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Abstract

Purpose

High resolution flat-panel computed tomography arthrography (FPCT-A) and magnetic res-

onance arthrography (MR-A) are well suited to evaluate osteochondral lesions. The current

study compares the performance of FPCT-A versus MR-A in an experimental setting.

Methods

Fourteen cadaveric ankles were prepared with artificial osteochondral defects of various

sizes in four separate talar locations. After intra-articular contrast injection, FPCT-A and 3-T

MR-A were acquired. Each defect was then filled with synthetic pallets. The resulting cast

was used as reference. Two independent radiologists measured the dimensions of all

defects with FPCT-A and MR-A. Intra-class correlation coefficients (ICC) were calculated.

Data were compared using t-tests and Bland-Altman plots.

Results

The correlation for FPCT-A and cast was higher compared to MR-A and cast (ICC 0.876 vs.

0.799 for surface [length x width]; ICC 0.887 vs. 0.866 for depth, p<0.001). Mean differences

between FPCT-A and cast measurements were -1.1 mm for length (p<0.001), -0.7 mm for

width (p<0.001) and -0.4 mm for depth (p = 0.023). By MR-A, there were no significant differ-

ences for length and width compared to cast (p>0.05). Depth measurements were signifi-

cantly smaller by MR-A (mean difference -1.1 mm, p<0.001). There was no bias between

the different modalities.
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Conclusions

Ex vivo FPCT-A and MR-A both deliver high diagnostic accuracy for the evaluation of osteo-

chondral defects. FPCT-A was slightly more accurate than MR-A, which was most signifi-

cant when measuring lesion depth.

Introduction

At the ankle, osteochondral lesions are often traumatic and painful [1, 2]. The lesions typically

involve the articular cartilage and subchondral bone, mostly the talus. Surgery is required in

many cases. The optimal form of surgical treatment depends on defect characteristics, such as

size and location [3–7]. Further, defect size correlates with patient outcome [8]. Therefore, it is

imperative to be able to precisely determine the extent of any osteochondral defects at the

ankle [9].

Routine magnetic resonance imaging (MRI) without intravenous or intra-articular con-

trast agent is an option to evaluate the cartilage at the ankle [10–12]. Standard MRI, how-

ever, may be limited and overestimate the size of a lesion due to bone edema [13]. Direct

magnetic resonance arthrography (MR-A) could be considered for further work up. MR-A

better detects chondral defects, especially in patients with lesions of the upper ankle carti-

lage [14].

Improved dose reduction management and technology in multidetector computed tomog-

raphy (MDCT) have enabled MDCT to also detect thin cartilaginous lesions at the ankle [15].

Recently, flat panel computed tomography (FPCT) was established as an imaging modality

with superior spatial resolution including submillimeter isotropic voxel sizes compared to

MDCT [16, 17]. The radiation dose is similar for FPCT and MDCT [17]. FPCT further pres-

ents reduced metal and beam-hardening artifacts [18]. Finally, FPCT is widely available as a

part of most angiography suites. There, fluoroscopic guided contrast injection and cross-sec-

tional arthrography can be performed in a single session without need for patient transfer

[19, 20].

Despite the plethora of various imaging techniques, a definitive diagnosis of an osteochon-

dral defect can be challenging [18, 21]. Controversy exists regarding the imaging modality of

choice [2, 22–24]. Thus, the current study investigates and compares the diagnostic perfor-

mance of high resolution FPCT-A versus MR-A in an experimental setup.

Materials and methods

Cadaver preparation

The study was waived by the local Institutional Review Board (Medical School Hannover).

Fourteen fresh-frozen cadaveric feet with lower legs were recruited for the study (Science

Care). Any prior surgical treatment resulted in exclusion. The upper ankle joint was opened by

a mini-arthrotomy and inspected for already existing osteochondral lesions. Only cadavers

without any defects were used. Artificial defects of different sizes and depths were then created

with different surgical curettes. The lesions were established in four predefined locations at the

talus: anteromedial, anterolateral, posteromedial and posterolateral. Collateral soft tissue dam-

age was avoided during the procedure. Then, the joint capsule and skin were closed with surgi-

cal sutures.
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Contrast application and image acquisition

The cadavers were positioned with the lateral malleolus facing upwards. The injection was per-

formed under fluoroscopic guidance using a 20G needle. The contrast consisted of a 1:1 mix-

ture of an iodinated agent (Iomeprol 300 mg/ml, Imeron 300, Bracco Imaging) and a pre-

diluted gadolinium-based solution (Gadolinium-DTPA 2 mmol/l, Dotarem 0,5 mmol/ml,

Guerbet). 5–10 ml contrast mixture was injected into each joint. Then, the ankle was passively

moved to ensure homogeneous distribution of the contrast agent within the joint.

Following the injection, FPCT-A was acquired with the same angiographic system (ARTIS

pheno AXH 1964, Siemens Healthineers). Tube voltage was 70 kV, tube current was 400–410

mA. The average dose-area product was 685 μGym2. Images were reconstructed using the

smallest possible volume-of-interest per ankle and the “normal” bone reconstruction kernel.

The resulting voxel size was in the range of 0.11–0.12 mm.

After transfer to the MRI suite, MR images were acquired using a 3T MR scanner (MAG-

NETOM Skyra, Siemens Healthineers) and a dedicated 20-channel phase array head coil. As

imaging protocol, the protocol already established for clinical application was used comprised

of the following: T1-weighted (w) Turbo Spin Echo (TSE) sequences with spectral fat suppres-

sion (FS) in three planes; sagittal T1w TSE sequence without FS; a proton density weighted

(PDw) coronal sequence; an isotropic 3D PD space sequence. The detailed scan parameters

are summarized in Table 1.

Preparation of casting specimens

After arthrography, the cadaveric ankles were disarticulated and the talar surface was carefully

prepared. In order to obtain a reference size for each lesion, the defects were filled with syn-

thetic pallets (Friendly plastic, AMACO). This created a reference cast for each defect. The

casts were labeled according to the defect location and a high-resolution FPCT-scan was

acquired for measurements of the casts.

Table 1. MR scan parameters.

MR-A T1w TSE T1w TSE T1w TSE PDw TSE T1w TSE 3DTSE SPACE

Parameters FS FS FS FS FS

Orientation transverse sagittal sagittal coronal coronal sagittal

3D block

Repetition time (ms) 601 956 1010 2660 721 1000

Echo time (ms) 13 13 13 33 13 43

Receiver bandwidth 257 257 257 200 257 460

(Hertz/pixel)

Flip angle (degree) 150 150 150 150 150 variable

Field-of-view (mm2) 130 x 110 130 x 130 130 x 130 130 x 102 130 x 130 180 x 170

Matrix 512 x 367 512 x 512 512 x 512 512 x 512 512 x 512 320 x 285

Slice thickness / gap (mm) 2.0/0 2.0/0 2.0/0 2.0/0 2.0/0 0.6/0

Pixel dimensions (mm2) 0.3 x 0.3 0.3 x 0.3 0.3 x 0.3 0.3 x 0.3 0.3 x 0.3 0.6 x 0.6

Number of Slices 30 32 30 40 33 112

Phase encoding direction anterior to posterior head to foot head to foot right to left right to left head to foot

Acquisition time (min:sec) 4:02 4:22 4:40 3:08 3:45 7:26

Magnetic Resonance Arthrography (MR-A) scanning parameters

TSE = turbo spin echo; FS = fat saturated; PDw = proton density weighted; space = sampling perfection with application optimized contrasts using different flip angle

evolution

https://doi.org/10.1371/journal.pone.0255616.t001
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Image assessment and measurements

Two independent radiologists with more than 5 years in practice evaluated all FPCT-A and

MR-A images. The radiologists were blinded to the identifying information of the images.

Images were evaluated on a client-server based picture archiving and communication system

(PACS) workstation (Visage 7.1, Visage Imaging). The raters used the 3D functionality of the

software including multiplanar reformations, thin slab averaging and fusion/overlay mode.

Regarding the MR-images, the radiologists evaluated defect configuration on all MR sequences

and used the 3D SPACE sequence in the multiplanar mode to measure the dimensions of the

defects. Defect depth was measured as illustrated in Fig 1A. Defect length was defined as the

largest extent at the cartilage level, defect width was measured at the largest extent of a perpen-

dicular line to the defect’s length (Fig 1A). Defect length and width were multiplied and

defined as the defect’s surface area (mm2) and used for calculation of correlation coefficients

and Bland-Altman plots. Measurement of the casting specimens included visualization in mul-

tiplane reconstruction and 3D mode with a clear depiction of defect shape. Then, the cast’s

length, width and depth were identified and measured in three planes. The results were calcu-

lated similarly to the osteochondral defect measurements (Fig 1B).

Fig 1. Osteochondral defect measurement. Example of measurements in flat panel computed tomography arthrography (FPCT-A) with a multiplane reconstruction of

the same defect in three planes (A) and the corresponding cast specimen (B) in two planes and a 3D rendering mode.

https://doi.org/10.1371/journal.pone.0255616.g001
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Statistical analysis

SPSS Statistics 27.0.0.0 (IBM Corp) was used for the statistical analysis. Tests on normal distri-

bution (Kolmogorov-Smirnow) for both readers and all FPCT-, MR-A and cast specimen

measurements were performed. The defect measurements of reader 1 were compared to reader

2 using a t-test. The inter-reader correlation was calculated using intra-class correlation coeffi-

cient (ICC) with associated p value. The means of corresponding measurements of the two

radiologists were calculated and used for comparison/correlation of FPCT-A, MR-A and cast.

Reliability between both imaging modalities and casting specimens were calculated using

ICCs with a 95% confidence interval in a two-way, mixed, consistency model [25]. The ICC

values were interpreted as follows: values < 0.4 reflected poor correlation, 0.4–0.59 intermedi-

ate, 0.60–0.74 good, and 0.75–1.00 very good correlation [26]. Test on normal distribution

(Kolmogorov-Smirnow) showed normal distribution for all FPCT-, MR-A and cast specimen

measurements. A t-test for paired samples was used for comparison of the measurements of

FPCT-A vs. cast, MR-A vs. cast and FPCT-A vs. MR-A. A p-value < 0.05 was considered sig-

nificant. Bland-Altman plots were calculated. The upper and lower limit of agreement range

was calculated according to: mean difference +/- standard deviation x 1.96.

Results

All four artificially created defects in each ankle joint were detected by both the FPCT- and

MR-images. The defect measurements of reader 1 compared to reader 2 showed no significant

difference (p>0.05). Indeed, the inter-reader correlation between reader 1 and 2 showed “very

good” agreement (ICC>0.9, 95% CI 0.984–0.989, p<0.001). The mean values of correspond-

ing measurements of the two radiologists are presented in Tables 2 and 3.

T-test results

The defects were measured significantly smaller compared to the cast using FPCT-A: mean

differences were -1.1 mm for length (p<0.001), -0.7 mm for width (p<0.001) and -0.4 mm for

depth (p = 0.023). By MR-A, there was no significant difference for length and width com-

pared to the cast, whereas depth was measured significantly smaller in MR-A (mean difference

-1.1 mm, p<0.001). Overall, defect width and length were measured significantly smaller by

FPCT-A compared to MR-A (p<0.001), whereas depth was measured +0.7 mm larger in

FPCT-A (p<0.001). The detailed results are given in Table 4.

Correlation results

All calculated ICCs between FPCT-A, MR-A and cast showed very good correlation (ICC

>0.75, p<0.001). The measurements of the defect surface (length x width) showed a higher

correlation for FPCT-A and cast (ICC 0.876, p<0.001) compared to MR-A and cast (ICC

0.799, p<0.001). Similarly, depth measurements correlated slightly better between FPCT-A

and cast (0.887, p<0.001) compared to MR-A and cast (0.866, p<0.001). We observed a high

correlation of the depth measurements between FPCT-A and MR-A (0.957, p<0.001). The

detailed results are given in Table 5.

Bland-Altman analysis

The Bland-Altman plots (Fig 2) demonstrate the mean differences of the compared imaging

modalities and cast with almost all values within the limit of agreement range. There was no

bias between FPCT-A, MR-A and cast.
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Image differences of spatial resolution between FPCT-A and MR-A are demonstrated in

Fig 3 with a single defect reconstructed in two corresponding planes in MR-A (A) and

FPCT-A (B) respectively. Fig 4 shows another single defect in the PD TSE FS (A) and T1 TSE

(C) MR-sequences with the corresponding FPCT-A planes (B and D). Fig 5 represents a fusion

image of an osteochondral talar defect in FPCT-A with an overlay FPCT-image of the corre-

sponding cast specimen.

Discussion

The main results of the current experimental study are: 1) The diagnostic capabilities are simi-

larly excellent with both high resolution flat-panel computed tomography arthrography

(FPCT-A) and magnetic resonance arthrography (MR-A). 100% of the lesions were detected

with either technique. 2) Although there is very good cross-correlation between both tech-

niques, FPCT-A was slightly more accurate than MR-A, which was most significant when

Table 2. Defect measurements cadavers 1–7.

Cadaver No. Talar defect location Surface in mm2 Depth in mm

mean of both readers (SD) mean of both readers (SD)

FPCT-A MR-A Cast FPCT-A MR-A Cast

1 AM 28.8 (0.0) 41.4 (7.8) 32.9 (3.1) 4.9 (0.1) 4.8 (0.0) 4.6 (0.1)

AL 47.2 (1.4) 162.5 (46.32) 34.4 (11.9) 3.6 (0.0) 3.5 (0.0) 2.1 (0.1)

PM 45.7 (1.5) 50.7 (1.6) 52.0 (7.9) 14.3 (0.3) 14.0 (0.0) 9.6 (0.0)

PL 38.9 (0.0) 41.0 (2.4) 55.4 (3.3) 5.3 (0.0) 4.0 (0.0) 3.9 (0.1)

2 AM 76.8 (0.0) 93.3 (0.4) 75.8 (21.4) 6.4 (0.0) 5.4 (0.1) 8.2 (0.1)

AL 37.5 (0.0) 43.4 (0.9) 36.6 (9.5) 5.7 (0.0) 4.7 (0.1) 5.8 (0.1)

PM 42.4 (0.0) 44.8 (0.4) 42.3 (6.4) 6.8 (0.0) 4.9 (0.0) 5.0 (1.8)

PL 65.1 (0.0) 68.9 (2.3) 65.98(7.67) 6.6 (0.0) 4.8 (0.1) 6.9 (2.7)

3 AM 73.9 (0.0) 92.4 (0.9) 70.7 (15.8) 4.0 (0.0) 4.0 (0.1) 4.9 (1.1)

AL 42.6 (0.0) 51.2 (4.0) 77.04 (0.76) 1.6 (0.0) 1.5 (0.0) 3.2 (0.8)

PM 65.5 (0.0) 69.7 (1.2) 73.6 (11.2) 5.5 (0.0) 4.0 (0.1) 5.3 (0.8)

PL 41.6 (0.0) 41.1 (3.9) 48.8 (13.7) 2.7 (0.0) 2.5 (0.0) 2.7 (0.4)

4 AM 34.8 (0.0) 48.6 (0.5) 92.3 (44.7) 1.4 (0.1) 1.3 (0.1) 2.0 (1.1)

AL 52.9 (0.5) 66.0 (1.7) 76.0 (6.0) 4.2 (0.1) 2.6 (0.1) 4.2 (0.6)

PM 72.7 (1.4) 78.2 (1.3) 90.0 (7.0) 2.4 (0.3) 2.1 (0.1) 6.4 (0.4)

PL 36.3 (11.0) 51.6 (0.0) 55.8 (9.0) 4.0 (0.9) 2.2 (0.0) 4.5 (0.5)

5 AM 97.1 (0.5) 106.5 (2.9) 138.8 (9.4) 6.1 (0.0) 3.2 (0.1) 4.7 (0.4)

AL 38.7 (3.8) 48.2 (0.4) 75.5 (9.2) 4.5 (0.1) 3.8 (0.3) 4.2 (0.6)

PM 93.5 (0.7) 98.2 (0.7) 89.3 (6.3) 5.4 (0.1) 5.4 (0.1) 6.8 (0.8)

PL 36.0 (0.0) 64.3 (4.7) 63.8 (2.0) 5.1 (0.1) 3.3 (0.1) 4.2 (0.6)

6 AM 92.9 (8.5) 122.3 (0.7) 114.2 (24.2) 5.9 (0.2) 5.4 (0.1) 5.6 (0.1)

AL 61.8 (0.5) 87.7 (0.7) 94.9 (13.7) 1.6 (0.0) 1.6 (0.1) 2.9 (0.4)

PM 79.6 (1.97) 139.1 (14.0) 92.4 (26.5) 5.0 (0.1) 4.8 (0.0) 6.2 (0.1)

PL 42.6 (2.3) 57.5 (0.1) 62.8 (2.6) 4.9 (0.1) 3.8 (0.1) 7.2 (0.1)

7 AM 112.7 (2.4) 119.5 (0.0) 89.6 (2.2) 5.7 (0.1) 4.7 (0.1) 6.6 (0.0)

AL 35.6 (0.1) 66.8 (0.6) 74.6 (0.0) 1.2 (0.1) 1.1 (0.1) 2.0 (0.5)

PM 34.8 (1.7) 66.0 (0.7) 44.7 (4.7) 1.3 (0.1) 2.4 (0.1) 2.6 (0.0)

PL 74.1 (0.8) 119.9 (1.5) 71.9 (10.9) 3.2 (0.1) 4.4 (0.2) 4.1 (0.2)

Mean values of both readers for each localization in cadavers1-7 for surface and depth measurements in FPCT-A, MR-A and cast respectively. Standard deviation (SD)

in parantheses. AM = anteromedial, AL = anterolateral, PM = posteromedial and PL = posterolateral.

https://doi.org/10.1371/journal.pone.0255616.t002
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Table 3. Defect measurements cadavers 8–14.

Cadaver No. Talar defect location Surface in mm2 Depth in mm

mean of both readers (SD) mean of both readers (SD)

FPCT-A MR-A Cast FPCT-A MR-A Cast

8 AM 83.0 (0.0) 97.1 (2.7) 84.2 (17.5) 1.5 (0.0) 1.6 (0.1) 2.9 (0.3)

AL 81.8 (1.1) 119.8 (3.1) 104.4 (6.6) 3.4 (0.1) 3.1 (0.1) 4.6 (0.4)

PM 77.9 (0.2) 93.2 (8.8) 100.5 (0.7) 4.5 (0.0) 3.9 (0.2) 5.4 (0.3)

PL 36.5 (0.0) 36.3 (0.4) 61.0 (2.7) 1.5 (0.1) 1.4 (0.0) 2.2 (0.2)

9 AM 89.9 (0.0) 76.3 (3.6) 87.7 (12.6) 2.9 (0.0) 1.8 (0.0) 3.8 (0.3)

AL 83.7 (0.0) 109.7 (34.6) 97.6 (8.8) 3.4 (0.0) 2.3 (0.5) 3.3 (0.0)

PM 97.5 (0.0) 56.0 (3.5) 94.4 (24.0) 5.1 (0.0) 2.2 (0.3) 5.7 (0.8)

PL 75.6 (0.0) 85.5 (3.5) 108.5 (0.2) 4.2 (0.0) 2.5 (0.0) 5.0 (0.7)

10 AM 77.8 (2.5) 120.1 (20.3) 105.4 (14.7) 4.5 (0.1) 3.3 (0.1) 4.3 (0.4)

AL 115.5 (6.2) 100.4 (4.94) 162.7 (3.8) 5.4 (0.1) 4.9 (0.0) 6.3 (0.5)

PM 84.2 (0.7) 93.1 (1.4) 82.3 (6.6) 7.8 (0.2) 6.7 (0.4) 7.4 (0.5)

PL 82.5 (9.2) 81.4 (5.9) 95.9 (16.9) 2.0 (0.0) 1.8 (0.1) 2.6 (0.1)

11 AM 163.1 (17.5) 275.5 (0.0) 200.2 (24.5) 6.3 (0.1) 5.4 (0.0) 6.2 (0.0)

AL 120.2 (2.6) 104.2 (36.4) 94.9 (12.5) 1.1 (0.1) 1.4 (0.2) 2.5 (0.4)

PM 197.6 (3.7) 96.0 (8.5) 127.3 (13.6) 6.4 (0.1) 6.3 (0.1) 7.5 (0.1)

PL 83.2 (0.1) 93.5 (2.0) 107.3 (5.6) 2.7 (0.2) 2.3 (0.3) 4.5 (0.5)

12 AM 110.3 (1.8) 175.2 (2.7) 156.3 (54.2) 4.8 (0.1) 3.3 (0.1) 4.0 (0.7)

AL 85.64 (1.3) 86.5 (4.4) 105.6 (16.2) 4.1 (0.1) 4.0 (0.1) 5.5 (0.0)

PM 77.0 (1.4) 71.8 (2.7) 103.9 (2.8) 1.6 (0.0) 1.7 (0.1) 2.7 (0.1)

PL 43.5 (0.0) 67.6 (0.7) 74.6 (10.3) 4.7 (0.1) 4.8 (0.1) 4.4 (0.7)

13 AM 99.4 (0.0) 129.5 (2.0) 115.0 (33.6) 3.2 (0.2) 3.4 (0.1) 3.3 (0.1)

AL 50.1 (1.6) 42.0 (12.8) 109.7 (12.4) 3.7 (0.1) 2.7 (0.1) 3.7 (0.1)

PM 58.0 (0.5) 71.8 (1.8) 60.9 (5.7) 4.3 (0.4) 3.9 (0.1) 5.5 (0.6)

PL 52.3 (4.6) 43.4 (0.1) 65.1 (4.5) 4.4 (0.1) 4.3 (0.1) 4.0 (1.5)

14 AM 82.7 (0.0) 88.7 (0.2) 83.5 (12.9) 4.3 (0.0) 2.6 (0.1) 4.1 (0.8)

AL 111.0 (0.0) 131.8 (3.2) 152.2 (14.6) 5.6 (0.0) 3.7 (0.3) 6.1 (1.6)

PM 91.0 (0.0) 103.3 (5.0) 103.0 (5.1) 3.3 (0.0) 2.1 (0.1) 3.7 (0.6)

PL 65.3 (0.0) 71.1 (11.2) 70.5 (0.4) 5.3 (0.0) 4.7 (0.2) 5.3 (0.4)

Mean values of both readers for each localization in cadavers 8–14 for surface and depth measurements in FPCT-a, MR-A and cast respectively. Standard deviation (SD)

in parantheses. AM = anteromedial, AL = anterolateral, PM = posteromedial and PL = posterolateral.

https://doi.org/10.1371/journal.pone.0255616.t003

Table 4. T-test results.

Defect size parameter Modalities Mean difference [95% CI] t-value p-value

Length FPCT-A–cast -1.1 [-1.7; -0.5] -3.8 <0.001

(mm) MR-A–cast -0.6 [-1.2; 0.0] -1.9 0.062

FPCT-A–MR-A -0.5 [-1.1; 0.0] -2.0 0.056

Width FPCT-A–cast -0.7 [-1.0; -0.4] -4.3 <0.001

(mm) MR-A–cast 0.2 [0.6; 1.1] 1.1 0.289

FPCT-A–MR-A -0.9 [-1.2; -0.6] -5.7 <0.001

Depth FPCT-A–cast -0.4 [-0.7; -0.1] -2.3 0.023

(mm) MR-A–cast -1.1 [-1.4; -0.7] -6.4 <0.001

FPCT-A–MR-A 0.7 [0.5; 0.9] 6.2 <0.001

Results of the paired t-test with mean difference of defect length, width and depth (in mm) between the flat panel computed tomography arthrography (FPCT-A),

magnetic resonance arthrography (MR-A) and cast specimens. Data are presented with 95% confidence intervals (CI), t-values and p-values.

https://doi.org/10.1371/journal.pone.0255616.t004
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measuring lesion depth. Those results are in line with previous studies proposing FPCT-A

enables accurate evaluation of articular cartilage thickness and detection of cartilage defects

[22–24]. This has even been demonstrated for smaller lesions compared to the defects in our

Table 5. Correlation results.

Defect size parameter Modalities ICC 95% CI p-value

Surface (mm2) FPCT-A vs. cast 0.876 [0.788; 0.927] <0.001

MR-A vs. cast 0.799 [0.656; 0.882] <0.001

FPCT-A vs. MR-A 0.796 [0.652; 0.880] <0.001

Depth FPCT-A vs. cast 0.887 [0.808; 0.934] <0.001

(mm) MR-A vs. cast 0.866 [0.771; 0.921] <0.001

FPCT-A vs. MR-A 0.957 [0.927; 0.975] <0.001

Intra-class correlation coefficients (ICC) for surface (in mm2) and depth (in mm) between flat panel computed tomography arthrography (FPCT-A), magnetic

resonance arthrography (MR-A) and cast specimens. Data are presented with 95% confidence intervals (CI) and p-values

https://doi.org/10.1371/journal.pone.0255616.t005

Fig 2. Bland-Altman plots. Bland-Altman plots for flat panel computed tomography arthrography (FPCT-A),

magnetic resonance arthrography (MR-A) and cast specimens with mean differences of surface (A) and depth (B)

measurements (red line) and ± 1.96�standard deviation (green dotted lines). The x-axis describes the mean of the data

and the y-axis shows the difference of the data.

https://doi.org/10.1371/journal.pone.0255616.g002
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study. Similarly, first in vivo results focusing on the wrist FPCT-A report an advantage over

MR-A in regards to the visualization of the intrinsic ligaments and the cartilage [19].

FPCT-A versus MR-A in the clinical context

For some time, MRI has been considered the standard procedure for the preoperative assess-

ment of cartilage damage and localization to plan surgical access and the surgical type of proce-

dure [27]. Recently, FPCT, a CT scanner model including volumetric imaging with ultra-high

spatial resolution due to digital flat-panel detectors, was introduced [28]. This study suggests

even a slightly superior performance of FPCT-A compared to MR-A regarding a precise osteo-

chondral defect size measurement. We attribute the observed better correlations to FPCT´s

higher spatial resolution of up to 0.11–0.12 mm in contrast to a 0.6 mm voxel size of the isotro-

pic 3D MR sequence, the best possible resolution with the scanner. Thus, when interpreting the

measurement differences, it is important to bear in mind the different resolutions associated

with the different imaging modalities. An additional advantage of FPCT-A is the possibility of a

free image plane adjustment. Although MR-A offers the advantage of completely avoiding any

radiation exposure to the patient, The radiation dose is low for FPCT-A and comparable to a

multi detector CT. Nevertheless, in the clinical setting, this needs consideration.

Technical nuances and discrepancies

The defect length, width and depth were measured smaller in FPCT-A compared to the cast

specimens. These differences were not very pronounced, as neither value did exceed 1.1 mm.

Fig 3. 3D MR- and flat panel CT-arthrography measurements. Multiplane reconstruction of one single defect in the

isotropic 3D space MR-sequence (A) with the corresponding planes in flat panel computed tomography arthrography

(B) with marked depth measurements. The margins of the artificially created defect are clearly defined against the

intra-articular contrast agent and the defect dimensions can be measured.

https://doi.org/10.1371/journal.pone.0255616.g003
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Nonetheless, as the results were significant, we believe the differences are accounted for by

technical limitations of the cast preparation. Especially defect surface measurements could

have been somewhat overestimated for the cast measurements due to the narrow overhanging

lines at the defect margins. Differences in the depth measurements could be additionally

explained also by difficulties with the precise determination of the formal chondral layer,

which is especially challenging at the talar edges. Some variation of the measurements between

the different modalities can possibly be attributed to a range of artifacts caused by intra-articu-

lar air collections. This intra-articular air impaired the MR-A images to a greater extent than

the FPCT-A measurements due to susceptibility artifacts.

An important result was FPCT-A measured lesion depth better (deeper) than MR-A. Vice

versa, MR-A appeared to underestimate defect depth. This result is in line with previous stud-

ies showing a general trend of suboptimal defect size estimation by MR-A [29–31]. Campbell

et al. demonstrated that preoperative knee MRIs underestimated the size of articular cartilage

defects compared to arthroscopic results [30]. In some cases, MRI can even fail to detect osteo-

chondral lesions altogether [32].

Still, there was overall good correlation between FPCT-A and MR-A measurements, as has

been recently published in a recent study by Deng et al., [33]. Both, MRI and CT were reliable

in the assessment of the size of subchondral cysts of talar defects and the MRI classification

was well-correlated with the CT classification [33].

Limitations

As the lesions evaluated in our study are artificial (surgically created), they do not fully

resemble natural posttraumatic osteochondral lesions with chondral fissures, cartilage

Fig 4. Different MR sequences and flat panel CT-arthrography measurements. Proton density weighted (PDw) coronal (A) and

T1w sagittal (C) magnetic resonance arthrography (MR-A) sequences and the correspondingly reconstructed plane in FPCT-A images

(B and D) of the same artificial defect. The marked depth measurements show larger values for the FPCT-A images.

https://doi.org/10.1371/journal.pone.0255616.g004
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de-laminations or subtle subchondral defects. Accordingly, caution is needed when applying

results of this study to the clinical practice.

As there were no ankles without osteochondral defects, there is no negative control group

in this study. The radiologists knew to expect 4 lesions with every specimen. Thus, conclusions

regarding sensitivity and specificity of the modalities are limited. Still, 100% of the lesions

could be detected reliably with either method.

FPCT-A is a relatively new up and coming technique with only few reports discussing both

in vivo and ex vivo defects [10, 34]. The cadaver specimens could be exposed to varying degrees

of tissue de-composition, affecting the microstructure of tendons and cartilage. This could

influence measurements using MR-A. Further, bone marrow edema is non-existent in the

atraumatic cadaveric specimens, which would influence measurements in vivo.

A potential confounder may be the reference standard itself. Although the surface of the

cast was essentially in line with the residual cartilage, the cast height (standard of the lesion

Fig 5. Fusion image of an osteochondral defect and the cast. Fusion mode images of an anteromedial defect in flat

panel computed tomography arthrography (pink background) and the corresponding cast (brighter layer) in two

different planes (A and B). Osteochondral defect and cast sizes can be directly compared. There is a visible overlay due

to a slightly larger cast, explaining the mean differences of the measurements. The cross mark represents a 1 cm scale

for both layers.

https://doi.org/10.1371/journal.pone.0255616.g005
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depth) was measured systematically larger compared to both imaging modalities quantifying

the lesion depth initially. This finding is reflected in the Bland-Altman plots. Nevertheless, this

measurement approach is as close as possible to the real defect and cartilage thickness.

Conclusions

FPCT-A and MR-A both demonstrate excellent diagnostic performance in detecting and

quantifying osteochondral defects in cadaveric ankle joints (ex vivo). FPCT-A appears to quan-

tify defect dimensions slightly better, specifically the defect depth.
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