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The pair of copper radionuclides 64Cu/67Cu (T1/2 = 12. 7 h/61.8 h) allows, respectively,

PET imaging and targeted beta therapy. An analysis of the different production routes

of 67Cu with charged particles was performed and the reaction 70Zn(d,x) route was

identified as a promising one. It may allow the production of 67Cu without 64Cu. The

production cross section has been measured up to 28.7 MeV. Measurements were done

using the well-known stacked-foils technique using 97.5% enriched 70Zn homemade

electroplated targets. These measurements complement at higher incident energies the

only set of data available in nuclear databases. The results show that using a 26 MeV

deuteron beam and a highly enriched 70Zn target, it is possible to produce high purity
67Cu comparable to that obtained using photoproduction. This production route can be

of interest for future linear accelerators under development where mA deuteron beams

can be available if adequate targetry is developed.

Keywords: 67Cu, production, theranostic, cross section, deuteron reactions, accelerators

INTRODUCTION

67Cu (T1/2 = 61.8 h) is a radionuclide with physical properties convenient for therapeutic use as
targeted radiotherapy. It is a beta-emitter with a maximum energy of 561 keV, which corresponds
to an electron path of about 3mm in water (1). Its energy range is comparable to that of the 177Lu
currently used in targeted radiotherapy (2). 67Cu emits also photons of 184.6 keV (3) which offers
the possibility of carrying out SPECT imaging. It can be used either prior the treatment as an
imaging agent or during therapy to monitor the diffusion and distribution of the 67Cu radiolabelled
radiopharmaceuticals.

To select the best production route both cross section data associated to the production of
67Cu and to contaminants are of primary importance. Among contaminants, coproduced copper
isotopes are of great concern, as they cannot be removed from the final product by chemical
separation. Especially 64Cu, with its 12.7 h half-life, will have an impact on the specific activity.
It is then interesting to look at production routes that reduce or exclude the co-production of 64Cu,
even if its real impact on the patient and staff needs to be studied and clarified.

The most cited production route for 67Cu production uses enriched 68Zn target bombarded by
high-energy protons (4–7). Large quantities can be produced but it is not possible to limit 64Cu co-
production. In the 90’s and 2000’s, the 64Ni(α,p)67Cu reaction with an 64Ni enriched target and
an alpha beam was also studied. Experimental cross sections for this reaction are known with
a maximum cross section value around 35mb at 22 MeV (7, 8). The threshold energy for the
production of 64Cu through 64Ni(α,n+t) is equal to 23.7 MeV. Using the very high enrichment
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level of 64Ni available, there is a possibility to produce
67Cu free of 64Cu by limiting the beam energy below this
latter value. However, alpha beams are poorly available and
thermal constrains associated to high intensity alpha beam are
very penalizing.

An alternative consists to use an enriched 70Zn target
bombarded with either protons or deuterons. In this case,
the production of 64Cu can be limited by an appropriate
choice of the beam energy and high target enrichment. As
an example, the 70Zn(d,x)64Cu reaction threshold is 26.4
MeV whereas that for 67Cu production is 0 MeV (see
Supplementary Table 1). 70Zn(p,α)67Cu reaction cross section
reaches a maximum of 15mb at 15 MeV (7, 9) whereas the
available data for 70Zn(d,x)67Cu (10) show that the reaction
cross section maximum is higher, even if the exact value is not
known as this data set do not cover the whole energy range
of interest.

In this work, we have measured 70Zn(d,x)67Cu production
cross section up to 28.7 MeV in order to determine the
position and value of the maximum. Production cross sections
of contaminants have been also extracted. Using these new data,
we were able to determine production yields and, with the help of
TALYS 1.9 calculations (12), the expected specific activity of the
final product.

MATERIALS AND METHODS

Production cross sections for the 70Zn(d,x)67Cu reaction was
measured using the stacked-foils activation method (4, 13–16).
A series of six irradiations, spread for over 7 months, was
carried out at the GIP ARRONAXC70 cyclotron, Saint-Herblain,
France. In our experiments, a stack was made of two patterns
each composed of a 10µm thick enriched 70Zn (97.5% purity)
electroplated on a 25µm Ni foil (99.9% purity) followed by an
aluminum foil (10µm, 99.0% purity). Their thicknesses were
determined assuming homogeneity by weighing and performing
surface calculation with a high definition scanner. The obtained
values are reported in Supplementary Table 2. Aluminum is
used as a foil to catch recoil nuclei. The stack was placed inside
a dedicated vacuum chamber positioned at the end of the AX
beam line. It contains an instrumented Faraday cup used to
determine the particle flux going through the stack. We limited
the total thickness of the stack to prevent a large geometrical
straggling that will result on an increased uncertainty on the flux
measurement. A Ti foil, having an area equivalent to the 70Zn
deposit, was added between the Ni and Al foil of the second
pattern to obtain a second independent flux value by measuring
the production cross section associated to natTi(d,x)48V. This
reaction is well-known and is used as a reference (17) (monitor)
to make sure everything went well during our experiments. After
irradiation which stands for 1 h with an average current of ∼50
nA, activities of each thin foils were measured using gamma
spectroscopy (HPGe). The well-known activation formula was
used to calculate the cross section values.

Gamma analyses were carried out using the FitzPeaks software
(18). Spectra were recorded in a suitable geometry calibrated
in energy and efficiency with standard 57Co, 60Co, and 152Eu

sources from LEA-CERCA (France). The full widths at half
maximum were 1.05 keV at 122 keV (57Co) and 1.97 keV at
1,332 keV (60Co). No activity was measured for recoil nuclei on
catching foils. The 48V activity was measured only after full 48Sc
decay, 3 weeks after End Of Beam (EOB).

The energy loss of the particles passing through the stack
has been calculated from the equations of Ziegler et al., using
their SRIM-2013 software (19). The energies are calculated in the
middle of the foils and are shown in Supplementary Table 2.

Chemical preparations and electroplating were made on
site using enriched 70Zn metallic powder from Trace Sciences
International. The enrichment level of 70Zn was 97.5%, 68Zn
2.2%, 67Zn 0.1%, 66Zn 0.1% and 64Zn 0.1%. All solutions were
freshly prepared with ultra-pure water treated withMiliporeMilli
Q system. The metallic powder was dissolved in diluted sulfuric
acid (1M) to obtain zinc sulfate, then evaporated to dryness and
rinsed twice with ultra-pure water. For each preparation, pH was
adjusted to two by addition of sulfuric acid. The electroplating
was carried out in a simple homemade three-electrode Teflon
cell. The counter electrode was made of platinum and an Ag-
|AgCl|Cl− (saturated KCl) electrode was used as reference and
was connected to the cell. The deposition area was delimited
during electroplating using a silicon gasket and corresponds to
4 cm2. Electroplating was performed by using the VoltaLab050
potentiostat. The deposition was obtained by applying a constant
current density of−20 mA/cm². During plating, the temperature
was kept constant at 30◦C and the solution was stirred at 300 rpm
for homogenization purpose. To reach a thickness of 10µm, a
deposition time of 30min was necessary.

The presence of 68Zn (2.2%) in the target material implies
potential contamination, which is taken into account during
the analysis. Indeed, the interaction of deuterons on 68Zn can
produce 67Ga (Ethreshold = 14.6 MeV) whereas 67Ga is not
produced in our energy range by deuteron interactions with 70Zn
(Ethreshold = 30.8 MeV). 67Ga decays to 67Zn as 67Cu leading
to common gamma rays during both decays, fortunately with
different intensities. As an example, the 184 keV gamma ray
corresponds to an intensity of 48.7% in 67Cu decay whereas
it is only 21.41% for 67Ga decay (3). The same holds for the
300 keV gamma line which intensity is 0.797% for 67Cu and
16.64% for 67Ga. Therefore, we used this property to discriminate
production of 67Cu and 67Ga. This is based on a set of equations
(1−3) involving the number of gamma collected at 184 keV and
300 keV. These equations relate to the total number of gammas
collected, NTOT, from a gamma peak to the number of gamma
collected from each contributor.

N184
TOT = N184

67Cu + N184
67Ga

N300
TOT = N300

67Cu + N300
67Ga (1)

Equations can be written as:

N184
TOT = k1 Act(

67Cu) + k2 Act(
67Ga) (2)

N300
TOT = k3 Act(

67Cu) + k4 Act(
67Ga)

With kxi =
εxi I

x
i (1 − e−λi tLT )

λi
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FIGURE 1 | Cross sections of reaction 70Zn(d,x)67Cu (10).

Where i corresponds to a specific radionuclide, × to a given
gamma line, ε to the detector efficiency at this energy, I to the
intensity of the gamma emission, λ to the radioactive constant
and tLT to the acquisition time. Expressed in terms of activity of
each radionuclide, the system of equations is written as follows:

Act(67Cu) =
1

k1k4 − k2k3
( k4 N

184
TOT − k2 N

300
TOT )

Act(67Ga) =
1

k1k4 − k2k3
( k1 N

300
TOT − k3 N

184
TOT ) (3)

The activities of 67Cu and 67Ga are determined from equations
in (3). The uncertainties associated with this activity calculation
have been established according to the following equation:

σ (Act) =
∑

j

∣

∣

∣

∣

∂Act

∂yj

∣

∣

∣

∣

σ (yj) (4)

Where y represents the different parameters involved in each
equation (3).

RESULTS AND DISCUSSION

In these experiments, excitation functions up to 28.7 MeV were
measured for 67Cu and 67Ga from the zinc deposit whereas
61Cu, 55,56,57,58Co were extracted from the Ni backing and 48V
from the Ti foil. All nuclear reactions involved are reported
in the Supplementary Table 3 as well as gamma lines used for
the analysis of each radionuclide. Our results are displayed on
Figures 1–3, in values reported in Table 1. The simulation code
of nuclear reactions TALYS 1.9 was used to extend the study in
particular on the stable (65Cu) nucleus production. This is the
reason why, in addition to our data points, we have displayed on
our figures the values obtained with TALYS 1.9 (12). Reactions on
the Ni support and on the Ti foil are monitor reactions for which

FIGURE 2 | Thick Target Yield curve for the 70Zn(d,x)67Cu reaction (11).

reference data exist at IAEA (17). Through these monitor cross
section values, we can control the measurement of the particle
flux and consequently the correct execution of the experiment.

The natTi(d,x)48V Reaction
48V (T1/2 = 15.973 d) is produced by the natTi(d,x)48V reaction.
The foil has been cut and positioned to have the same surface
area as the 70Zn deposit. If the entire beam does not pass through
the deposit because it is too wide, this will also be the case for
the titanium foil. In this case, the extracted values will not be in
agreement with the monitor cross section.

During the irradiation of a titanium foil, not only 48V is
produced but also 48Sc which decay to the same daughter nucleus
than 48V. To get rid of 48Sc, we let it decay, at least 19 days,
until the vast majority of the 48Sc disintegrates. The results are
presented in Supplementary Figure 1.

These data are in agreement with experimental values
available in the literature (20–25). The agreement of these data
shows that the foils and deposits were crossed by the entire
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FIGURE 3 | Cross sections of the 68Zn(d,3n)67Ga reaction.

beam. The agreement is generally good with the cross section
recommended by the IAEA (13). In agreement with experimental
data in the literature, our points indicate a peak around 19 MeV
which is not described by the IAEA curve.

The natNi(d,x)61Cu Reaction
The 61Cu (T1/2 = 3.339 h) is produced by the natNi(d,x) reaction.
The gamma emissions used for activity measurement are 282.956
keV (12.2%), 373.050 keV (2.15%), 588.605 keV (1.17%), 656.008
keV (10.77%), 908.631 keV (1.102%), and 1185.234 keV (3.75%).
Ni is the backing of the Zn target. This reaction is a monitor
reaction for which the IAEA proposes a reference curve. Our
data are presented in Supplementary Figure 2. One data point
shows large error bar. This is due to a late counting that induces
a lack of statistics. However, our data are in good agreement with
experimental data available in the literature (20–22, 26–31) and
with the IAEA curve (17). This confirms that the experiment
was well-controlled.

The 70Zn(d,x)67Cu Reaction
67Cu (T1/2 = 61.83 h) cross sections were determined from
gamma emissions at 184.6 keV (48.7%) and 300.2 keV (0.797%)
and Equation 3. The production contribution of 67Cu from
68Zn (present at 2.2%) is not taken into account as it
is expected to be negligible [of the order of 1mb in the
model calculation TALYS 1.9 (12)]. Our data are presented
in Figure 1.

Our data complement the data already presented in the
literature (10) to higher incident energies. They are in good
agreement with Kozempel et al. (10) and allow determining the
energy of the maximum of the cross section near 23 MeV and
its value around 30mb. This information will allow to more
precisely defining optimal beam parameters for 67Cu production
using a deuteron beam and a 70Zn target.

The TALYS 1.9 simulation code was used with its default set
of parameters to calculate the cross section of the 70Zn(d,x)67Cu
reaction. The code calculation is not able to describe the data.

There is a slight shift toward lower energies of the maximum and
the data are underestimated by the code calculation.

Using our dataset and that of Kozempel et al., we have
performed a 67Cu thick target yield calculation (TTY) according
to (32). In the formula (5), σ is the production cross section, H is
the enrichment and the purity of the foil, Na is the Avogadro’s
number, λ is the decay constant of the radioisotope, Z is the
charge of the fully ionized projectile, e is the elementary charge,
M is the atomicmass of the target, Emax and Emin are themaximal
and minimal energy of the projectile penetrating the target and
dE/dx is the stopping power of the projectile in the irradiated
target. The result is plotted on Figure 2 as a function of the
incident deuteron energy.

TTY (E) =
H Na λ

Z e M

∫ Emax

Emin

σ (E)

dE/dx(E)
dE (5)

We can clearly see that the yield increases more rapidly around
the maximum as expected. Taking into account the threshold
of 26.4 MeV associated to the production of 64Cu, the shape of
the 67Cu cross section and the high price of 70Zn, the preferred
energy range for production through this route is 16–26 MeV.
This energy range corresponds to a 70Zn thickness of 576 µm.

By setting the beam intensity at 1 µA, 1 h of irradiation
and a target purity of 97.5%, the estimated activity produced
over the 16–26 MeV energy range is 6.2 MBq. This result is
higher than that of Hosseini et al. (33) which corresponds to
model calculations. The main difference comes from the cross
section values used in this study that are lower than those
experimental ones.

Interesting information is related to the expected specific
activity of the final product. To determine the contribution
of each copper isotope, experimental data were used for 67Cu
and TALYS 1.9 calculations using default parameters for the
other isotopes.
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TABLE 1 | Cross section values measured in this study for reactions having taken place in zinc, nickel, and titanium.

Energy (MeV) Cross section (mb)

67Cu 67Ga 61Cu 55Co 56Co 57Co 58Co 48V

9.8 ± 0.7 - - - - - - - 124.7 ± 4.0

10.4 ± 0.7 - - 41.5 ± 2.0 0.3 ± 0.1 35.2 ± 1.1 3.0 ± 0.2 113.4 ± 3.5 -

11.0 ± 0.7 1.8 ± 0.1 - - - - - - -

15.4 ± 0.5 - - 23.4 ± 1.8 10.1 ± 0.3 16.9 ± 0.6 28.7 ± 1.0 219.5 ± 6.9 -

15.9 ± 0.5 19.2 ± 0.9 29.3 ± 18.2 - - - - - -

17.1 ± 0.7 - - - - - - - 333.2 ± 10.7

17.5 ± 0.6 - - 21.1 ± 1.3 12.4 ± 0.4 12.4 ± 0.5 36.0 ± 1.3 212.9 ± 6.7 -

18.1 ± 0.6 22.0 ± 1.0 69.0 ± 4.8 - - - - - -

18.9 ± 0.6 - - - - - - - 337.2 ± 13.0

19.3 ± 0.6 - - 15.9 ± 1.1 14.9 ± 0.5 9.9 ± 0.4 56.7 ± 1.8 219.4 ± 6.9 -

19.7 ± 0.6 27.8 ± 1.6 120.7 ± 11.2 - - - - - 320.7 ± 9.9

20.0 ± 0.6 - - 16.5 ± 2.8 18.6 ± 0.6 9.4 ± 0.4 88.3 ± 2.8 233.5 ± 7.3 -

20.5 ± 0.6 29.6 ± 1.7 192.5 ± 15.6 - - - - - -

21.1 ± 0.6 - - - - - - - 270.1 ± 8.6

21.5 ± 0.6 - - 17.0 ± 2.9 22.8 ± 0.5 8.1 ± 0.3 172.4 ± 3.7 221.6 ± 5.2 -

22.2 ± 0.6 28.3 ± 1.6 329.2 ± 24.2 - - - - - -

23.5 ± 0.5 - - 15.3 ± 0.5 23.4 ± 0.7 7.6 ± 0.4 230.1 ± 7.2 204.8 ± 6.4 -

23.5 ± 0.5 - - 16.0 ± 1.5 23.5 ± 0.7 7.7 ± 0.4 235.6 ± 7.4 202.6 ± 6.4 -

23.9 ± 0.5 27.9 ± 1.7 440.0 ± 32.7 - - - - - -

23.9 ± 0.5 30.9 ± 1.1 358.4 ± 34.5 - - - - - -

24.8 ± 0.5 - - 14.4 ± 1.0 22.2 ± 0.7 7.2 ± 0.3 262.7 ± 8.1 182.0 ± 5.8 -

25.2 ± 0.5 28.0 ± 1.7 537.8 ± 33.3 - - - - - 182.7 ± 5.7

25.4 + 0.5 - - - 22.7 ± 0.7 8.9 ± 0.4 334.0 ± 10.3 172.6 ± 5.4 -

25.8 ± 0.5 22.2 ± 1.3 523.3 ± 36.4 - - - - - -

26.6 ± 0.5 - - 17.0 ± 2.9 20.0 ± 0.4 10.6 ± 0.5 362.4 ± 7.8 156.5 ± 3.9 -

26.8 ± 0.5 19.2 ± 1.1 501.9 ± 34.5 - - - - - -

28.2 ± 0.5 - - 23.9 ± 11.2 17.8 ± 0.6 13.2 ± 0.5 414.0 ± 12.8 135.2 ± 4.3 -

28.6 ± 0.5 17.7 ± 1.1 533.5 ± 41.0 - - - - - -

With 80 µA and 40 h of irradiation, the expected activity of
67Cu EOB is 16.4 GBq and the 67Cu represents only 35.77% of
the total copper activity due to the production of short-lived
66,68,69Cu (T1/2 : 5.12min; 0.515min; 2.85min). However, by
waiting 70min after irradiation for decays, the activity of 67Cu
reaches 99.99% of the total copper activity and, at this time,
the specific activity is 1.87 × 103 MBq/nmol or 2.79 × 104

GBq/mg. This specific activity value is very close to the theoretical
maximum (2.80 × 104 GBq/mg). This small difference is due to
the production of 65Cu.

Using an enriched target such as the one used in this study
(97.5%), 67Cu represents 99.99% of the copper activity after 121 h
of decay and the specific activity is 2.52 × 104 GBq/mg (99.00%
reached for 15 h of decay). This is due to the production of 64Cu
in a thick target containing a non-negligible proportion of 68Zn.
Using a higher enrichment will reduce the impact of other copper
isotopes and especially 64Cu. However, during this 15 h decay
time, the copper extraction chemistry can be performed as well
as the sample delivery.

The 68Zn(d,x)67Ga Reaction
In our experimental condition, 67Ga (T1/2 = 78.3 h) is produced
only from the residual amount of 68Zn through 68Zn(d,3n)
reaction. Indeed, the energy threshold for the production of 67Ga
using 70Zn is equal to 30.77 MeV. As 67Ga decays to the same
daughter nuclide as 67Cu, its contribution in the spectra was
extracted from equations (3) using gamma emissions of 184.6
keV (21.41%) and 300.2 keV (16.64%). Cross sections data for the
68Zn(d,3n)67Ga reaction are shown in Figure 3 as red dots. There
is no data for this reaction in the literature. The only possibility is
to compare to calculated values using the TALYS 1.9 code with
the default set of parameters (dashed line). The amplitude of
the cross section is compatible with the data. Additional data
at higher energies will help to constrain the theoretical models
contained in the simulation code. The cross section is relatively
high which implies, despite a 68Zn concentration of 2.2%, a non-
negligible activity production of 67Ga. The percentage of 67Ga
in the total 67Cu+67Ga activity EOB varies from 2.4% to 31.8%
with the minimum at 15.9 MeV and the maximum at 26.8 MeV
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which follow the minimum and maximum of the cross section
curve, Figure 3.

The 64Cu Production
The 64Cu (T1/2 = 12.701 h) emits a gamma of 1345.77 keV at
0.475% during its beta+ decay to 61.5%. Due to the low emission
intensity, it was not detected. Moreover, its production is possible
on several isotopes present in the target (68Zn and 70Zn) and with
nickel support (62Ni and 64Ni) which do not allow unambiguous
identification of its origin. Therefore, the calculation of the cross
section of a specific reaction could not be done. So, no cross
section values for 64Cu are presented.

DISCUSSION

In this work, we have determined the 67Cu production cross
section associated to the use of a deuteron beam impinging
an enriched 70Zn target. This production route is of great
interest as it limits strongly the production of 64Cu that is
directly linked to the level of 68Zn impurity in the target. In
our study, data up to 28.7 MeV have been obtained using the
stacked-foils technique. Beam intensity has been obtained using
an instrumented Faraday cup. Cross sections for the following
monitor reaction natTi(d,x)48V, natNi(d,x)56Co, natNi(d,x)56Co,
and natNi(d,x)61Cu have been extracted from the target backing
and the Ti monitor foil. These experimental values are in
agreement with datasets available in the literature indicating
that the experiment was well-controlled. Our new data on
70Zn(d,x)67Cu allows to clearly identifying the maximum of the
cross section around 30mb for an incident energy of 23 MeV.
Based on these data, we propose to use a deuteron beam of
26 MeV and a target of 576µm (leading to outgoing deuteron
energy of 16MeV) as optimum irradiation parameters. This leads
to a production yield of 6.4MBq/µA/h and allows the production
of 16.4 GBq with a specific activity of 2.79 × 104 GBq/mg for an
irradiation of 40 h with an intensity of 80 µA followed by a decay
period of 70min and with a 100% enriched 70Zn target. These

amounts of 67Cu activity produced with high specific activity
especially without the presence of 64Cu are suitable for clinical
studies. This makes the 70Zn(d,x) an attractive production route
for 67Cu. It can become the production route of choice only if the
use of linear accelerators such as SPIRAL2 (34) or SARAF (11) is
set-up that will provide beam intensities in the mA range and if
adequate targetry is developed.
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