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Abstract: Adenosine triphosphate (ATP) is one of the main biochemical components of the tumor
microenvironment (TME), where it can promote tumor progression or tumor suppression depending
on its concentration and on the specific ecto-nucleotidases and receptors expressed by immune
and cancer cells. ATP can be released from cells via both specific and nonspecific pathways. A
non-regulated release occurs from dying and damaged cells, whereas active release involves exocytotic
granules, plasma membrane-derived microvesicles, specific ATP-binding cassette (ABC) transporters
and membrane channels (connexin hemichannels, pannexin 1 (PANX1), calcium homeostasis
modulator 1 (CALHM1), volume-regulated anion channels (VRACs) and maxi-anion channels
(MACs)). Extracellular ATP acts at P2 purinergic receptors, among which P2X7R is a key mediator of
the final ATP-dependent biological effects. Over the years, P2 receptor- or ecto-nucleotidase-targeting
for cancer therapy has been proposed and actively investigated, while comparatively fewer studies
have explored the suitability of TME ATP as a target. In this review, we briefly summarize the
available evidence suggesting that TME ATP has a central role in determining tumor fate and is,
therefore, a suitable target for cancer therapy.
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1. Introduction

Our understanding of the physiological role of ATP has been greatly expanded ever since its
first isolation from skeletal muscle [1]. It is now clear that, besides energy transduction, ATP
plays a fundamental role in signaling, as it serves as a phosphate-group donor for substrate
activation in metabolic reactions, is required for the biosynthesis of the intracellular second messenger
cyclic adenosine monophosphate (cAMP) and mediates intercellular communication as a bona fide
extracellular messenger [2]. In 1970, Geoff Burnstock demonstrated that extracellular ATP (eATP) is the
transmitter substance released by non-adrenergic inhibitory nerves [3], and later in 1972 formulated
his “purinergic hypothesis” postulating that ATP is released by most cells as an extracellular signaling
molecule [4]. The definitive sanction of the purinergic hypothesis was provided by cloning of the
first P2Y metabotropic [5] and the first P2X1 ionotropic receptors [6], soon followed by all the other
members of the P2Y and P2X sub-families.

Although early studies focused on the role of purinergic receptors in neurotransmission, as early
as 1980 it was suggested that specific plasma membrane receptors for extracellular ATP were also
expressed by inflammatory and cancer cells [7,8]. Today there is a wide consensus that eATP and other
nucleotides, and their plasma membrane receptors play a central role in tumor cell proliferation and
immune cell regulation [9,10].

ATP possesses all the features of an ideal extracellular messenger: (a) is virtually absent in the
extracellular space under physiological conditions (estimated concentration 10–100 nmol/L); (b) is
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stored in very high amounts within the cells (from 5 to 10 mmol/L); (c) is water-soluble and freely
diffusible in the extracellular space due to negatively charged phosphate residues; (d) is rapidly
degraded by ubiquitous extracellular nucleotidases; (e) ligates specific plasma membrane receptors, a
feature that confers specificity to its signaling. These properties allow the generation of an extracellular
messenger characterized by (a) very low background noise and thus high signal-to-noise ratio; (b) rapid
diffusion through the aqueous tissue interstitium; (c) rapid signal shut-off to avoid overstimulation or
receptor desensitization [11].

Over the years, a role for eATP has been identified in several, different physiological and
pathological conditions such as [12]: glial-neuron interaction [13], sensory transmission [14], hormone
secretion [15], disorders of central nervous system [16], cardiovascular diseases [17], infection [18],
inflammation [19] and cancer [20].

2. Mechanisms of ATP Release

Intracellular ATP generated by glycolysis and oxidative phosphorylation can be released into the
TME in a non-regulated fashion in response to various cell stress- and cell death-inducing conditions,
such as hypoxia, cytotoxic agents, autophagy or plasma membrane damage [21–24]. In spite of the
high eATP levels of the TME, the much higher intracellular ATP concentration (in the 5–10 millimolar
range) generates an outward-directed gradient for ATP, thus facilitating passive efflux. In addition to
the chemical gradient, the electric gradient (the plasma membrane potential, negative inside, facilitates
efflux of a negatively charged molecule such as ATP) also supports passive ATP release. ATP released
by stressed and necrotic cells acts as a danger signal generating a pro-inflammatory microenvironment
that promotes the recruitment of immune cells to the damage sites [25,26]. It is likely that eATP is the
prototypical and most widely diffused damage-associated molecular pattern (DAMP).

In addition to passive leakage, it is now generally agreed that most cells are able to actively
release ATP [27]. Cytosolic vesicles, thanks to the vesicular nucleotide transporter (VNUT or SLC17A9),
accumulate ATP, which is then rapidly released via stimulated or constitutive exocytosis [28]. The
secretory vesicles VNUT transporter accumulates ATP at the expense of the proton electrochemical
gradient (positive inside) generated by the vacuolar ATPase (V-ATPase) [29]. Vesicular exocytosis is
regulated by intracellular Ca2+ levels and by the soluble N-ethylmaleimide-sensitive factor attachment
protein receptor (SNARE) [30]. Release of ATP-laden vesicles is dependent on the PI3K/Rho/ROCK
pathways and on the reorganization of the actin cytoskeleton and, of relevance in tumors, is promoted
by hypoxia [31,32]. Release of ATP by stimulated exocytosis occurs in various cell types, including
neurons and secretory cells [33,34]. Anecdotal evidence suggests that T lymphocytes may also release
ATP by a similar mechanism; thus, vesicular release could be important in setting ATP levels in the
TME during T lymphocytes activation [35]. Plasma membrane-derived microvesicles may be an
additional mechanism of ATP release.

Besides vesicular release, numerous studies have shown that ATP can be released through
non-exocytotic conductive pathways. ATP-binding cassette (ABC) transporters that hydrolyze ATP
to support the transmembrane movement of different molecules have been proposed to function
as ATP-releasing pathways [36]. Mammalian ABC transporters are integral membrane proteins
comprised of 12 membrane-spanning domains and two conserved cytoplasmic domains, which
bind and hydrolyze ATP [37]. Among them, multidrug resistance protein 1 (MDR1, also known
as P-glycoprotein) is associated with ATP channel activity. The first demonstration that MDR1
may be implicated in ATP transport originated from the observation that ATP released from CHO
(Chinese hamster ovary) cells and human lung tumor cells was proportional to the level of MDR1
expression. Moreover, the transfection of the wild-type mdr1 gene increased the amount of released
extracellular ATP compared to untransfected controls [38]. Cystic fibrosis transmembrane conductance
regulator (CFTR) was also suggested to be an ATP-releasing pathway [39], but subsequent studies
were unable to confirm this finding [40,41]. Over the years, other anion channels were recognized as
ATP-permeable channels, including chloride ion channels [42] and volume- and voltage-dependent
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anion channels (VDAC) [43]. Currently, five families of channels are thought to mediate various
forms of physiological and pathophysiological ATP release: connexin hemichannels, pannexin 1
(PANX1), calcium homeostasis modulator 1 (CALHM1), volume-regulated anion channels (VRACs,
also known as volume-sensitive outwardly rectifying (VSOR) anion channels) and maxi-anion channels
(MACs) [44] (Figure 1). Connexins and pannexins share similar structural features, with N- and
C- terminal cytoplasmic domains, four membrane-spanning segments and both intracellular and
extracellular loop domains [45].

Figure 1. Different pathways for regulated ATP release into the tumor microenvironment (TME). ATP
generated inside the cell can be actively released through plasma membrane-derived microvesicles,
vesicular exocytosis or different non-exocytotic conductive pathways, including specific ATP-binding
cassette (ABC) transporters, the P2X7R, connexin and pannexin channels, calcium homeostasis
modulator 1 (CALHM1) channel, volume-regulated ion channels (VRACs) and maxi-anion channels
(MACs).

Connexin and pannexin proteins assemble to form hexameric membrane structures called
connexons and pannexons, respectively, that mediate the release into the extracellular space of small
molecules, including ATP, glutamate and others with MW below 1–2 kDa [46,47]. The main difference
between these two channel-forming proteins is that connexins can form gap junctions and hemichannels,
while pannexins only form hemichannels [48]. Gap junctions allow direct communication between
adjacent cells, while undocked hemichannels mediate the release of cytoplasmic components [49,50].
Connexins, of which more than 20 isoforms have been currently identified, are widely distributed [49].
In 1998, Nedergaard and co-workers provided the first evidence for the involvement of connexins in
cellular ATP release. They stably transfected C6 glioma cells (lacking endogenous gap junctions) with
connexin 43 (Cx43) or connexin 32 (Cx32), showing that the Cx43+ and Cx32+ C6 clones released more
ATP compared to wild-type C6 cells [51]. Moreover, they also noted the potentiation of ATP release in
other cells transfected with connexins, including Cx43-, Cx32-, Cx26- and Cx30-overexpressing HeLa
cells and Cx32-overexpressing U373-MG human glioblastoma cells. Other connexin isoforms, such as
connexin-26, connexin-37 and connexin-36, were shown to mediate ATP release [52], although ATP
permeability was directly demonstrated only for connexin-43 hemichannels [46]. In monocytes and
macrophages, connexin-43 activation and the associated ATP release may be regulated by hypoxia,
changes in intracellular calcium concentration, reactive oxygen species (ROS), nitric oxide (NO) and
stimulation of TLR2 and TLR4 [53–55].
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The human pannexin family consists of three members: pannexin-1, -2 and -3 [52]. Pannexin-1
is expressed in different excitable and non-excitable cells, whereas pannexin-2 and pannexin-3 are
restricted to the brain and skin/bone, respectively [56]. There is ample evidence to support the function
of pannexin-1 as a plasma membrane channel and its function as an ATP release channel [57]. The most
direct evidence that pannexin-1 is an ATP-permeable channel was obtained using Xenopus oocytes
injected with human pannexin-1 cRNA [47]. The opening and activation of pannexin-1 channels are
mediated by multiple events, such as intracellular Ca2+ increase, redox potential changes, mechanical
stress and P2X7 receptor (P2X7R) activation [47,58,59]. In 2014, Dahl and co-workers proposed
a model whereby pannexin-1 forms two open channel conformations depending on the mode of
activation: a large conductance, ATP-permeable, conformation induced by many physiological stimuli
(including extracellular K+, intracellular Ca2+, low oxygen tension) and an intermediate-conductance,
ATP-impermeable, conformation activated by membrane depolarization [60]. Thus, they hypothesized
two different channel states associated with the two biophysical channel proprieties, suggesting
that the large conductance may be an essential requirement for the ATP permeability. However, a
more recent study confuted this conclusion showing that pannexin-1 activated by truncation of the
carboxyl-terminal auto-inhibitory region exhibits intermediate conductance currents associated with
ATP release [61].

Channels belonging to the calcium homeostasis modulator (CALHM) family have been proposed
to support ATP release. To date, only CALHM1 out of the six members (CALHM1-6) of the family
has been identified as a functional ATP-permeable ion channel. CALHM1 acts as a pore-forming
subunit of a plasma membrane, voltage-gated, non-selective ion channel with a pore large enough to
accommodate ATP [62,63]. ATP release associated with CALHM1 expression has been demonstrated
in vitro and in vivo [64]. Heterologous expression of CALHM1 in HeLa cells, COS cells and Xenopus
oocytes led to ATP release into the extracellular space in response to different stimuli, including
membrane depolarization and lowering of extracellular Ca2+ concentration [65].

In response to hypotonic cell swelling, cells activate several processes to restore normal cell
volume, among which the major mechanism is the conductive efflux of organic and inorganic osmolytes
through the anion-selective channels VRACs (also known as VSORs) [66].

VRACs are ubiquitously expressed in many tissues where they can be activated by hypotonic
cell swelling via a reduction in the cytoplasmic ionic strength, as well as by the activation of plasma
membrane receptors, including purinergic, epidermal growth factor and bradykinin receptors [67,
68]. Although pharmacological evidence does not support the involvement of VRAC channels in
swelling-induced ATP release [69,70], ATP permeability of VRACs was recently demonstrated by
luciferin/luciferase-based measurements of ATP release from Xenopus oocytes exposed to hypotonic
stress [71].

In addition to VRAC channels, maxi-anion channels (MACs) are also directly activated by
cell swelling and involved in the ATP release mechanism [72]. MACs are voltage-dependent,
large-conductance, ATP-permeable anion channels present in every cell type and activated by different
stimuli, including hypoxia, high glucose and osmotic swelling [73,74]. The first evidence of MACs
permeability to ATP stemmed from observations in mouse mammary C127i cells suggesting that ATP
interacts with a site inside the pore lumen [75]. This report was later supported by the estimation
of the pore entrance size, confirming that the pore entrance is wide enough to accommodate ATP
molecules [76]. Moreover, Okada and co-workers discovered that SLCO2A1 is the core pore-forming
component of MACs and showed that ATP release is potentiated by the heterologous expression of
SLCO2A1 in HEK293T cells, suggesting that MAC channels made by SLCO2A1 are permeable to
ATP [77].

An additional pathway for ATP release is the P2X7R. Besides a cation-selective channel, the P2X7R
can generate a large, non-selective pore (macropore) permeable to ATP and other molecules up to 900
Da. Although it was originally thought that P2X7R-associated pore opening occurs after the opening
of the P2X7R ion channel, and thus usually only after prolonged stimulation, it is now clear that pore
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opening occurs with no delay after P2X7R gating, thus allowing early fluxes of low as well as high MW
molecules [78]. Over the years, solid evidence has accumulated to foster the role of the P2X7R in ATP
release in response to a variety of stimuli, a finding further supported by the observation that P2X7R
gating causes intracellular ATP depletion [79–82].

Besides ion channels, the eATP level in the extracellular space can also increase thanks to additional
mechanisms. Adenylate kinase (AK) catalyzes the reversible reaction ATP + AMP↔ 2ADP. Different
AK isoforms are present in the cytosol (AK1), in the mitochondrial intermembrane space (AK2), in the
mitochondrial matrix (AK3) and in the nucleus (AK6). Recently, an ecto-AK activity on different cell
types, including human hepatocytes and leukemic cell lines, has been identified, suggesting a role in
the regulation of eATP levels [83–85]. In addition, nucleoside diphosphate kinases (NDPK/NME/NM23)
are also responsible for the conversion of extracellular AMP and ADP to ATP. These enzymes act
as cell-surface ectoenzymes expressed on the plasma membrane fueling trans-membrane nucleotide
transfer. Plasma membrane NDPK responsible for extracellular ATP synthesis has been identified in
glioma cells, lymphocytes and hepatocytes [83,84,86,87].

Finally, the F1F0 ATP synthase has been proposed to participate in extracellular ATP synthesis.
The F1F0 ATP synthase is the mitochondrial enzyme that couples ATP synthesis to the transmembrane
electrochemical proton gradient. Although the contribution of F1F0 ATP synthase to extracellular ATP
synthesis is not fully understood, plasma membrane localization of ATP synthase has been identified
in adipocytes, human keratinocytes and tumor cell lines [88,89]. Thus, non-lytic pathways for ATP
release are expressed by both immune and tumor cells, suggesting that regulated release is the main
pathway for eATP accumulation in the TME.

3. Detection of Extracellular ATP in the TME

It is an established notion that ATP is one of the main components of the tumor microenvironment
(TME), where it affects cancer cell proliferation, motility and dissemination and antitumor immune
response [10,90]. Several techniques to measure eATP in vitro and in vivo have been developed over
the years [91]. Dubyak and co-workers proposed a method to measure ATP in the pericellular space by
using a cell-surface-bound luciferase. Firefly luciferase was fused in frame with the immunoglobulin
G (IgG)-binding domain of protein A from Staphylococcus aureus, thus allowing binding of the chimeric
protein to IgG absorbed onto the cells surface [92]. More sophisticated approaches exploited atomic
force microscopy to measure local ATP concentration [93], fluorescence microscopy for real-time ATP
measurement by the two-enzyme system [94] or HPLC-based methods [95]. Other in vitro methods to
measure ATP include the patch-clamp technique [96] and enzyme-coated platinum microelectrodes.
Microelectrodes can also be used to monitor eATP changes in vivo [97]. More recently, additional
techniques have been proposed, such as an assay that measures the conversion of NADP+ into NADPH
in the presence of ATP by fluorescence microscopy [98], a sensor based on malonyl-coenzyme A
synthetase that undergoes a conformational change upon ATP-binding, thus causing an increase in
fluorescence intensity [99] and ratiometric, Förster resonance energy transfer (FRET)-based fluorescent
indicators [100,101]. Most of these techniques have high sensitivity, but are in general of difficult if
not impossible application in vivo. The probe that provides most reliable measurements of the eATP
concentration in vivo, and to a certain extent in vitro, is a plasma membrane-expressed luciferase,
named pmeLUC (plasma membrane luciferase), developed in our laboratory [79]. Use of the pmeLUC
probe has unequivocally demonstrated that eATP TME levels are in the range of high micromolar level
(50–200 µmol/L), whereas in healthy tissues eATP concentration is submicromolar (likely about 10–100
nmol/L) [102,103]. PmeLUC is a chimeric protein engineered by appending to the Photinus pyralis
luciferase cDNA a N-terminal leading sequence and a C-terminal glycosyl phosphatidylinositol (GPI)
anchor from the human folate receptor [79]. Thanks to this modification, the pmeLUC probe is targeted
to the external side of the plasma membrane, thus allowing ATP measurement in the extracellular
space. This probe can be expressed in all cell types amenable to transfection, which can be either used
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to generate a primary tumor or can be inoculated into a tumor (or into the peritumor space) to monitor
ATP concentration [104,105].

Over the years, the pmeLUC probe has been used to measure the eATP concentration in the
TME of many different experimental tumors (for example, neuroblastoma, human ovarian carcinoma,
human melanoma, mouse colon carcinoma and liver metastasis of human colon carcinoma in mice),
consistently showing that the TME is rich in extracellular ATP [103,106–108].

4. Role of Extracellular ATP in the TME

In the TME, extracellular ATP is degraded by different ecto-nucleotidases, chiefly CD39 and
CD73. The ecto-nucleoside triphosphate diphosphohydrolase CD39 hydrolyzes ATP to ADP and
AMP, while ecto-5′-nucleotidase CD73 hydrolyzes AMP to adenosine, which is further degraded to
inosine by adenosine deaminase (ADA). CD39 and CD73 affect tumor growth thanks to their ability to
produce adenosine, which promotes immunosuppression in the TME via adenosine P1 receptors [109].
CD39 is highly expressed by dendritic cells (DCs), tumor-infiltrating Th17 lymphocytes and M2
macrophages [110,111]. CD73 is overexpressed by many tumors and expressed by a subpopulation of
human T and B lymphocytes, stromal cells and dendritic cells [112,113]. CD39 and CD73, which are
both upregulated in the hypoxic TME, impair the antitumor immune response and facilitate tumor
progression [109]. Several studies show that cd39−/− or cd73−/−mice develop spontaneous inflammatory
bowel or lung injury and that cd73−/− mice are resistant to experimental metastasis, suggesting that the
CD39/CD73 axis is important for inflammation and therefore for the ATP pro-inflammatory activity
that promotes antitumor immunity in the TME [114,115]. Probably, soluble or microvesicle-associated
ATPases accumulate in the TME, where they cooperate with plasma membrane ecto-nucleotidases in
ATP degradation and adenosine accumulation. Adenosine, actively generated by CD73, ligates the
P1 purinergic receptors (P1Rs), divided into four subtypes: A1R, A2AR, A2BR and A3R. P1Rs are G
protein-coupled receptors, and their activation triggers stimulation or inhibition of adenylyl cyclase
(AC) (depending on the receptor subtype), modifying intracellular cAMP content. Moreover, A1R,
A2BR and A3R stimulation also triggers phospholipase C (PLC) activation and thus release of Ca2+

from intracellular stores. Due to the differential signaling induced and the diverse expression of P1
receptors on cancer cells, adenosine may trigger both tumor growth stimulation and inhibition [116].
A1Rs display protumoral effects increasing melanoma chemotaxis and breast cancer proliferation,
but on the other hand, antiproliferative effects have been observed in glioblastoma, colon cancer and
leukemia cells. A2ARs may enhance proliferation in breast cancer or trigger cell death in melanoma,
while A2BRs and A3Rs are involved in metastatic spreading and apoptosis [116–119]. However,
adenosine is well known for its immunosuppressive activity in the TME. Of the four P1R subtypes,
A2AR is the main adenosine receptor expressed by immune cells, including dendritic cells (DCs),
macrophages, B and T cells. A2AR stimulation inhibits antigen presentation by DCs, drives M2
macrophage differentiation and strongly influences T cell activation. This receptor mainly counteracts
TCR-mediated signaling of T lymphocytes by increasing intracellular cAMP levels and promoting the
activity of protein kinase A (PKA), which attenuates T cell proliferation and inhibits inflammatory
cytokine production and effector functions [120,121].

Extracellular ATP acts on tumors via specific plasma membrane receptors. Virtually all cancer and
immune cells express P2 receptors and are sensitive to extracellular ATP. P2 receptors are divided into
two subfamilies: P2Y (P2YR) and P2X (P2XR) receptors. P2YRs are G-protein coupled metabotropic
receptors that comprise eight members (P2Y1R, P2Y2R, P2Y4R, P2Y6R, P2Y11R, P2Y12R, P2Y13R and
P2Y14R), while P2XRs are ionotropic receptors that include seven members (P2X1-7R). P2X subunits
assemble to form homo- or hetero-trimeric cation-selective channels [122]. Extracellular ATP acting
at P2Rs may sustain cell proliferation or trigger cell death via different pathways, depending on the
ATP concentration and on the level of ectonucleotidases and specific P2Rs expressed by immune
and tumor cells [123]. Among P2YRs, P2Y1R, P2Y2R and P2Y6R support cell growth of healthy and
cancer cells by activating the PI3K-AKT and ERK-MAPK pathways or by exacerbating DNA damage
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in tumor cells [124], thus eATP in the TME may promote tumor proliferation and support invasiveness
and metastatic spreading via P2YRs. In addition, in several cancer cell types (human melanoma
MDA-MB-435s cells, human PC-3M prostate cancer cells, PC8 lung carcinoma and human T47D breast
cancer cells) extracellular ATP triggers metalloproteinase (MMP) and cathepsin secretion via P2X7R
stimulation, facilitating local invasion and metastatic spreading (Figure 2). Epithelial-mesenchymal
transition (EMT) is also promoted in breast and prostate cancer cells via P2Y2R activation [125–127].
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Figure 2. Extracellular ATP shapes the TME. ATP is released into the tumor microenvironment (TME)
in a non-regulated or regulated fashion. Extracellular ATP can promote immunosuppression or support
antitumor immunity depending on its concentration and specific receptors expressed by immune and
cancer cells. ATP is degraded by ecto-nucleotidases (CD39 and CD73) to generate ADP, AMP and
adenosine (ADO), which promote immunosuppression via adenosine receptors P1 (P1Rs) (mainly
A2AR and A2BR). A2AR stimulation inhibits antigen presentation by dendritic cells (DCs) and impairs
cytotoxic T lymphocytes functions. Extracellular ATP acting at P2Y receptors (P2Y1R, P2Y2R or P2Y6R)
and P2X receptors (mainly P2X7R) supports tumor cell survival and proliferation, but at the same
time drives recruitment and activation of immune cells such as CD8+ and CD4+ T lymphocytes, Tregs,
tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs). In addition,
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ATP activates DCs to promote the release of pro-inflammatory cytokines, such as IL-1β and tumor
necrosis factor (TNF), and potentiate tumor antigen presentation. ATP-activated DCs increase CD8+ T
cell responses, thus supporting antitumor immunity.In the TME, eATP triggers via P2X7R the release
of metalloproteinases (MMPs) and cathepsin from tumor cells, T lymphocytes and macrophages.
MMPs degrade the extracellular matrix and support tumor cell invasion and metastatic spreading.
ATP-mediated activation of P2YR, e.g., P2Y2R, drives the formation of pseudopodia and facilitates
tumor cell migration across vessel endothelium.

Over the years, several studies have shown that the P2X7R has growth-promoting activity and
supports tumor progression [128–130], although this receptor is widely known for its cytotoxic activity.
This highlights an interesting paradox, as the high eATP concentration in the TME should be sufficient to
trigger P2X7R-mediated cytotoxicity, but surprisingly, cancer cells seem to be strikingly refractory. The
reason for this refractoriness is unknown, but it has been suggested that it may at least in part be due to
the uncoupling of P2X7R activation from the intracellular death machinery [129], or otherwise, the high
plasma membrane cholesterol may inhibit P2X7R pore opening, while leaving the growth-promoting
activity of P2X7 channel unperturbed [131]. Besides the P2X7R, P2X3R, and P2X5R overexpression has
also been implicated in tumor cell proliferation and survival [132,133].

Previous data showed that eATP acting mainly at P2X7R, P2X1R and P2YRs is a stimulus for
intracellular energy metabolism [134–136]. Basal activation of P2X7R (and possibly other P2Rs)
causes an elevation in cytoplasmic and mitochondrial Ca2+ concentration, stimulating oxidative
phosphorylation and promoting ATP production [136]. P2X7R stimulation also upregulates expression
of the glucose transporter GLUT1 and other glycolytic enzymes involved in aerobic glycolysis,
supporting the generation of an acid, immunosuppressive TME [137] (Figure 3).

It is now clear that ATP concentration in the TME shapes the cellular and biochemical composition
of the TME in different ways. The basic assumption is that low ATP levels promote tumor proliferation
and immunosuppression, while high ATP levels activate infiltrating inflammatory cells and promote
antitumor immunity [9]. However, eATP acting at P2YRs (and possibly at P2X7R as well) is also known
to drive recruitment of inflammatory cells in the TME, and therefore is in principle responsible for the
highly immunosuppressive heavy inflammatory infiltrate, tumor-associated macrophages (TAM), Treg

cells and myeloid-derived suppressor cells (MDSCs) included [138,139]. In addition, ATP may fuel
a direct antitumor immune response by depleting Treg cells via P2X7R-mediated cytotoxicity or via
stimulation of DCs, thus triggering IL-1β release and potentiating tumor antigen presentation to CD4+

and CD8+ lymphocytes [140–143] (Figure 2).
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5. Extracellular ATP as a Target for Cancer Therapy

Due to its key role in tumor-host interaction, the most obvious target for cancer therapy would
be eATP itself. Attempts to reduce the TME eATP concentration might be beneficial as this might
decrease adenosine generation and growth stimulation of cancer cells, or alternatively, it might be
rather advisable to further increase its concentration to exploit ATP-dependent cytotoxicity. In the
mid ‘70 s, Rozengurt and Heppel and Landry and Lehninger showed that eATP causes permeability
changes of the plasma membrane and severely upset intracellular ion balance [144,145]. Later, our own
laboratory carried out an extensive investigation of the mechanisms responsible for eATP-dependent
cell death [146–149]. Reports on the anticancer activity of eATP have accumulated over the years.
Rapaport first showed that the addition of eATP inhibited cancer cell growth by arresting the cell cycle
in the S phase [150]. Moreover, he demonstrated that intraperitoneal injection of ATP (50 mM) into
tumor-bearing mice effectively reduced tumor size [151]. Further in vivo studies performed in human
prostate cancer xenograft showed that daily intraperitoneal administration of eATP (25 mM) causes a
significant tumor regression [152]. In addition, clinical studies reported that intravenous administration
of ATP was well tolerated by cancer patients, leading to an improvement of tumor-associated cachexia
and overall health conditions, suggesting that eATP in combination with other treatments may not
only help to reduce tumor size but may also reduce systemic side effects [153,154].

Among P2Rs, the P2X7R is an appealing target. However, a substantial difficulty in devising
P2X7R-targeting strategies for cancer therapy is the very steep eATP activation curve of the P2X7R
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that precludes the controlled activation of this deadly receptor using eATP or pharmacological ATP
analogs. Therefore, the use of positive allosteric modulators, compounds that potentiate P2X7R
activation in the presence of relatively low eATP concentrations, such as polymyxin B, ginsenosides and
clemastine [155–157], may provide novel strategies to enhance P2X7R-mediated cytotoxicity in cancer.
Hyperthermia has also been shown to induce cancer cell death via P2X7R activation, thus suggesting
that combining eATP with hyperthermia could be a clinically viable option [158]. An interesting
extension of P2X7R-targeting in cancer therapy comes from the finding that eATP increases plasma
membrane permeability for cytotoxic molecules (e.g., doxorubicin, ethidium bromide, thiocyanate) via
P2X7R pore opening [159,160]. More recently, a mechanism has been proposed by which shock wave
treatment of human osteosarcoma U2OS cells induces the efflux of intracellular ATP, which promotes
the intake of methotrexate (MTX) by altering plasma membrane permeability via P2X7R activation,
thus leading to MTX-induced apoptosis [161].

Despite the beneficial effect of eATP for the treatment of cancer, its major disadvantage is the
rapid degradation by ecto-nucleotidases, thus requiring high doses to reach a therapeutic effect, as
shown by the observation that continuous intravenous infusion of ATP does not increase the eATP
content [162]. A sophisticated strategy to prevent fast eATP degradation has been proposed by
Diaz-Saldivar and Huidobro-Toro. These authors synthesized highly biocompatible and biodegradable
albumin nanoparticles (ANPs) loaded with ATP and coated with erythrocyte membranes (EMs). This
treatment controls the rate of ATP release and extends the nanoparticle circulation time. Incubation
of these ATP-laden nanoparticles with HeLa and Hek293 cell cultures produced a constant and
controlled release of ATP, thus enhancing the antiproliferative activity of this nucleotide [163]. A
similar strategy was developed using a pH-sensitive nanoplatform made up of chitosan (Cs) and
mesoporous hydroxyapatite (HAP), which was used for ATP delivery to tumor cells. This nanoplatform
induced a high rate of apoptosis and slowed down tumor cell growth [164]. Another option to increase
eATP in a controlled fashion may be CD39 and/or CD73 targeting [165,166] (Table 1). Recent studies
demonstrated that the use of anti-CD39 antibodies boosts the eATP-P2X7-inflammasome-IL-18 axis,
thus resulting in a decrease of macrophage recruitment and an increase in effector CD8+ T cells in the
TME [167]. On the same line, CD39 and CD73 suppression using antisense oligonucleotides (ASOs)
has been shown to prevent eATP degradation and to rescue T cell proliferation, thus promoting an
efficient antitumor immune response [168].

In the TME, extracellular ATP has a central role in the mechanism of immunogenic cell death (ICD),
which is an atypical type of cell death associated with DAMP (danger-associated molecular pattern)
release (e.g., ATP or high-mobility group protein B1, HMGB1), or DAMP exposure on the plasma
membrane (e.g., calreticulin, type I interferons) [169]. A key step of ICD is eATP-dependent P2X7R
stimulation and the ensuing IL-1β release via NLRP3 inflammasome activation. IL-1β stimulates
dendritic cells (DCs) activation and tumor antigen presentation to CD4+ and CD8+ T lymphocytes,
thus promoting an efficient antitumor immune response [140]. Several chemotherapeutics, such as
mitoxantrone, anthracyclines and oxaliplatin, trigger ICD and the associated ATP release via canonical
pannexin 1 channels or P2X7R. γ-irradiation has been reported to trigger P2X7R-dependent ATP release
from B16F10 mouse melanoma cells, suggesting that this receptor plays a role in radiation-induced
ICD [82]. Recently, preclinical and clinical studies have shown the efficacy of the combination of
radiotherapy-induced ICD and immune checkpoint inhibitors for cancer treatment [170]. An overview
of clinical trials targeting eATP metabolism (i.e., CD39 or CD73 ecto-nucleotidases), or exploiting eATP
to confer tumor selectivity to therapeutic antibodies, is shown in Table 1.
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Table 1. Overview of clinical trials targeting eATP in the TME.

Study Identifier Code Target

Study of SRF617 in patients with advanced solid tumors NCT04336098 CD39

TTX-030 in combination with immunotherapy and/or chemotherapy in
subjects with advanced cancers

NCT04306900
NCT03884556 CD39

A study of the CD73 inhibitor LY3475070 alone or in combination with
Pembrolizumab in participants with advanced cancer NCT04148937 CD73

CPI-006 alone and in combination with ciforadenant and
pembrolizumab for patients with advanced cancer NCT03454451 CD73

Study of TJ004309 in combination with atezolizumab in patients with
advanced or metastatic cancer NCT03835949 CD73

A phase I/Ib study of NZV930 alone and in combination with PDR001
and/or NIR178 in patients with advanced malignancies NCT03549000 CD73

A phase I, open-label study to assess the safety, tolerability,
pharmacokinetics and antitumor activity of MED19447 (oleclumab) in

Japanese patients with advanced solid malignancies
JapicCTI-184194 CD73

An investigational immune-therapy study of experimental medication
BMS986179 given alone and in combination with nivolumab NCT02754141 CD73

A phase Ia/Ib study of STA551 as a single agent and in combination
with atezolizumab in patients with solid tumors JapicCTI-205153 CD137

Autophagy, a key component of the adaptive cell survival response, likely participates in setting
extracellular ATP levels in the TME. Autophagy-dependent ATP release is required for the antitumor
effects promoted by chemotherapy-induced cell-death [107] and by the caloric restriction mimetic
hydroxycitrate [108]. A novel approach to exploit extracellular ATP for antitumor therapy has been
proposed by Igawa and co-workers (Figure 4). They generated an anti-CD137 switch antibody (STA551)
that exerts agonistic activity only in the presence of high ATP concentration (above 100 µmol/L), a level
close to that of TME eATP. The STA551 antibody demonstrated potent and selective activity in different
mouse and human tumor models without generalized immune system activation. Moreover, this
antibody showed a synergic antitumor effect with anti-PD-L1 and increased CD8+ T cell proliferation
and infiltration (Table 1). This suggests the possible use of STA551 in combination with other treatments,
such as chemotherapy or administration of starvation mimetic compounds, to boots antitumor immune
response [171].

On the other hand, high ATP concentration could lead to generation of large amounts of adenosine
and therefore promote immunosuppression. An alternative strategy to decrease eATP levels in the
TME, avoiding excess adenosine generation, is to inhibit ATP release. Suitable targets are the pannexin
1 channels or the P2X7R itself. Pannexin 1 inhibition with different non-selective compounds, such as
carbenoxolone, mefloquine or probenecid, decreases ATP release, and its blockade has been shown to
reduce cancer cell survival and to inhibit metastatic spreading [172]. Several small molecules P2X7R
blockers, including AZD9056, AZ10606120 and GSK1482160, were reported to exhibit antitumor activity
in multiple experimental tumor models [173,174]. Genetic disruption or pharmacological inhibition of
P2X7R not only reduces ATP release but also strongly impairs energy metabolism, reducing cancer cell
proliferation and invasiveness [134].

Targeting ATP production using antiglycolytic agents seems to be an effective therapeutic approach
to suppress cancer progression [175]. A recent study demonstrated that the cardiac glycoside ouabain
affects glycolysis and greatly decreases mitochondrial oxidative phosphorylation (OXPHOS) in human
lung cancer A549 cells and human breast cancer MCF7 cells, thus depleting ATP production and
contributing to cancer cell cytotoxicity via AMPK activation [176].

The opportunistic uptake of extracellular nutrients via multiple endocytic mechanisms has been
described as a primary hallmark of cancer metabolism [177]. Chen and co-workers showed that eATP
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is internalized by various cancer cells by micropinocytosis to elevate intracellular ATP concentration,
promote cell growth and survival and enhance resistance to different anticancer drugs [178,179].
Furthermore, elevated intracellular ATP upregulates signal transduction, including signals involved
in epithelial-mesenchymal transition (EMT), migration and invasion. Knockout of the sorting nexin
5 (SNX5) gene (a protein very important for macropinocytosis) lowers intracellular ATP levels and
inhibits cancer cell proliferation and cell migration, confirming the important role of macropinocytosis
in eATP-mediated tumorigenesis and metastasis [180]. These findings could also shed light on the
mechanism by which cancer cells grow faster than normal cells despite a largely inefficient ATP
synthesis. The presence of high levels of eATP in the TME might be a source of energy for cancer cells
via eATP internalization, that in turn leads to intracellular ATP increase, or via the generation of high
energy molecules using eATP as a phosphate donor [181]. Finally, a recent study demonstrated that
treatment with apyrase (an ATP hydrolase) in combination with SOX-9 (sex-determining region Y-box
9) knockdown decreased tumor growth and enhanced drug sensitivity in mice [182], confirming that
reducing eATP levels and inhibiting eATP-dependent responses are a viable anticancer approach.
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Figure 4. Strategies to exploit the elevated eATP concentration in the TME for antitumor therapy.
A novel anti-CD137 monoclonal antibody was generated by Igawa and co-workers [171] that binds
the antigen only in the presence of ATP levels close to those found in the TME (left panel). Under
these conditions, and only under these conditions, this antibody binds and activates the costimulatory
receptor CD137 expressed by CD8+ T cells, thus promoting T cell proliferation and cytokines release
(e.g., IFN-γ), which boosts antitumor immune response (right panel). In the same way, we can
hypothesize the engineering of an antibody that binds and activates suicide receptors on tumor cells,
such as the FAS receptor, that is selectively activated by high ATP in the TME (right panel).

6. Conclusions

For many years, antitumor therapy was based on the administration of highly toxic treatments
aimed at killing each and every cancer cell, with the side effect of substantial damage to the host tissues.
Today, the increasing awareness of the complex network of information exchange occurring in the
TME provides a unique opportunity to fight tumors by taking advantage of the intrinsic defenses of
the host. Several in vitro and in vivo studies show that extracellular nucleotides, mainly ATP, affect
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tumor growth and tumor-host interaction in multiple ways. Extracellular ATP can promote cancer cell
growth and metastatic spreading or trigger cancer cell death, is involved in immune cell recruitment
and activation, and can also promote immunosuppression by being degraded to adenosine. Over
the past few years, several different pathways for ATP release into the extracellular milieu have been
identified, and multiple plasma membrane receptors responsible for the ATP-dependent effects have
been characterized. Several potent and highly selective pharmacological blockers have also been
synthesized, among which P2X7R-targeting small molecule drugs and antibodies may be promising
cancer therapies.

An appealing therapeutic approach may be to directly target eATP in the TME in the attempt
to reduce its levels and thus inhibit adenosine generation or cancer cell growth, or further increase
its concentration to exploit ATP-dependent cytotoxicity. Different strategies have been proposed to
regulate ATP release and accumulation in the TME, thus inducing eATP-dependent cancer cell-death or
promoting antitumor immune response. At the same time, multiple approaches have been developed
to decrease eATP content and inhibit ATP production, thus enhancing anticancer drug sensitivity
and reducing immunosuppression. However, a word of caution is needed here. Low eATP levels
have a growth-promoting activity; therefore, manipulations aimed at lowering TME eATP may also
unwillingly end up with the undesired effect of promoting tumor growth.

In conclusion, eATP is a major biochemical constituent of the TME with a fundamental role in
tumor-host interaction and an appealing target for innovative anticancer therapy.
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