range of 20–45 years. Study volun-
teers included dental students or institutional staff
from either the medical or the dental schools. It is
clear that these volunteers were chosen in view of
accessibility, and ease of intermittent biofilm collec-
tion and processing either during or immediately after
the experiment. The number of participants recruited
ranged from a single volunteer [22] to 32 [26].
However, several studies have reported a markedTa
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inter-individual variability in the characteristics of in
situ biofilms [13,20,35], as mentioned above.

The inclusion and exclusion criteria employed
were similar in most studies. Inclusion criteria
included participants who were systemically healthy
with good oral health, minimum of 24 permanent
teeth present, no evidence of gingivitis or periodonti-
tis and absence of untreated caries. Exclusion criteria
applied were smokers or ex-smokers, presence of
dental prostheses or orthodontic appliance, antibiotic
treatment or routine use of oral antiseptics in the past
3 or 6 months. Tawakoli et al. [38] excluded pregnant
and breastfeeding women in their study; to avoid
hormonal interference with the microbial ecology.
Some studies, however, did not mention any exclu-
sion criteria [5,13,35]. Several studies included both
male and female volunteers [14,19,25,33,35,36,38].
Klug et al. [30] for example, used only male volun-
teers, while other studies did not mention the gender
of the participants [5,13,20,21,23,26,27,29,31,37,40].

The duration of biofilm growth examined varied
from 30 min [24] to 28 days [5], depending on the
type of biofilm analyzed. Several studies collected
biofilm at a single point of time; either after 2 h
[29,31], 2 days [25,30,32–34,37], 4 days [13] or 7
days [19] to identify the characteristics of the biofilm
only at one-time point. In other studies biofilm was
grown for a prolonged duration with periodic biofilm
collection [5,14,21–23,25,26,28,29,38,40].

In terms of biofilm thickness, Al-Ahmad et al. [22]
demonstrated that the mean biofilm thickness after 1
day was 19.9 ± 5.0 µm and increased significantly
after 2 days (33.6 ± 7.4 µm) while after 3 days the
increase was insignificant. Not surprisingly, the
degree of microbial coverage, as well as the composi-
tion of the biofilm microbiota varied considerably
between different individuals at different time inter-
vals [14,35].

Characteristics of oral biofilm following
exposure to chemical agents

In translational terms, the model systems once stan-
dardized and calibrated should be ideal for evaluating
the effect of chemical agents on the biofilm micro-
biota. Several workers have studied the ecological
changes of biofilms exposed to various antimicrobial
agents (Table 2). The main outcome measures eval-
uated in the latter studies were bacterial viability
(live/dead ratio) and bacterial biomass or thickness
of the biofilm, analyzed using confocal laser scanning
microscope.

The main chemical agents used in these studies
were chlorhexidine gluconate, amine fluoride/stan-
nous fluoride, zinc chloride, alcohol and essential oil
[21,25,37,40]. Both chlorhexidine and amine fluoride/
stannous fluoride significantly reduced the biofilm

thickness and biofilm viability compared to controls,
but the differences between the two agents were not
significant [21]. In another study, Gu et al. [25]
evaluated zinc chloride, at 2.5, 5, 10 and 20 mM
concentrations, and noted significant reduction in
the plaque index, biofilm thickness and biofilm via-
bility compared with controls. They also evaluated
the effect of zinc chloride on various biofilm layers,
and reported that 2.5 mM was the lowest concentra-
tion to inhibit the outer layer, 5 mM was the lowest to
inhibit the middle layer while none of the used zinc
chloride concentrations could inhibit the bacteria in
the inner layer [25].

Antiplaque formulae agents, based on essential oils
either with or without alcohol, showed very high
immediate antibacterial activity and substantivity in
a 2-day biofilm. After 4 days both demonstrated very
good antiplaque effect, but alcohol-free essential oil
was better at reducing the biofilm thickness [37].

Apart from the above, some have evaluated the
effect of dietary sucrose on the artificial biofilm
grown in situ. In a recent study, Dige et al. [36]
compared the profiles of pH drops in plaque biofilms
exposed to 4% sucrose. They removed the device with
the grown biofilm from the oral cavity and immersed
it in a sucrose solution. The authors noted no differ-
ence in pH between the test and the sucrose-free
sample, which was a rather surprising finding.

Xue et al. [33] evaluated the lactic acid production
in an in situ biofilm after exposure to toothpaste, with
and without arginine. They demonstrated a significant
reduction in lactic acid production, but not a decrease
in metabolic activity, total biomass or vitality, when
using toothpaste containing arginine in two cohorts
with high and low caries activity. In these studies, the
chemical agents were exposed to the biofilm directly
either in vitro by dipping the device into the test solu-
tion for 1 min twice a day [19], for 2 min during the
day for 2 days [36], or while the device was in situ in
the oral cavity, by brushing [33] or rinsing with the
solution [25,37,42]. In the latter instance, oral rinsing
was performed twice daily in the morning and in the
afternoon, either for 1 or 2 min.

Techniques used in in situ microbiome
analyses: microbiological techniques

Various microbiological techniques have been
employed over the years to analyze the growth of in
situ plaque biofilms, and the salient data are tabulated
in Tables 2 and 3.

The oldest, the standard, and the most widely used
method to analyze biofilm growth is to determine the
biofilm cell viability and quantifying the bacterial
growth in terms of colony-forming units (CFUs) on
culture plates using either differential or universal
media. For instance, Jung et al. [24] and Giertsen
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et al. [19] used selective culture media and CFU
counts with the help of a stereomicroscope to evalu-
ate biofilm growth.

Wake et al. [32] determined that the viable cell
counts of biofilm cultures under aerobic conditions
increased rapidly during the first 12 h and increased
gradually thereafter. After a significant cell growth
increment between 48 and 72 h, the population of
viable cells plateaued. However, such culture-based
methods have several drawbacks as it is estimated
that a third of oral microbiota is unculturable
[3,4,18]. Moreover, it is unclear which proportion of
the biofilm microbiota is viable. With the advances in
microbe identification and visualization and imaging
systems recent workers have utilized the following
advanced techniques for studying AGOB [43]:

a. Biofilm growth and viability testing with live/
dead stain and Confocal Laser Scanning
Microscopy

Confocal Laser Scanning Microscopy (CLSM) has
been widely used over the last two decades or so to
evaluate AGOB. CLSM provides a hitherto unknown
means of studying biofilm viability and structural
features, and in particular, the spatial orientation of
the various layers of the biofilm. Additionally, as
membrane integrity is a surrogate marker of bacterial
cell viability, this feature is utilized to differentiate
viable from nonviable cells in AGOB. The method,
called live/dead stain, uses red-fluorescent, mem-
brane-impermeable, nucleic acid stain – propidium
iodide (PI), and hence can penetrate only dead cells
with damaged cytoplasmic membranes, whereas the
counterstain, green-fluorescing SYTO 9 can penetrate
viable cells with intact, but also non-viable bacteria
with damaged cell membranes. Thus, viable cells are
stained by SYTO 9 which fluoresces green, while the
nonviable cells are stained with propidium iodide
which fluoresces red [21,25,29,33,37].

CLSM has also been widely used to observe bio-
films in three dimensions (3D) in either static or
dynamic growth milieus. These high-quality, time
lapse images of biofilm can then be used for systema-
tic collection of data for digital image analysis, and
subsequent evaluation of biofilm growth and physiol-
ogy [5,13,29,30,35,40].

b. FISH and CLASI-FISH
While genome-sequencing methods aim to catalog
the resident microbe constituents of AGOB, they
cannot reveal the bacterial community architecture,
and the spatial arrangement of the constituents. It has
been shown that the use of a combination of different
microbiological visualization techniques is the only
means to achieve a realistic representative of spatial
distribution of in situ biofilms. In order to examine
such spatial organization of the microbial

constituents in a biofilm, and their relationships
with the neighboring microbiota within this ecosys-
tem, a technique known as fluorescence in situ hybri-
dization (FISH) has been employed in several studies
[22,24]. Many have analyzed such relationships and
also fluxes in specific members of microbial popula-
tions over time [14,22–24,30,35]. Dige et al. in two of
their studies [14,35], applied 16S rRNA-targeted oli-
gonucleotide probes to identify streptococci and
other bacteria, while Al-Ahmad et al. [22] used multi-
plex FISH to identify simultaneously the dynamics of
four important bacterial constituents in the oral bio-
film. They concluded that FISH was an appropriate
method for quantifying initial biofilm formation in
situ, and the proportion of streptococci increases
during the first 12 h of bacterial adherence [22].
Dige et al. [35] collected the biofilm after 6, 12, 24
and 48 h to study initial formation of biofilm by
applying 16S rRNA-targeted oligonucleotide probes
for identification of bacteria. Between 24 and 48 h,
the predominant colonizers were streptococci.
During the 6 to 12-h period the biofilm growth
manifested as small chains of streptococci, which on
further incubation developed into simple, mono-
layers. However, other non-streptococcal species
including Actinomyces naeslundii, Veillonella spp.
and Fusobacterium nucleatum were also detected at
the early stages of biofilm formation in some studies.
Klug et al. [30] employed FISH technique to obtain
detailed information on cell viability and to confirm
the biofilm composition evaluated by pyrosequencing
techniques.

FISH technology, however, has limitations as only
three to four types of organisms can be identified. As
this is a woeful inadequadequacy for the study of
plaque biofilm with a multitude microbiota, a rela-
tively new technique called CLASI–FISH has been
developed [44]. CLASI–FISH technique combines
combinatorial labeling and spectral imaging (CLASI)
with fluorescence in situ hybridization (FISH). In this
technique, each bacterial genus can be labeled with
two fluorophores, which allow many color combina-
tions [45,46]. Hence, CLASI-FISH technology awaits
exploitation by future workers evaluating the ultra-
structure of AGOB.

c. Scanning Electron Microscopy (SEM) and
Transmission Electron Microscope (TEM)

Several workers have employed SEM/TEM to analyze
adherence and growth of AGOB [24,32,33]. Wake et
al. [32] observed the presence of coccal forms after 8
h, and filamentous bacteria after 12 h while Xue et al.
[33] recently analyzed the structures of AGOB in
high caries and non-caries groups using SEM and
found that they were similar. Tawakoli et al. [31]
confirmed the ability of fluorescence-based live/dead
staining in detecting viable/non-viable cells using
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fluorescence microscopic visualization, as well as
TEM. They concluded that the tested live/dead stains
can be used for evaluation of the early phase of
AGOB and adoption of other methods, such as
TEM, complements well the fluorescence imaging.

d. Polymerase Chain Reaction (PCR)
Only two studies in this review used quantitative real-
time PCR (qPCR) technology to analyze AGOB at
different time points. Wake et al. [32] used real-time
PCR to determine the quantity of bacteria present at
0, 12, 24, 36, 48, 60, 72, 84 and 96 h. They found that
the quantity of bacteria increased significantly from
1 hour up to 72 h and then plateaued thereafter. They
also reported a divergence between the viable bacter-
ial cell counts (under aerobic or anaerobic condi-
tions) with the total number of bacteria detected by
real-time PCR in the AGOB confirming the observa-
tions, reported above [31]. Takeshita et al. [27] also
used real-time PCR to determine total bacteria in
AGOB and noted quantitative increase in bacterial
biomass of AGOB over time, reaching a plateau
population on day 4.

e. Next-Generation Sequencing
Recent advances in molecular microbiological techni-
ques have paved the way to analyze the human oral
microbiome in great detail, and Next-Generation
Sequencing (NGS) platforms have played a major
role in this context through identification of various
hitherto unknown phylotypes of unculturable bac-
teria. Many NGS platforms have been successfully
used for the 16S rRNA-based metagenomic analysis
of the oral microbiome. Older NGS methods, like
pyrosequencing (Roche, 454) is based on the detec-
tion of pyrophosphate released during DNA synthesis
[47]. Newer NGS methods are based on the detection
of fluorescently labeled nucleotides during sequen-
cing by synthesis in Illumina platforms (such as
MiSeq and HiSeq) [47] or the detection of pH change
onto a semiconductor chip to identify the sequenced
nucleotides in an Ion Torrent platform [48]. These
methods were used to perform taxonomic profiling
by 16S rRNA amplicon sequencing of different
hypervariable regions of bacterial genomes to identify
different phylotypes [49,50].

Six studies quoted in this review analysed the
composition of AGOB utilising NGS methods
[26,27,30,32,34,38]. The basic findings from these stu-
dies were similar to data derived from conventional
culture methods, as all observed increasing and com-
plex diversity of the bacterial population over time.
Wake et al. [32], for instance, using an NGS Illumina
platform demonstrated that the genera Streptococcus
and Neisseria were predominant in the early phase of
biofilm formation on hydroxyapatite disks, with the
emergence of Gram-negative anaerobic bacteria such

as Fusobacterium, Prevotella and Porphyromonas, after
48 h. The phylum Firmicutes was the pioneer biofilm
colonizers (primary colonizers) and Fusobacteria and
Bacteroidetes increased thereafter up to 48 h [30,32].
A similar observation was made by Takeshita et al. [27]
who reported that the deposition of the bacteria on a
hydroxyapatite disk was time-dependent. At early
stages of the biofilm (until day 4), facultative anaerobic
bacteria such as Streptococcus, Neisseria, Abiotrophia,
Gemella, and Rothia were dominant, whereas obligate
anaerobes, such as Porphyromonas, Fusobacterium, and
Prevotella, and facultative anaerobic Capnocytophaga
were dominant after 4 days of biofilm maturation.

Both Klug et al. [30] and Tawakoli et al. [38] found
that the composition of 48-h biofilm sample was
predominantly composed of Streptococcus and
Veillonella and a limited number of other genera,
while Tomas et al. [34] demonstrated that the most
abundant genera in biofilm samples were
Streptococcus, Fusobacterium, Veillonella, Neisseria,
Gemella, Prevotella, Alloprevotella, Porphyromonas,
Aggregatibacter, and Leptotrichia.

It is of practical and clinical interest to note that
biofilms developing on an artificial substrate such
as hydroxyapatite differ from those on enamel sur-
faces. For instance, Streptococcus and Fusobacterium
were the most abundant genera on the artificial
substrate hydroxyapatite (56.95%-23.62% and
65.92%-13.06%, respectively), while on enamel sur-
faces Streptococcus (45.69%-19.72%), Fusobacterium
(56.91–6.81%), Veillonella (27.72–2.38%) and
Neisseria (12.12%-3.37%) were the most abundant
[34]. A puzzling feature of these NGS studies is the
very high variations in operational taxonomic units
(OTUs) in the oral biofilms over time between
individuals. For instance, Langfeldt et al. [26]
noted that OTUs ranged from 7 to 130 per sample.
This could be a real difference in biofilm sample or
apparent variation due to poor standardization of
the NGS technology. It is well known that the out-
put of NGS studies is highly technique sensitive
depending on the quality of the primers used as
well as the DNA purity [48,51].

Discussion

Dental plaque biofilms are the prime movers of the
most common oral pathologies such as dental caries
and periodontal disease [18,52,53]. It is therefore,
critically important to have a firm understanding of
biofilm biology, and the first step in this direction is
to study the colonization profiles and the architecture
of this complex community of organisms in its nat-
ural habitat in situ. Hence, modeling the in situ oral
biofilm development still remains a cornerstone,
though a yet elusive goal, in oral microbiome
research. Such models have played an important
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role, particularly in cardiology, from testing the
effects of new caries prevention methods, to develop-
ing new caries-preventing products.

As seen in this review the design of the oral
biofilm models varies from simple to sophisticated
according to the purpose of the investigation. Over
the years, a number of studies have yielded varied
results using these complex microbial culture mod-
els that yield biofilms which closely mimic natural
dental plaque [54,55]. As mentioned, there are pros
and cons of both the in vitro and in vivo grown
plaque biofilms. In vivo biofilm is grown under
natural oral conditions that are inherently more
complex but yield more realistic data; thus, it
gives better representation of the normal oral
microbiota composed of hundreds of species. On
the other hand, in vitro biofilm can be grown under
standardized and simplified conditions for defined
questions, and the experiments are relatively easy to
conduct as less microbial species are involved. Early
workers preferred the conventional microbial cul-
ture methods in the laboratory because they provide
a controllable and a reliable environment, and
obviating the necessity to obtain ethical clearance,
for human studies. However, such models are a
compromise between the reality of the oral cavity
and the simplicity of the in vitro environment [56].
It is clear that cultivation of bacterial biofilms in an
artificial environment in vitro is unlikely to reflect
the physiological conditions extant in the oral cav-
ity, and may not reproduce the architectural, phy-
siological and constitutional features of the in vivo
biofilms.

The appliances designed to study in situ biofilms
must allow free flow and contact between saliva and
the substrate, to permit natural plaque biofilm devel-
opment, and at the same time protect it from
mechanical disturbances. However, some appliances
appear to fail due to inherent disturbances associated
with the muscular action of the tongue and cheek,
thus yielding inconsistent results. Comfort and aes-
thetics are also very important factors that need to be
considered for effective compliance by the volunteers
wearing the appliance.

As for the location of the appliances reviewed here,
12 were worn in the upper jaw [5,13,14,21–25,30–33],
while nine appliances were placed in the lower jaw
[19,27,29,35–40], and another three were placed both
in the upper and lower jaw [20,26,34]. According to
some authors, the site of appliance placement either in
the upper or lower jaw, may not be critical. Auschill et
al. [20] demonstrated similar biofilm thickness at dif-
ferent locations in the buccal region of the upper and
lower jaws. However, from the viewpoint of comfort,
subjects may prefer wearing the appliance in the upper
jaw since the lower jaw is highly mobile and the tongue
movements are likely to dislodge the appliance.

The nature of substrates used to collect the bio-
film would certainly influence biofilm development.
A variety of substrates have been employed in stu-
dies ranging from biological based substrates that
include human or bovine enamel and dentine, to
non-biological synthetic substrates such as glass,
hydroxyapatite and polystyrene. Clearly, acrylic
(polymethyl methacrylate) appears to be the popular
material of choice used in construction of these
devices, as 12 out of 24 studies described in the
current review [14,20–22,27,30,32,35,36] used the
latter substrate.

Enamel, when used as a substrate, could be either of
human or bovine origin, and is preferably employed for
evaluating cariogenic biofilm development [57].
However, in research related to endodontic therapy,
both human [58] and xenogenic [59] dentine were
popular substrates. Nevertheless, many workers have
used synthetic substrates such as polymethyl methacry-
late, glass and hydroxyapatite as substrates as these
provide standardized and uniform surface features
compared with enamel and dentine. Also, it is well
known that oral bacteria adhere well to glass surfaces
and develop profuse biofilms [60]. Many workers have
also used hydroxyapatite in the form of either beads
[61,62] or discs [63,64] for AGOB development.
Hydroxyapatite represents the chemical and structural
architecture mimicking dental tissues, thereby avoiding
the need to use human enamel/dentine. Yet, other
workers have used polystyrene as their substrate sur-
face for studying biofilm formation. Loo et al. used
polystyrene substrate to study Streptococcus gordonii
biofilm and particularly to identify the genes that
code for biofilm phenotypes [65]. Others applied 96-
well polystyrene plates to investigate the effects of
antibiotics on biofilm formation [66].

Synthetic substrates such as glass, polystyrene and
hydroxyapatite have additional advantages as they can
be shaped according to the required design and are
easy to sterilize. Furthermore, biological substrate such
as bovine and human enamel and dentine may be more
difficult to standardize in terms of their size, shape and
profile, and although they could be sterilized, may still
carry the risk of transmitting bovine zoonotic infection
or other viral-borne threats [39,67].

The design and shape of the substrates used in the
evaluated studies vary from flat discs, cylindrical or
cuboidal shapes, but these configurations may not be
significant as long as their surface texture is standardized.
However, their sizes will certainly influence the amount
of plaque collected since a larger sized/diameter substrate
will permit a bigger volume of biofilm growth.
Irrespective of the design, the substrates could be
attached to the appliance by variousmeans such as sticky
or red wax [20–22,27,35], by using impression material
[23,24,31], or by sticking to the gingiva with surgical
sutures [26].
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Conclusion

The most critical aspect of AGOB in clinical terms, is to
identify the growth of biofilm and its constituents, and
eventually to evaluate the effect of various anti-biofilm
agents. Advances in CLSM and CLASI-FISH technology
now permit three-dimensionally reconstructed images
of the biofilm, allowing visualization of its depth and
width [30,34,37,40], while NGS studies of AGOB pro-
vide new clues to the unculturable organisms that lurk
in these consortia. It is hoped that new biofilm manage-
ment therapies can be evaluated using the AGOB aided
with the new combinatorial technologies. For instance,
visualization of the oral biofilm with CLSM or CLASI-
FISH coupled with quantitative and qualitative assess-
ment via newer third-generation sequencing may help
elucidate the true nature of these complex microbial
consortia that have eluded our grasp thus far.

Finally, given the plethora of methods, substrates,
and subjects/cohorts used by different workers
reviewed here it is extremely difficult to state whether
one method is superior to another, and hence no uni-
formly superior method of collecting AGOB has
emerged. Nevertheless, our review of the methodology,
should assist the novice in selecting the best method for
his/her own experimental needs for AGOB collection.
However, in terms of the analysis of the AGOB micro-
biome/microbiota, it can be safely concluded that NGS
and the rapidly emerging, high fidelity, so-called `third-
generation` sequencing techniques will be the future.
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