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Abstract

 

We have used cDNA arrays to investigate gene expression patterns in peripheral blood mono-
nuclear cells from patients with leukemic forms of cutaneous T cell lymphoma, primarily
Sezary syndrome (SS). When expression data for patients with high blood tumor burden
(Sezary cells 

 

�

 

60% of the lymphocytes) and healthy controls are compared by Student’s 

 

t

 

 test,
at P 

 

�

 

 0.01, we find 385 genes to be differentially expressed. Highly overexpressed genes in-
clude Th2 cells–specific transcription factors Gata-3 and Jun B, as well as integrin 

 

�

 

1, pro-
teoglycan 2, the RhoB oncogene, and dual specificity phosphatase 1. Highly underexpressed
genes include 

 

CD26

 

, 

 

Stat-4

 

, and the 

 

IL-1

 

 receptors. Message for plastin-T, not normally ex-
pressed in lymphoid tissue, is detected only in patient samples and may provide a new marker
for diagnosis. Using penalized discriminant analysis, we have identified a panel of eight genes
that can distinguish SS in patients with as few as 5% circulating tumor cells. This suggests that,
even in early disease, Sezary cells produce chemokines and cytokines that induce an expression
profile in the peripheral blood distinctive to SS. Finally, we show that using 10 genes, we can
identify a class of patients who will succumb within six months of sampling regardless of their
tumor burden.

Key words: cDNA microarrays • discriminant analysis • class prediction • prognosis • CTCL

 

Introduction

 

Cutaneous T cell lymphoma (CTCL)

 

*

 

 is the most com-
mon of the T cell lymphomas, and 

 

�

 

1,500–2,000 new
cases are reported in the United States each year. Causative
roles in the development of CTCL have been suggested for
various environmental factors and infectious agents, but the
etiology of the disease remains unknown (1, 2). CTCL is
characterized by the accumulation of malignant cells with a
low mitotic index, suggesting that the regulatory defect

allowing these cells to accumulate may reside in the apop-
totic pathways (3, 4).

Mycosis fungoides (MF) and Sezary syndrome (SS) are
the two major clinical variants of CTCL. MF, the most
common form, is skin-associated and progresses through
increasing cutaneous, and finally organ, involvement. Al-
though treatable in early stages, MF is frequently misdiag-
nosed because of similarities to more benign forms of skin
disease. Even with early diagnosis, 10% of MF patients with
limited disease and 

 

�

 

25% of those with extensive patches
or plaques will develop progressive disease, eventually
succumbing despite extensive therapy (5, 6). SS, a leukemic
and erythrodermic variant of CTCL, is characterized by the
presence of circulating lymphocytes with atypical cerebri-
form nuclei (Sezary cells) in the skin, lymph nodes, and
peripheral blood. It is a more aggressive form of CTCL
with a mean survival of 3 yr from the time of diagnosis.
Immunophenotyping and genotyping of Sezary cells indi-
cate that they arise as a clonal expansion of mature helper
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Abbreviations used in this paper:

 

 CTCL, cutaneous T cell lymphoma;
DUSP1, dual specificity phosphatase 1; FP, false positives; IL-1R, IL-1
receptor; LT, long-term; MF, mycosis fungoides; MT, intermediate;
PDA, penalized discriminant analysis; PLS3, plastin T; QPCR, quantita-
tive PCR; SG, significant genes; SS, Sezary syndrome; ST, short-term;
STAT4, signal transducer and activator of transcription 4.
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memory T cells (3, 4). They express cytokines characteris-
tic of Th2, including IL-4, IL-5, and IL-10 (7–10), and fail
to express Th1 cytokines, IL-12, and IFN-

 

�

 

 (10). Patients
with MF can have blood findings typically observed in SS,
and in rare cases, MF can evolve into SS, confirming a
close relationship between the two conditions; information
from studies on SS is likely to be applicable to MF.

Therapies using biological response modifiers, such as ex-
tracorporeal photopheresis and IFN-

 

�

 

, have improved sur-
vival of patients with SS (11, 12). However, 50% of patients
with advanced disease do not respond to therapy, and

 

�

 

25% of those who respond initially will relapse and
progress to fatal disease. There are presently no well-defined
clinical markers for CTCL that permit an early identifica-
tion of patients most likely to develop progressive disease.

We have used cDNA arrays to study gene expression
patterns in patients with leukemic phase CTCL to identify
markers that will be useful for diagnosis, prognosis, and
providing new targets for therapy. We describe the analysis
of gene expression in patients with high Sezary cell counts
as they compare with Th2-skewed control cells from
healthy volunteers, and we identify the most informative
differentially expressed genes. We demonstrate that penal-
ized discriminant analysis (PDA; references 13, 14), trained
on patients with high Sezary cell counts, identifies genes
that can correctly classify patients with low (5%) Sezary cell
counts from controls. In addition, we use PDA to identify a
10-gene panel whose expression patterns distinguish pa-
tients with short survival times, regardless of the blood tu-
mor burden when they were sampled.

 

Materials and Methods

 

Purification of PBMCs from CTCL Samples and Preparation of
Normal Controls. 

 

PBMCs were obtained by Ficoll gradient sep-
aration from peripheral blood of both normal volunteers and leu-
kemic phase CTCL (15). A total of 48 viably frozen CTCL pa-
tient samples with Sezary cells ranging from 5 to 99% of the
lymphocyte population were analyzed (Table S1 available at http:
//www.jem.org/cgi/content/full/jem.20021726/DCI). The Fi-
coll-purified PBMC fraction from high SS patients was 60–95%
CD4

 

�

 

 malignant cells with a predominantly Th2 phenotype, and
in decreasing abundance, small percentages of B cells, monocytes,
and dendritic cells. Th2-skewed PBMCs, prepared by culturing
for 4 d in IL-4 and anti–IL-12, were used as controls for the high
Sezary cell patients, as many characteristics of advanced disease are
associated with a Th2-polarized immune response. Under these
conditions, 

 

�

 

95% of the CD4

 

�

 

 T cells express the Th2 pheno-
type (16–18). Th1-skewed PBMCs were prepared by culturing in
IL-12 and anti–IL-4 for 4 d (19). CTCL patients are described as
high or low Sezary with reference to the blood tumor burden,
and were selected based on percent circulating Sezary cells, re-
gardless of whether erythroderma was also present. All samples
were collected with appropriate patient consent and Institutional
Review Board approval.

 

cDNA Arrays. 

 

The cDNA filter arrays were purchased from
The Wistar Institute Genomics facility. Three 2.5 

 

�

 

 7.5–cm ny-
lon filters, HA-01, -02, and -03, carrying a total of 6,600 probes
for 4,500 individual genes were used to analyze the 18 high
Sezary count (

 

�

 

60% Sezary cells) samples, and 12 samples from

healthy controls. The 30 samples were hybridized as a single
batch on sequentially printed arrays. An additional 30 low Sezary
count samples and 8 controls were analyzed only on gene filter
HA03. All arrays used in this work were printed from the same
PCR preparations. Reproducibility papers show a 

 

�

 

90% correla-
tion between samples hybridized in triplicate. Sequence-verified
clones were purchased from Research Genetics. Clones for sig-
nificant genes (SG) were sequenced for verification.

 

RNA Isolation, Amplification, and Hybridization. 

 

RNA was
isolated using Tri-reagent (Molecular Research Center) and total
RNA samples were amplified (aRNA) using a modified T7 pro-
tocol (20), which can be accessed at the Stanford University Mi-
croarray protocols website. 0.5 

 

	

 

g aRNA target was labeled with

 

33

 

P, 3,000–5,000 Ci/mM using reverse transcriptase. Hybridiza-
tion was in 2.5 ml Micro-Hyb (Research Genetics) at 42

 




 

C for
18 h. HA-01 and -03 filters were hybridized with the same labeled
target. HA-02 was hybridized separately with the same aRNA
preparation. Filters were exposed to a PhosphorImager screen for
4 d, scanned at 50-

 

	

 

m resolution on a Storm PhosphorImager,
and visualized using ImageQuant (Molecular Dynamics).

 

Real-time PCR. 

 

The cDNAs were generated from 0.5 

 

	

 

g
aRNA using Superscript II (Life Technologies). Gene-specific
primers (IDT, Inc.) are listed in Table S2, available at http://
www.jem.org/cgi/content/full/jem.20021726/DCI. PCR was
performed in a Light Cycler (Roche Diagnostics). Cycle parame-
ters were as follows: 94

 




 

C, 3-min hot start and 40 cycles of 94

 




 

C,
10 s; 56

 




 

C or 60

 




 

C, 10 s; and 72

 




 

C, 25 s. Product specificity was
checked by melting curve analysis and gel electrophoresis, and
relative gene expression levels were determined by comparison
with a standard curve and normalized by dividing the relative
gene expression by the mean expression of three housekeeping
genes, SF3A1, CCT3, and MBD4.

 

Array Analysis. 

 

The data for each array were analyzed with
ArrayVision (Imaging Research), using the median pixel for each
spot and local background correction. Expression values for each
array were normalized by the background-corrected signal me-
dian spot of the array and transformed to corresponding z-scores
for clustering. Student’s 

 

t

 

 tests, frequency analysis, and permuta-
tions were done using Excel and Visual Basic. Dynamic range of
signals was, on average, 10–20,000 (normalized median density of
0.15–3,000). The detection limit for these conditions and arrays
was calibrated by quantitative PCR (QPCR) with a plasmid stan-
dard of 

 

�

 

0.03 molecules per cell.

 

PDA. 

 

Supervised classification of genes and arrays was per-
formed using PDA (13, 14) as provided by CLEAVER (Classifi-
cation of Expression Array Version 1.0 available at http://classify-
dev.stanford.edu). This program, a variant of linear discriminant
analysis, classifies unknown samples based on the information
from a two-class training set used to identify genes, whose ex-
pression levels have a maximum variation between the training
classes, and a minimal variation within each training class. PDA
adds a “penalty” in the form of a diagonal matrix, which is added
to the covariance matrix, allowing the latter to be inverted even
though genes greatly outnumber samples. We found that the ex-
act value of this penalty (between 100 and 1,000) did not signifi-
cantly alter the ranks of the informative genes. The implementa-
tion of PDA used in CLEAVER limits the number of genes used
in training and subsequent classification to the 500 whose expres-
sion best distinguishes between the positive (patient) and negative
(control) examples. Although more genes may be inputted to the
program and are correlated with the training classes, no more
than 500 are used in classification. The program outputs two sets
of results: a positive or negative score that indicates how well a
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sample is assigned to a particular class and a “predictive power”
assigned to each gene as a measure of its ability to discriminate the
two classes. After demonstrating 100% cross-validation accuracy
with a complete gene set, we applied a Student’s 

 

t

 

 test filter of
P 

 

�

 

 0.1 to the input data to help identify the best classifiers by
eliminating genes that contribute a disproportionate amount of
noise to the analysis.

 

Selection of Correlated Gene Clusters. 

 

Clusters of genes whose
expression patterns among patients were highly correlated with
selected 

 

seed

 

 genes in a microarray data set were selected as fol-
lows. An average expression profile for the 

 

seed

 

 was calculated as a
weighted sum of the gene expression values for all genes that have
a correlation coefficient with the 

 

seed

 

 gene higher than 0.7. The
correlation coefficients were used as weights for this calculation.
Then, the correlation coefficients between the computed average
profile and each gene in the dataset was determined. The correla-
tion coefficients were binned, and their distribution were deter-
mined to permit assignment of genes to the cluster that are above
a selected correlation coefficient. Each gene in the dataset was
used as a 

 

seed

 

. When this analysis was repeated on permuted ex-
pression values for each gene, there was no correlation over 0.7.

 

Online Supplemental Material.

 

We provide here a more de-
tailed description of patients and controls used in this paper as
well as sequences of the PCR primers used to obtain the results
shown in Table I. In addition, we include the detailed results of
analysis described in the text, including several classifications and
the members of gene signatures for AHRB, CD1D, and FDFT1.
Online supplemental material is available at http://www.jem.
org/cgi/content/full/jem.20021726/DC1.

 

Results

 

Selection of Patients and Controls. 

 

The 18 samples from
17 patients used for the initial studies were selected to have
high Sezary cell counts, ranging from 60 to 99% of total
circulating lymphocytes. Two samples from patient S118
were taken 1 yr apart. All patients had ratios of CD4

 

�

 

/
CD8

 

�

 

 T cells 

 

�

 

10. This extreme departure from the nor-
mal 3:2 CD4

 

�

 

/CD8

 

�

 

 ratio is characteristic of leukemic
phase disease. Th2-skewed PBMCs were selected as con-
trols for the high Sezary cell patients as many characteristics
of advanced disease are associated with a Th2-polarized im-
mune response including: (a) high serum levels of IgE and
IgA; (b) increasing serum levels of antiinflammatory cyto-
kines IL-4, IL-5, and IL-10; (c) a general loss of T cell re-
sponsiveness to mitogens and antigens (21); and (d) lack of

 

expression of the 

 

�

 

2 chain of the IL-12 receptor (15). For
the discriminant analysis of samples with low Sezary cell
counts, we included data for untreated PBMCs and Th1-
skewed controls where indicated, to provide greater diver-
sity within our control population.

 

Statistical Analysis of Array Data. 

 

To find candidate dif-
ferentially expressed genes, normalized expression levels
were compared between 18 high Sezary cell samples and 9
Th2-skewed controls. The dataset was first analyzed gene-
by-gene with a univariate Student’s 

 

t

 

 test. Fig. 1 A shows
the number of SG detected as a function of the P value. At
P 

 

�

 

 0.01, 385 unique genes were found to be significantly
up-regulated or down-regulated in patients relative to the
controls, rising to 1,400 genes at P 

 

�

 

 0.10. To estimate the
number of false-positive genes, we permuted the experi-
mental and control labels (10,000 times), performed the
Student’s 

 

t

 

 test on each permutation, and determined the
number of SG that would arise by chance if patients and
controls were drawn from the same population. The me-
dian number of these SG, which are false positives (FP) rel-
ative to the original dataset, was calculated for each permu-
tation at each P value cutoff as shown. The median
number of FP at P 

 

�

 

 0.01 is 27, or 

 

�

 

8% of the 385 SG at
that P value (Fig. 1 A). The number of true positive genes
(the number of observed SG minus the number of FP [SG 

 

�

 

FP]) rises to a near-constant value of 

 

�

 

1,000 at P 

 

�

 

 0.15.
This ignores the number of false negative genes arising in
the observed data that would increase the number of truly
positive genes. If this value is compared with the number
of true positives at a given P value, we can see that if we
only consider the genes detected at P 

 

�

 

 0.01, many poten-
tially SG would be missed (Fig. 1; MG). 

If stringency is increased and higher percentiles of per-
mutations are used (60–95th), and these values are sub-
tracted from SG, fewer and fewer true positive genes are
reported (Fig. 1 B). However, even if the 95th percentile
of the permuted samples is used, 300 true positive genes are
still identified at P 

 

�

 

 0.01.

 

Genes With Highly Altered Expression Levels in Patients with
High Sezary Cell Counts. 

 

Of the 385 differentially ex-
pressed genes identified at P 

 

�

 

 0.01, the average changes in
expression relative to Th2 controls range from 25-fold for
overexpression to 7-fold for underexpression. Fig. 2 is a
TreeView (22) showing the variation in expression of the

Figure 1. Genes differentially expressed by a Stu-
dent’s t test in PBMCs from SS patients compared with
Th2 controls. (A) Significant genes (SG) were detected
at each P value. False positives (FP) were estimated by
permuting the sample labels 10,000 times; (SG � FP)
estimates of the number of true positives (TP). The
true positive curve attains a maximum value of 1,000,
suggesting that a significant number of differentially ex-
pressed genes are present at P values �0.01. The num-
ber of missed genes (MG, defined as 1,000 � [SG � FP])
is �100 at P � 0.10. (B) The number of observed SG
corrected by the maximum number of SG found in
permuted data as a function of P value cutoff and per-
centile of the permutations.
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135 P 

 

�

 

 0.01 genes that are either over- or underexpressed
in patients more than twofold. The most highly changed
expression levels are for dual specificity phosphatase 1
(DUSP1), 25-fold overexpressed, and CD40 (TNFRSF5),
7-fold underexpressed. Other genes overexpressed 

 

�

 

10-
fold in patients are as follows: versican, a cell surface pro-
tein that binds L-selectin and regulates chemokine function
(23); plastin T (PLS3), an actin-bundling protein not nor-
mally expressed in T cells (24); and the small GTP-binding
protein, RhoB (ARHB), involved in cytoskeleton reorga-
nization and signal transduction (25–27). In addition, the
message levels for the receptor for IL-11 and the TNF re-
lated cytokine, TRAIL (TNFSF10), are significantly in-
creased. IL-11 is a strong inducer of Th2 differentiation,
and signals the down-regulation of IL-12 (28), both char-
acteristic of Sezary cells. Underexpressed genes include
CD26 (DPP4), whose loss has been suggested to be a
strong marker for CTCL (29). Both CD8

 

�

 

�

 

 and CD8

 

�

 

�

 

message levels are also down, which is consistent with the
observed decrease in CD8

 

�

 

 T cell numbers (30) with ad-
vancing disease. Other significantly down-regulated genes
include the IL-1 receptors, signal transducer and activator
of transcription 4 (STAT4), and the IL-2 receptor 

 

�

 

 chain.

 

Validation of Array Results Using Quantitative Real-time
PCR. 

 

To determine the accuracy of changes in gene
expression reported by our arrays, selected genes were as-
sayed by QPCR for the 18 high Sezary cell samples and 9
Th2 controls. The direction of change by PCR was in
agreement for every gene tested. Of the 32 genes tested,
only 1 gene, PLS3, showed an important difference in the
two assays (500-fold up by QPCR and only 14-fold up by
array), probably attributable to some crosshybridization
that raised the array control values. Over the remaining 31
genes, for 

 

�

 

75%, the two ratios agreed within a factor of
two, the average of the microarray ratio to the QPCR ra-
tio was 0.70, and the median was 0.61. The comparison of
the PCR and microarray assay, (Table I) shows that the ar-
rays give a highly reliable estimate of the direction of
change in gene expression with a tendency to underesti-
mate quantitative differences.

 

Expression Profiles of a Small Number of Genes Identified by
PDA Correctly Classify High Sezary Patients and Normal
Control Samples. 

 

We used PDA, as implemented by
CLEAVER (13, 14), to identify genes with the highest
power to correctly distinguish patients from controls. To
identify the best genes for distinguishing the two sample
classes, we first trained the PDA program on the 18 high
Sezary cell samples versus 9 Th2-skewed and 3 untreated
controls. Cross-validation of the samples in these two

 

Figure 2.

 

TreeView of P 

 

�

 

 0.01 SG up- or down-regulated greater
than twofold in 18 high tumor burden patients (red) compared with 9
Th2-skewed controls (blue). Gene symbols are taken from Source (http:/
/genome-www5.stanford.edu/cgi-bin/SMD/source//BatchSearch). The
green cluster identifies down-regulated genes and the red cluster identifies
up-regulated genes in patients versus controls. Values for fold increases
(

 

�

 

) or decreases (

 

�

 

) precede the gene symbols.



T
h
e 

Jo
u
rn

al
 o

f 
E
xp

er
im

en
ta

l 
M

ed
ic

in
e

 

1481

 

Kari et al.

 

classes is 100% accurate (Figure S1 available at http://
www.jem.org/cgi/content/full/jem.20021726/DCI).

To select the best features for classification, we applied a
P 

 

� 

 

0.10 P value cutoff to eliminate genes that contribute a

disproportionate number of FP. The genes identified by
Student’s 

 

t

 

 test at P 

 

�

 

 0.10 were used rather than the 385
P � 0.01 gene set in order to include genes with higher vari-
ance that might be good class predictors. To assess the total

Table I. Verification of Array Using Quantitative Real-time PCR

Genes Array experiment Real-time experiment

Name Symbol
Th2

Mean  SD
Patient

Mean  SD Ratio P valuea
Th2

Mean  SD
Patient

Mean  SD Ratio P valuea

Dual specificity phosphatase 1 DUSP1 0.2  0.1 3.9  2.9  25 �0.001 0.1  0.1 1.8  1.5 31 �0.001
Plastin T PLS3 0.7  0.2  10  9.7  14 �0.001 0.01  0.01 3.5  6.4 479 0.034
Rho B ARHB 0.3  0.2 3.4  3.7  11 0.002 0.2  0.1 1.6  1.6 8 0.002
Jun B JUNB  1  0.3 4.9  3.2  5 �0.001 0.3  0.2 3.1  2.9 10 �0.001
Integrin �1 ITGB1  1  0.7 4.6  5.4  4.5  0.013 0.1  0.1 1.4  1.5 12 0.003
TRAIL/APO-2 ligand TNFSF10 0.7  0.2  3  3.5  4.2  0.015 0.3  0.1 1.7  1.4 6 �0.001
CX3C receptor 1 CX3CR1 0.7  0.4 3.4  3.4  4.5 0.006 0.3  0.2 2.1  2.4 8 0.004
Interferon-stimulated protein ISG15  1  0.3  4  4.0  4.2 0.005 0.4  0.3 3.4  4.2 9 0.009
Cyclin-dependent kinase I 2D CDKN2D  1  0.4 2.8  1.6  2.7 �0.001 0.4  0.1 1.7  0.9 4.3 �0.001
Intercellular adhesion mol. 2 ICAM2 3.7  1.2 9.8  3.8  2.7 �0.001 0.4  0.2 1.4  0.8 3.3 �0.001
CD1D CD1D 0.4  0.1 0.9  0.7  2.6  0.005 0.1  0.1 2.4  2.5 16 0.001
GATA3 GATA3 1.3  0.6 3.2  1.6  2.5 �0.001 0.3  0.2 2.2  1.5 7 �0.001
Selectin L SELL 5.4  2.2 10.8  4.6  2 �0.001 0.6  0.4 1.8  1.1 2.8 �0.001

 

CD44 CD44 13.3  3.7 7.3  3.0 �1.8  0.001 2.3  2.3  1  0.6  �2.3 0.188
CD8�� CD8A 1.4  0.7 0.6  0.3 �2.2 0.01 1.3  0.7 0.1  0.1 �14 �0.001
Chemokine (C-C motif) Rec. 1 CCR1 6.8  3.6 2.7  4.4 �2.5 0.019 1.4  1.0 0.9  1.4  �1.6 0.277
Signal trans. & act. of trans. 4 STAT4 2.7  1.6 0.7  0.8 �3.7 0.005 1.4  0.4 0.3  0.3  �4.5 �0.001
Interleukin 1 receptor type II IL1R2  2  0.8 0.5  0.2 �3.8 �0.001 2.2  1.3 0.1  0.1 �26 0.001
CD8�� CD8B 3.7  2.2 0.7  0.3 �5 0.004 1.7  0.8 0.4  0.3  �4.6 �0.001
CD26 DPP4 1.5  0.6 0.2  0.1 �7 �0.001 1.5  0.9 0.1  0.1 �19 0.001
CD40 TNFRSF5 3.3  1.8 0.5  0.3 �7 0.001 1.9  0.9 0.3  0.3  �6 �0.001
Cytochrome P450 1B1 CYB1B1  15  13.4 1.1  1.0 �13 0.015 1.7  1.3 0.2  0.2 �6 0.001
Interleukin 1 receptor type I IL-1R1 4.0  3.9 0.6  0.2 �18 0.032 2.1  1.8 0.2  0.2 �11 0.014

I�B� NFKBIA 7.2  2.9 9.5  6.2 1.3 0.193 0.5  0.4 1.1  1.6 2.2 0.135
Rac/Cdc42 GEF 6 ARHGEF6 5.9  2.3 7.8  2.4 1.3 0.066 0.7  0.2 1.5  1.2 2.2 0.013
Zinc finger protein 161 ZNF161 2.8  0.7 3.1  0.5 1.1 0.366 1.3  1.0 1.5  1.2 1.2 0.586
Superoxide dismutase 1 SOD1  14  5.2 14.8  5.8 1.1 0.737 1.1  0.9 2.4  2.4 2.2 0.051
Cyclophilin A PPIA 10.8  3.6 10.7  3.6 1 0.939  1  1.3 1.6  1.2 1.7 0.207
NF�B1 (p105) NFKB1 2.7  0.8 2.8  1.4 1 0.875 0.7  0.6 0.5  0.3  �1.4 0.408
Maltase-glucoamylase MGAM  1  0.4 0.9  0.4 �1.2 0.368 0.8  1.2 1.3  1.3 1.7 0.314
Fas TNFRSF6 1.1  0.5 0.9  0.4 �1.2 0.374 0.7  0.6 0.6  0.6  �1.2 0.631
Plastin L LCP1 40.4  25 24.0  11 �1.7 0.095 0.9  0.4 0.9  0.3 �1 0.958

CD40 ligand TNFSF5 na na na na 0.3  0.1 1.5  2.0 6 0.015
IL-18 IL-18 na na na na  1  0.9 1.5  1.0 1.5 0.22
Fas ligand TNFSF6 na na na na 1.2  0.6 0.5  0.5 �2.4 0.014

aDetermined by Student’s t test.
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number of genes that were good classifiers, the genes were
ranked according to the absolute value of their assigned
predictive power. When the logarithm of the predictive
power was plotted against the logarithm of the rank, 200
genes were found to have a faster rise in predictive power
than in rank (Figure S2 available at http://www.jem.org/
cgi/content/full/jem.20021726/DCI). According to Zipf’s
law (31), these 200 genes are expected to most effectively
differentiate patients from controls. As few as four of these
genes, for example, either (a) STAT4, TOB1, CD26, and
TRAIL, or (b) STAT4, TOB1, SEC61A1, and GS3686,
can be used for correct classification. The 90 best classifiers
for this gene set are shown in Fig. 3. It is important to note
that half of the 90 genes are in the P � 0.10 dataset, but
not the more restricted P � 0.01 dataset.

Classification of Sezary Patients with Low Tumor Burden.
Having achieved a 100% cross-validation on our high
blood tumor burden dataset, we used PDA to classify a
holdout set of 27 patient samples with 5–53% circulating
Sezary cells, and 8 additional controls, including 1 un-
treated PBMC and 7 Th1-skewed PBMCs. The high
Sezary cell samples were used again as the training set. Be-
cause the additional patients and controls had been ana-
lyzed using only the genes on human array HA-03, we
used the 500 genes from HA-03, which were in the P �
0.10 dataset to train the PDA. We posed two questions:
(a) Can predictors identified on the patients with high
Sezary cell counts be used to classify patients with low
Sezary cell counts? (b) How many genes are required to
achieve accurate classification?

To determine the minimal number of genes needed to
classify the holdout set, we progressively removed the up-
and down-regulated genes with lower predictive powers, as
determined by the training set. Fig. 4 A shows the effect of
reducing the number of genes used for classification from
500 to 8 genes. From 40 to 500 genes, the classification is
virtually identical, and classification is 100% accurate.
When the classification set is reduced to 20 genes, 1 patient
sample, S139.1, is classified as a control (see Discussion).
This patient was subsequently found to suffer from a pe-
ripheral T cell lymphoma resembling Kimura’s disease (32),
not SS. If we reduce the number to eight genes, we find
that one normal control, C022–1, is misclassified (Fig. 4 A,
arrow). To determine whether the 20 genes with the high-
est predictive powers were uniquely required for accurate
classification, we reversed our procedure and sequentially
removed genes with the highest, rather than the lowest,
predictive power from the 500-gene dataset. We find that
the best 85 genes, equally divided between positive and
negative classifiers, can be removed before classification be-
comes �100% (unpublished data). This shows that al-
though many more genes are required, the 300 genes with
lower predictive powers can still classify accurately.

Fig. 4 B shows the classification when the number of
controls in the training set was reduced to four Th2 and
two untreated PBMC controls. This allowed us to include
more of the Th2 controls in the test set. The 40 genes
identified in the training set with fewer controls also per-
fectly classify the additional 27 CTCL patients and 14 nor-
mal controls. If we reduce the number of classifiers to the
top 20 genes, once again the Kimura’s disease sample fails
to classify as a CTCL patient. The list of the 40 genes used
for the classification is shown in Fig. 4 C.

Expression Patterns for Clusters of Genes Are Found to Vary
Coordinately among CTCL Patients. Among the differen-
tially expressed genes in our CTCL patients, overexpressed
genes exhibit much greater patient-to-patient variability in
expression levels than underexpressed genes do. This is ev-
ident from the TreeView shown in Fig. 2. The alternating
expression levels across patient samples for some of our top
classifiers and highly differentially expressed genes appeared
to be highly correlated, for example, RHOB with
DUSP1. These correlations could be important for the

Figure 3. Dendrogram of the most informative 90 genes that discrimi-
nate high Sezary patients from normal controls using PDA. Patient labels
are shown in red, Th2 controls in blue, and untreated PBMCs in green.
Rank is a measure of the predictive power, and ratio is the average fold
change between patients and controls; the minus indicates down-regula-
tion in patients.
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identification of patient subsets, so we identified clusters of
genes with highly correlated expression among the up-reg-
ulated genes in our P � 0.10 dataset. To identify an ex-
pression cluster for a seed gene, we first calculated an aver-
age profile for this gene, and included all the genes that
had a correlation with the average profile that was �0.7 in
the cluster. The rationale for using 0.7 as a cutoff is given
in Fig. 5 A, which compares the degree of correlation of
expression values among genes in our observed dataset
with that in a dataset in which the expression values for

each gene were randomly permuted. Fig. 5 A shows the
mean and 95th percentile distributions of correlation coef-
ficients on a dataset containing only up-regulated genes
from P � 0.10 dataset and the same distributions calculated
on the same dataset but with the expression values ran-
domly permuted. The distributions of correlated genes ob-
tained on the permuted dataset show no genes with corre-
lation coefficients �0.7, even for the 95th percentile of
permutations. The distributions obtained on the real
dataset have a substantial number of genes with correlation

Figure 4. Classification of low tumor burden CTCL patients using PDA. (A) Effect of decreasing the number of class predictors on classification.
Seven measurements are included in the 40–500 genes tracing, 500, 400, 300, 200, 100, 80, and 40 genes. Each point represents the average predictive
score for the aforementioned seven classifiers, and the error bars show one standard deviation. Data are shown separately for 20- and 8-gene classifiers.
The lower curve shows the percent Sezary cells in each analyzed sample. For each classifier, the predictive scores are normalized by the average predictive
score of patients. The shaded areas indicate values for replicate samples from the training set. (B) Classification of 27 low CTCL patients and 14 controls
with 40 genes (PBMCs � untreated). Negative values indicate the expression profiles that define the negative or control class and positive values identify
samples assigned to the positive or patient class. The height of the columns measure how well each sample is classified by the list of 40 genes. Percent
Sezary cells are indicated for each sample. (C) List of the 40 best classifiers. Genes are listed top to bottom, sorted by the value of their predictive power.
Genes up-regulated in patients are in the right column; genes down-regulated in patients are in the left column.

Figure 5. Clusters of correlated genes. (A) Distribu-
tion of the number of genes in patients that correlates
with an average expression profile calculated for each
of 1,065 P � 0.1 genes: closed symbols, observed ex-
pression values; open symbols, permuted expression
values; circles, 50th percentile of observations; and tri-
angles, 95th percentile of observations. (B–D)
Weighted average expression profiles for the three
largest clusters. The clusters were calculated on gene
expression for the patients only. The patient samples
are sorted according to survival. The 6 ST survivors are
on the left and the 12 LT survivors are on the right.
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coefficients �0.7, suggesting that they do not belong to a
cluster by chance. We calculated correlated clusters for all
1,065 up-regulated genes in the dataset and identified only
three clusters that included a significant number of mem-
bers with correlations �0.7 (Table S3 available at http://
www.jem.org/cgi/content/full/jem.20021726/DCI). Many
of the genes included are genes from the P � 0.01 dataset.
The cluster identified using the RhoB (Fig. 5 B) as the
seed gene contains DUSP1, v-JUN, IEP, JunB, JunD, and
DNAj (Fig. 5 B), all are immediate early genes. The cluster
identified with farnesyldiphosphate farnesyltransferase
1(FDFTase1) as the seed gene includes small GTP binding
proteins, vav2 and cdc42, which are modified by this en-
zyme, but not RhoB, which is also modified by FDFTAse1
(Fig. 5 C). Finally, there is a cluster with CD1D including
caspase 1, versican, and S100A12, all are included in the P �
0.01 gene list (Fig. 5 D).

Patients That Survive Less Than Six Months From the Time
of Sampling Define a Distinct State of the Disease. We also
evaluated whether disease progression could be correlated
with gene expression patterns. For this analysis, the 17 high
Sezary cell patients were divided into two groups based on
the observed survival. 6 patients who died between 1 and 6
mo from the time the sample was taken were designated
short-term (ST) survivors; 11 patients who survived �12
mo (24 mo to �5 yr) were designated long-term (LT) sur-
vivors. A Student’s t test analysis of the gene expression
profiles for the two groups was calculated on the 4,500
genes analyzed, and identified 400 genes that were differ-
entially expressed at P � 0.01. Based on 1,500 permuta-
tions of the patient labels, there is a �1% probability that
this number of differentially expressed genes could occur
by chance. There were 1,400 genes that were identified at
P � 0.10 as being differentially expressed, and we applied
PDA to this dataset to find the most informative genes for
distinguishing between the ST and LT patients. The 38
genes with the highest predictive power are shown in the
TreeView in Fig. 6.

We extended our analysis to include patients with low
Sezary cell counts, again using the data from only the HA-
03 array. The 48 samples in this dataset were divided into
three groups based on survival: 12 ST (1–6 mo), 25 LT
(�40 mo), and 11 samples with intermediate (MT) surviv-
als (12–40 mo). The ST and LT groups were used as a
training set and the 12 MT samples were withheld for clas-
sification. When all genes on the HA03 array were used for
training, the accuracy of cross-validation between ST and
LT survivors was �90%, and the MT patients were classi-
fied as LT survivors (Figure S3 available at http://
www.jem.org/cgi/content/full/jem.20021726/DCI). This
suggests that the patients who survived �6 mo are signifi-
cantly different from those that survive 12 mo or longer.

To determine which genes were the best class predic-
tors, we performed 20 jackknife permutations of PDA on
the 37 LT and ST patients with the 2,032 genes on HA03.
For each permutation, we chose a random two thirds of
each class for training and the remaining one third for vali-
dation. The predictive powers of the genes were ranked

for each permutation, and the mean and standard deviation
of the ranks were determined. The 40 genes with the
highest mean ranks, and the lowest standard deviation of
ranks were again used for 20 jackknife permutations of
PDA (Table S4 available at http://www.jem.org/cgi/
content/full/jem.20021726/DCI). This set achieves 100%
accuracy in cross-validation of ST and LT survivors and as
few as 10 genes from this set are enough for perfect classifi-
cation (Fig. 7). Thus, a small number of genes can be used
to distinguish ST survivors from LT survivors, despite the
fact they vary widely (5–99%) in Sezary cell tumor burden
and clinical history.

Discussion
Selection of SG. We focused initially on patients with

very high Sezary cell counts and used Th2-skewed PBMCs
as our standard for comparison because of the overwhelm-
ing evidence of the Th2 nature of Sezary cells. In this way,
we expected to minimize the detection of differences that
were related to Th2 differentiation rather than the devel-
opment of CTCL. In comparing Th2-skewed controls to
patients, we find significant changes in gene expression for
�10% of the genes on our arrays. We find a comparable
number of changes (unpublished data) when comparing
normal PBMCs to PBMC-skewed to a Th1 or Th2 re-
sponse, suggesting that very few events are required to alter
expression of so many genes. Because our patients have
been tested against only 4,500 unique genes, it is possible
that the genes responsible for the initial transformation
event are not on our arrays. Nevertheless, the changes in
expression we see account for many of the observed char-

Figure 6. Clustering of the 38 genes whose expression levels best dis-
tinguish ST from LT CTCL survivors and the high tumor burden pa-
tients that they classify. ST survivors are labeled red, LT survivors are blue
(green cluster). The genes most overexpressed in LT survivors are at the
top (yellow clusters).
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acteristics of the disease, provide markers for diagnosis and
prognosis, and may also provide targets for therapy.

We used a univariate Student’s t test as a primary screen
to determine the number of genes that are differentially ex-
pressed between the high Sezary cell patients and Th2-
skewed controls. We set two thresholds of significance that
were used for the different analyses we performed (33).
The genes selected at the P � 0.01 threshold include few
FP, exhibit low variance among patients, and are likely to
be the most useful for understanding the biology of CTCL
and for designing single gene diagnostic reagents. Some of
these genes are described in the following paragraphs. Be-
cause of patient variability, the most accurate class distinc-
tions between patients and controls or early and late stage
disease must be based on expression levels of many genes.
We used PDA for these studies, and found numerous genes
with P � 0.01 that were informative as a group, even
though their individual variability was high.

Expression of Genes Associated with Th2 Differentiation.
Our array studies confirm and extend evidence of the
skin homing and Th2 nature of Sezary cells. Overexpressed
genes required for Th2 differentiation include transcription
factors Gata-3, which also suppresses Th1 development
(34, 35) and JunB required for Th2-specific IL-4 transcrip-
tion (36). Amplification and overexpression of JunB has
been described recently in a subset of CTCL patients (37).
Overexpressed genes that are important for tissue-specific
homing characteristic of Th2 cells include selectin-L
ligand, preferentially found on CD4� cells expressing Th2
cytokines (38); selectin-P ligand, which forms the skin-
homing cutaneous lymphocytic antigen when modified by
�-fucosyl transferase (39); and integrin �-1 (40, 41), an-
other marker for skin-homing T cells.

Genes That Affect Apoptosis. There has been much
speculation that CTCL cells may be defective in their ap-
optotic pathways. However, observations at the message
level from our array studies are not, in all cases, consistent

with this hypothesis. We find the antiapoptotic gene Bcl2
to be underexpressed in our samples and, whereas Fas
ligand message levels are decreased, T cell–associated Fas
message levels are essentially unchanged. However, we do
find several other patterns of gene expression that could
contribute to a defect in the apoptotic pathways.

The overexpression of the proinflammatory cytokine
IL-1�, a primary activator of T cell death pathways (42),
and caspase 1 required for IL-1� activation, was unex-
pected in light of the primarily antiinflammatory pheno-
type exhibited by patients. However, IL-1� overexpres-
sion is offset by the underexpression of both IL-1 receptors
(IL-1Rs) in patients, suggesting that this important apop-
totic pathway is inactive in CTCL cells. The significance
of the underexpression of the IL-1Rs to CTCL is sup-
ported by PDA studies that identify the reduction in IL-
1R expression as second only to that of STAT4 in classify-
ing patients and controls.

The chemokine receptor CX3CR1 is normally ex-
pressed on Th1 but not on Th2 (43), yet we find it to be
overexpressed by more than fourfold in patients. In the
central nervous system, CX3CR1 on microglia is suggested
to prevent Fas-mediated cell death in response to stress
(44). If CX3CR1 has a similar function in Sezary cells, this
could also contribute to the proposed apoptotic defect in
these cells. ICAM2, also overexpressed, has been shown to
suppress TNF-�– and Fas-mediated apoptosis through its
activation of the PI3K–AKT pathway (45). AKT overex-
pression has been associated with a variety of different can-
cers. The combined up-regulation of genes known to in-
terfere with apoptosis, such as CX3CR1 and ICAM2, and
down-regulation of the IL-1Rs could contribute to the ob-
served resistance to apoptosis in Sezary cells.

Genes Not Normally Expressed in Th2. There are pres-
ently no CTCL-specific markers. Identification of genes
expressed in the malignant T cells, which are not normally
expressed in that cell type, can be very useful for diagnosis

Figure 7. Classification of all
CTCL patients by PDA accord-
ing to survival. (left) Results of
cross-validation using the 40
most informative genes (20 most
positive and 20 most negative).
Positive scores indicate ST survi-
vors. The first 12 bars represent
the ST survivors. (right) The
genes used for classification. Left
column, overexpressed in LT
survivors; right column, overex-
pressed in ST survivors. The top
10 genes, 5 from each column
are sufficient for 100% accurate
cross-validation.
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and perhaps act as targets for intervention. The plastin gene
family has three known members that function as actin-
bundling proteins and have tissue-restricted expression pat-
terns (46). PLS3 is expressed in a variety of tissues but not
in normal lymphoid cells, which express lymphoid cell
plastin instead. We find lymphoid cell plastin to be abun-
dantly expressed in both patients and controls, but inappro-
priate PLS3 expression is restricted to the CTCL samples.
PLS3 expression was detected in 35 out of the 45 patient
samples surveyed by arrays. Both lymphoid and PLS3s were
coexpressed in all cases. Transfection papers have suggested
that these highly related proteins have differences in local-
ization patterns and in their interactions with cytoskeletal
accessory proteins and, therefore, may have somewhat dif-
ferent functions (47). The inappropriate expression of a
nonlymphoid marker, such as PLS3, and a non-Th2
marker, such as CX3CR1, in the malignant cells could be
used as robust markers for diagnosis.

Genes That Have High Predictive Power to Classify Patients
and Controls. We reported previously the loss of STAT4
expression in CD4� Sezary cells in a small group of patients
(15). We have now confirmed and extended those studies
to the 45 patient samples analyzed in this work. The loss of
expression of STAT-4, which is required for Th1 T cell
differentiation (48, 49), is one of the most significant char-
acteristics of CTCL patent samples. STAT4 is one of two
genes that can be used in PDA to classify high Sezary cell
patients from controls by themselves and one of eight genes
that classify patients with low percentages of circulating
Sezary cells, suggesting that the loss of STAT4 may be an
early event in the development of CTCL.

The small GTPase RhoB is another of the top classifiers
identified in the PDA studies. Like PLS3, RhoB interacts
with the actin cytoskeleton. As a GTP-binding protein,
RhoB has the capacity to modulate downstream events,
and its activity is dependent on posttranslational modifica-
tions that can be catalyzed by either farnesyl transferases or
geranylgeranyltransferases. Farnesyl transferase inhibitors
have been under intense scrutiny for their potential in
treating cancers that harbor Ras mutations. Although there
are some observations that contradict the model (46), there
is a large body of evidence that supports the hypothesis that
the efficacy of these inhibitors in treating cancers is due to
their effects on RhoB (50–52).

Although we were able to accurately classify our high
Sezary cell patients and controls with as few as two genes
(STAT4 and RhoB), one of our main objectives was to de-
velop biomarkers that could identify patients with low tu-
mor burdens that are more difficult to recognize clinically.
We found that when the classification gene set was reduced
to the 20 top genes, all controls and all but 1 patient were
properly classified. On reexamination, the misclassified pa-
tient had skin findings typical of Kimura’s disease (53) but
blood findings in keeping with leukemic phase CTCL, in-
cluding a high CD4�/CD8� ratio, eosinophilia, and a cir-
culating T cell clone identified by a chromosomal abnor-
mality. Despite the many similarities to SS, this Kimura’s
patient was properly identified by PDA. Expression pat-

terns of STAT-4 and RhoB alone could be used to cor-
rectly classify 26 out of the 29 CTCL patients and all but 1
untreated control, but there are many sets of 10 genes that
are as good as or better classifiers than these 2 genes.

Classification of ST Survivors. We also found that pa-
tients who are ST survivors, and are usually resistant to ad-
ditional therapy, have a detectably different gene expres-
sion pattern from patients classified as MT and LT
survivors, independent of their tumor burden. The finding
of a “terminal signature” in these patients has a number of
implications. Perhaps the most obvious and important is
that an accumulation of a high percentage of Sezary cells is
not an optimal index of the severity of disease. Because
CTCL patients may die from a number of different causes,
it is striking that a characteristic gene expression pattern can
be detected in their peripheral immune cells when death is
imminent. If this pattern is confirmed using additional pa-
tient samples, it should be used to identify patients who
might benefit from more aggressive therapies that would
otherwise not be recommended until later times.

The ability to identify patients with as few as 5% circu-
lating Sezary cells using PDA suggests that the malignant
cells, as a function of the cytokines and chemokines they
release, induce a pattern of gene expression in the periph-
eral blood that is distinctive to CTCL. Comparable diag-
nostic signatures may be detectable in the immune cells of
patients with other cancers, and other types of diseases. A
systematic examination of the gene expression profiles of
peripheral immune cells from a variety of patients should
be undertaken.
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