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ABSTRACT

Intradialytic hypotension (IDH) is a frequent and serious complication of chronic haemodialysis, linked to adverse long-
term outcomes including increased cardiovascular and all-cause mortality. IDH is the end result of the interaction between
ultrafiltration rate (UFR), cardiac output and arteriolar tone. Thus excessive ultrafiltration may decrease the cardiac output,
especially when compensatory mechanisms (heart rate, myocardial contractility, vascular tone and splanchnic flow shifts)
fail to be optimally recruited. The repeated disruption of end-organ perfusion in IDH may lead to various adverse clinical
outcomes affecting the heart, central nervous system, kidney and gastrointestinal system. Potential interventions to
decrease the incidence or severity of IDH include optimization of the dialysis prescription (cool dialysate, UFR, sodium
profiling and high-flux haemofiltration), interventions during the dialysis session (midodrine, mannitol, food intake,
intradialytic exercise and intermittent pneumatic compression of the lower limbs) and interventions in the interdialysis
period (lower interdialytic weight gain and blood pressure–lowering drugs). However, the evidence base for many of these
interventions is thin and optimal prevention and management of IDH awaits further clinical investigation. Developing a
consensus definition of IDH will facilitate clinical research. We review the most recent findings on risk factors,
pathophysiology and management of IDH and, based on this, we call for a new consensus definition of IDH based on clinical
outcomes and define a roadmap for IDH research.
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INTRODUCTION

Despite recent advances in dialysis techniques, the high mortal-
ity of end-stage renal disease (ESRD) patients remains a major
challenge, with most patients depending on haemodialysis (HD)
to replace renal function [1]. Intradialytic hypotension (IDH) is
one of the most common complications of HD in clinical prac-
tice due to the older average age of dialysis patients and the in-
creasing prevalence of comorbidities such as diabetes mellitus
and heart failure (HF). The prevalence of IDH ranges from 8 to
40% in different studies [2–5]. The reasons for the discrepant
IDH prevalence in these studies are not completely known but
might be due to using different definitions of IDH and/or to dif-
ferent patient characteristics [age, prevalence of diabetes or car-
diovascular disease, interdialytic weight gain (IDWG), body
weight and gender distribution]. While IDH causes huge patient
distress during dialysis sessions, it is also strongly associated
with vascular access failure, cardiovascular events, end-organ
damage and mortality, emphasizing the need to optimize pre-
ventive and therapeutic strategies.

This review discusses the most recent findings on risk fac-
tors, pathophysiology and management of IDH. Based on this,
we call for a new consensus definition of IDH, suggest a meth-
odology for its development and propose a roadmap for IDH
research.

IDH DEFINITION

Increasing our understanding of IDH is restricted by the absence
of a consensus medical definition (Table 1). Definitions differ in
the blood pressure (BP) parameter used [decrease in systolic BP
(SBP), nadir SBP, decrease in mean arterial pressure (MAP)], the
cut-off value for the BP parameter and the need for symptoms
and/or intervention. The National Kidney Foundation’s Kidney
Disease Outcomes Quality Initiative guidelines in 2005 defined
IDH as a decrease in either SBP�20 mmHg or MAP �10 mmHg
leading to symptoms [6]. Other definitions given in different
guidelines are (i) any episode of a decrease in BP during dialysis
that requires an immediate intervention, like ultrafiltration re-
duction or saline infusion, (ii) a symptomatic decrease in either
SBP�20 mmHg or MAP�10 mmHg that needs intervention and
(iii) a symptomatic sudden drop in SBP�30 mmHg or a decrease
in MAP �10 mmHg [14] . Similarly, the European Best Practice
Guidelines (EBPGs) defined IDH as a decrease in SBP �20 mmHg
in combination with clinical events and interventions [10]. An

ideal definition should incorporate the concept of ‘consequen-
ces for health’, as does the chronic kidney disease (CKD) defini-
tion [15]. It may be argued that the development of symptoms
and/or the need for intervention is already a consequence for
health that may negatively impact quality of life. However,
many databases do not accurately collect symptoms and nurs-
ing interventions that may additionally have a subjective com-
ponent. Thus many studies prefer using a decrease in systolic
BP by a specific amount (20, 30 and 40 mmHg) or nadir systolic
BP below a threshold (90, 95 and 100 mmHg) [16]. When using
only specific BP cut-off values, defining ‘consequences for health’
is even more necessary. In a recent study, Flythe et al. [16] evalu-
ated the differences between various IDH definitions in the
Hemodialysis (HEMO) and Large Dialysis Organization (LDO)
study cohorts. In patients with pre-dialysis SBP <160 mmHg, na-
dir SBP <90 mmHg had the strongest association with mortality,
while this value changed to nadir SBP <100 mmHg in patients
with pre-dialysis SBP �160 mmHg. IDH definitions that contained
symptoms, interventions or decreases in BP during the dialysis
session were not associated with mortality [16]. However, caution
should be exercised to possible confounders in observational
studies, and randomized controlled trials are needed before a de-
finitive definition of IDH can be established. Due to the lack of
such evidence and consensus, the discrepancies in IDH defini-
tions have hindered data collection for accurate estimation of
IDH prevalence, risk factors and consequences, as well as for
evidence-based strategies for IDH prophylaxis and treatment and
the impact of such strategies on adverse clinical outcomes
(Table 2).

PATHOPHYSIOLOGY OF IDH

IDH is the end result of the interaction between ultrafiltration
rate (UFR), cardiac output and arteriolar tone. Thus excessive ul-
trafiltration may decrease cardiac output, especially when com-
pensatory mechanisms (heart rate, myocardial contractility,
vascular tone and splanchnic flow shifts) fail to be optimally
recruited.

Ultrafiltration and total volume removal

Fluid extraction by ultrafiltration results in a sudden fluid com-
partment change that causes BP instability. The UFR is a key
predisposing factor to IDH, especially when it exceeds the
plasma refill rate, with the risk for IDH increasing greatly with

Table 1. Different definitions of intradialysis hypotension used in recent years

Definitions for intradialytic
hypotension Year

Decrease in
SBP (mmHg)

Nadir in
SBP (mmHg)

Decrease in
MAP (mmHg)

Need for symptoms
or intervention

Large epidemiological (n> 1000)
or interventional (n> 100) study

using this definition

KDOQI Clinical Practice
Guidelines [6]

2005 �20 ND �10 Symptoms Retrospective cohort of 39 497
HD patients [7]

UK Renal Association
Guidelines [8]

2011 Any ND Any Immediate
intervention

Cross-sectional study with
2193 HD patients [9]

European Best Practice
Guidelines [10]

2007 �20 ND �10 Symptoms and
intervention

–

Japanese Society of Dialysis
Therapy Guidelines [11]

2012 �30 ND �10 Symptoms –

Chou et al. [12], USA 2018 ND <90 ND ND 5-year cohort of 112 013 HD
patients

Sands et al. [13], USA 2014 �30 to a level
of <90 mmHg

<90 ND ND Epidemiologic study of 1137 HD
patients
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increasing gaps between UFR and plasma refill [17]. Higher UFR
(>10–>13 mL/h/kg in different studies) were consistently associ-
ated with a higher incidence of IDH and mortality [18–20]. The
rapid loss of volume overwhelms the compensatory mecha-
nisms and the plasma refilling and venous return lag behind.
Autonomic dysfunction or decreased contractility disrupt the
compensatory mechanisms even further, thus patients with
chronic heart failure (CHF) tend to develop IDH with lower UFRs
[20]. Therefore, reducing the UFR either by increasing the time
or frequency of dialysis sessions tends to decrease the occur-
rence of IDH [21]. On top of the UFR, rapid clearance of waste
products during HD may lead to the formation of transient os-
motic gradients, causing water loss from the extracellular to the
intracellular space.

Decreased cardiac output

Decreased cardiac output has a key role in the pathophysiology
of IDH. During HD, cardiac output depends on preload, after-
load, heart rate and contractility. Changes in preload and after-
load, determined mainly by intravascular volume and arteriolar

vascular resistance, respectively, seem to play a major role in
the development of IDH, while heart rate and contractility have
a minor compensatory role [21]. However, the loss of compensa-
tion from increased contractility predisposes to the develop-
ment of IDH in patients with CHF. Given that approximately
one-third of HD patients have CHF at the time of initiation of di-
alysis therapy, a decrease in contractility is a prevalent risk fac-
tor for the development of IDH [22]. In a small study of 10
patients with no history of CHF or ischaemic heart disease,
patients prone to IDH were found to have impaired myocardial
contractility reserve assessed by response to dobutamine atro-
pine stress [23]. While decreased myocardial function predis-
poses to the development of IDH, it is also shown that IDH itself
causes myocardial stunning, a phenomenon known as revers-
ible myocardial contractility due to ischaemia [23].

Arteriolar tone

A failure to maintain arteriolar tone during HD has been pro-
posed to be a cause of IDH for >2 decades [24–26]. In normal
physiology, a reduction in intravascular volume would lead to
increased sympathetic outflow, thus to arteriolar vasoconstric-
tion and increased peripheral vascular resistance, helping to
maintain BP. Sympathetic discharge and baroreceptor sensitiv-
ity were hypothesized to be diminished in some HD patients
[25, 27, 28]. In several studies, heart rate variability (HRV), a non-
invasive method to estimate autonomic dysfunction, was used
to assess sympathetic activity during HD. While HRV is in-
creased during HD, signifying sympathetic activation, such a
sympathetic response, was not seen in patients prone to IDH
[29, 30]. Blunted sympathetic activation may hinder compensa-
tory mechanisms and increase IDH incidence and severity. The
prevalence of cardiovascular autonomic dysfunction in chronic
HD patients was suggested to be as high as 50% [31].

In healthy individuals, plasma osmolarity is tightly regu-
lated by thirst and arginine vasopressin (AVP) [32]. Since ESRD
patients on HD have little to no renal response to AVP, baseline
AVP levels in dialysis patients are higher than in healthy con-
trols; however, they fail to increase in response to HD [33, 34].
The loss of the vasoconstrictive effect of AVP via activation of
V1 receptors in vascular smooth muscle cells in HD patients
may contribute to IDH, and this offers the opportunity for thera-
peutic intervention, as discussed below [35–37].

Suboptimal splanchnic blood flow shifts may also contribute
to IDH. Monitoring of splanchnic blood shifts during HD using
radiolabelled erythrocytes disclosed that within 30 min of ultra-
filtration, a rapid central shift of the splanchnic blood pool was
observed, possibly contributing to maintain BP values in the
early phase of HD. A loss of such a shift in patients with auto-
nomic dysfunction [38], as well as food ingestion, which causes
a similar splanchnic sequestration [39], were suggested to pre-
dispose to IDH.

In the past, acetate was used as a dialysis solution base.
Acetate has well-known vasodilator properties and therefore
was an important cause of IDH historically [21]. Today, the use
of bicarbonate-based dialysates has eliminated such predisposi-
tion around the world.

RISK FACTORS

Risk factors for the development of IDH include diabetes melli-
tus; cardiovascular disease including systolic and diastolic dys-
function, ischaemic heart disease, arrhythmias and vascular
calcification; autonomic dysfunction; poor nutritional status;

Table 2. EBPGs on haemodynamic instability 2007 [8]: key messages

Prevention of IDH

1. Evaluate patients for hydration status (prior to the session), fre-
quently for BP and heart frequency rate (during the session) and,
if frequent IDH episodes, for cardiovascular disease

2. Lifestyle interventions:
a. Decrease salt intake
b. Avoid food intake during or just before dialysis if frequent epi-

sodes of IDH, except if patient is malnourished
3. Dialysis technique
a. Optimize ultrafiltration
b. Avoid routine sodium profiling with supraphysiological dialysate

sodium concentrations
c. Bicarbonate dialysis should be used
d. The use of a dialysate calcium concentration of 1.50 mmol/L

should be considered and low-magnesium (0.25 mmol/L) dialysate
should be avoided, especially in combination with low-calcium di-
alysate in patients with frequent episodes of IDH

e. Cool dialysate temperature dialysis (35–36�C) or isothermic treat-
ments by blood temperature-controlled feedback should be pre-
scribed in patients with frequent episodes of IDH

f. Haemo(dia)filtration techniques should not be considered a first-
line option for the prevention of IDH, but as a possible alternative
to cool dialysis

g. A prolongation in dialysis time or an increase in dialysis frequency
should be considered in patients with frequent episodes of IDH

4. In patients with frequent episodes of IDH, antihypertensive agents
should be given with caution prior to dialysis depending on phar-
macodynamics, but should not be routinely withheld on the day
of HD treatment

5. If other treatment options have failed, then consider switching to
PD or midodrine or L-carnitine supplementation

Treatment of IDH
1. Trendelenburg position should be considered
2. Ultrafiltration should be stopped during an episode of IDH
3. Isotonic saline should be infused in patients unresponsive to stop-

ping ultrafiltration and Trendelenburg position during an episode
of IDH

4. Infusion of colloid solutions should be considered in patients who
remain unresponsive to saline infusion
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hypoalbuminaemia; female sex; age >65 years; pre-dialysis
SBP<100 mmHg; high body mass index and severe anaemia [3,
28, 40].

High IDWG may also be a predisposing factor as it may re-
quire higher UFR [7]. In a retrospective study of 255 patients, ab-
solute IDGW, but not percent IDGW, was a risk factor for IDH
[41], while in a retrospective study of 39 497 patients, both abso-
lute and relative IDGW were significant risk factors [7]. It was
also suggested that the first HD session of the week was associ-
ated with a higher IDH risk in thrice-weekly HD [4]. In a cohort
study of 293 patients with a 40% incidence of IDH, UFR, N-termi-
nal pro-B type natriuretic peptide and b2 microglobulin were
also found to be independently associated with IDH [2]. An on-
going cohort study that was expected to be completed by July
2019 recruited 90 participants to examine the correlation be-
tween diabetes status and IDH (ClinicalTrials.gov identifier
NCT03870594). Further prevalence and risk factor studies are
needed once a consensus definition of IDH is available that
eliminates the current inconsistencies in the IDH definitions.

CONSEQUENCES OF IDH

IDH is associated with several significant clinical outcomes. The
best established association of IDH is with cardiovascular
events and mortality. In a retrospective study of 39 497 HD pa-
tient records, IDH was associated with myocardial infarction,
hospitalization for HF/volume overload and cardiovascular and
all-cause mortality [7]. Indeed, several studies have confirmed
that IDH is an independent risk factor for all-cause mortality [2,
7, 12, 16, 42]. For instance, in a US-based cohort of 112 013 inci-
dent HD patients, a direct linear relationship between IDH and
mortality was demonstrated, with a mortality hazards ratio
(HR) of 1.49 [95% confidence interval (CI) 1.42–1.57] among
patients who had IDH in >40% of their HD sessions [12].
However, there have also been reports to the contrary [43]. Such
disagreeing results may be due to the different definitions of
IDH used in many of those studies, including nadir intradialytic
SBP <90 mmHg [12] and an SBP <90 mmHg associated with
symptoms of hypotension and necessitating fluid administra-
tion [43].

IDH is independently associated with myocardial stunning,
which in turn is associated with cardiovascular events and mor-
tality [23, 44]. The reversible myocardial stunning due to repeti-
tive reversible ischaemia within each IDH episode may initiate
a pathway from myocardial hibernation to eventual irreversible
myocardial fibrosis and irreversible systolic dysfunction [45].
The development of HF in HD patients predicts a significantly
poorer outcome, and cardiovascular mortality is 30-fold more
frequent in HD patients than in age-matched controls [46]. The
management of IDH in patients with decreased left ventricular
function can be challenging, as the acute management of IDH
primarily consists of stopping ultrafiltration and administration
of fluids [28], which may exacerbate an underlying HF. In such
patients who are prone to myocardial stunning or already have
myocardial dysfunction, IDH prevention is essential. Indeed, a
randomized crossover study with 10 patients showed that
dialysis-induced left ventricular regional wall motion abnor-
malities were improved by cooling the dialysate [46], a simple
and effective method to decrease IDH incidence that is dis-
cussed below. Another randomized crossover study reported a
similar significant decrease in left ventricular regional wall mo-
tion abnormalities along with significantly fewer IDH episodes
in biofeedback dialysis, which modulated UFRs and dialysate
sodium concentration in response to relative blood volume [47].

Another concern for HD patients with cardiac comorbidities is
the dialysate calcium concentration. A recent retrospective co-
hort study observed that lower facility levels of dialysate cal-
cium (<2.5 mEq/L) were associated with more frequent
hospitalizations for HF exacerbation and also with more fre-
quent IDH episodes [48]. Indeed, in prior reports, higher dialy-
sate calcium concentrations were associated with an increase
in left ventricular contractility in patients with normal cardiac
function [49], as well as in patients with HF (New York Heart
Association classifications III and IV) [50]. Intradialytic systolic
and diastolic BPs were higher in patients receiving the dialysate
with a higher calcium concentration (1.75 versus 1.25 mmol/L)
[50]. However, the long-term effects of various IDH manage-
ment strategies are subject to longitudinal clinical trials.

Another manifestation of end-organ damage caused by IDH
is cerebral ischaemia. When BP and cerebral oxygenation were
recorded during 635 HD sessions in 58 patients, every 10 mmHg
decrease from baseline MAP was associated with a 3% increase
in ischaemic events (P< 0.001), although no clear ‘safe’ MAP
threshold could be determined, due to the presence of different
cerebral autoregulation limits for each patient [51]. The poten-
tial clinical consequence of such repeated cerebral ischaemia
was explored by Mizumasa et al. [52]. They assessed frontal atro-
phy indexes with magnetic resonance imaging in 32 HD
patients twice after a 3-year interval and counted all IDH epi-
sodes during the same interval. The change in frontal atrophy
indexes inversely correlated with the number of IDH episodes
(r¼ 0.45, P< 0.05) [52]. In a 1-year long randomized clinical trial,
patients treated with cooler dialysate (0.5�C below core body
temperature) had fewer IDH episodes than patients on 37�C di-
alysate and showed no brain white matter changes after 1 year,
while patients on 37�C dialysate exhibited the pattern of ischae-
mic brain injury (increased fractional anisotropy and reduced
radial diffusivity) seen in HD patients [53]. Moreover, new evi-
dence suggests that IDH-induced damage may cause dementia
in the long term in older populations. In a cohort of 31 055 el-
derly HD patients, the cumulative exposure to frequent IDH was
significantly associated with a 5-year risk of new-onset demen-
tia. Patients who experienced seven or more episodes of IDH in
90 days had the highest 5-year risk of new-onset dementia [HR
1.36 (95% CI 1.20–1.48)] [54]. This possible association between
cerebral ischaemia and IDH may explain the observation that
cognitive impairment is more frequent in chronic HD than in
peritoneal dialysis (PD) patients [55].

Mesenteric ischaemia and even liver ischaemia are rare
forms of end-organ damage associated with IDH [56]. A case–
control study including 626 patient with a hospitalized mesen-
teric ischaemia event and 2428 controls observed a direct asso-
ciation of the proportion of IDH (defined as nadir intradialytic
SBP <90 mmHg) with hospitalized mesenteric ischaemia (P for
trend ¼ 0.001) [57]. Several previous case series studies of HD
patients also described hypotensive episodes preceding mesen-
teric ischaemia events [58, 59]. Similarly, case reports have ob-
served other rare complications of chronic HD occurring
immediately after IDH episodes. For example, a patient devel-
ops non-arteritic anterior ischaemic optic neuropathy three
times in 4 months; each episode was noticed at the end of a di-
alysis session complicated by IDH [60].

IDH accelerates the loss of residual renal function (RRF). RRF
preservation has strong survival benefits in both PD patients
[61] and HD patients [62]. RRF has a significant role in fluid bal-
ance, toxin clearance and calcium–phosphorus metabolism and
its decline is associated with more severe anaemia, inflamma-
tion and malnutrition as well as cardiovascular morbidity and
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mortality [17]. Because RRF is lost more rapidly in patients on
HD than in patients on PD [61], IDH is a suspected driver of this
crucial difference. In a prospective study with 279 incident dial-
ysis patients, IDH was independently associated with a faster
renal function decline rate in the first 3 months of HD [63].
Given that the decline in RRF is greater during the first 3 months
[64], IDH should be avoided in new dialysis patients with higher
RRF. As these patients have residual diuresis, a key factor is to
avoid excessive ultrafiltration.

IDH was also associated with vascular access thrombosis, a
very troublesome complication for chronic HD patients [65]. In
the HEMO study cohort of 1426 HD patients, the highest quartile
of IDH had an �2-fold higher independent relative rate of native
arteriovenous fistula thrombosis than the lowest quartile dur-
ing a median of 3.1 years. However, IDH was not associated with
prosthetic arteriovenous graft thrombosis [65].

Besides the detrimental long-term consequences, IDH is a
major cause of distress in patients during the HD sessions, as it
may cause lightheadedness, weakness, headache, nausea and
vomiting [66]. Although definitions of IDH based solely on the
magnitude of decrease in SBP do not sufficiently capture patient
symptoms, these are a major determinant of quality of life in di-
alysis patients [67]. In addition, such symptoms may cause the
HD session to be terminated earlier, resulting in inadequate
toxin and fluid elimination.

PREVENTION AND TREATMENT

Several approaches have been suggested to decrease the inci-
dence or severity of IDH. These include optimization of the dial-
ysis prescription (cool dialysate, UFR, sodium profiling, high-
flux haemofiltration), interventions during the dialysis session
(midodrine, fluid administration, food intake, intradialytic exer-
cise and intermittent pneumatic compression of the lower
limbs), interventions in the interdialysis period (lower IDWG

and BP-lowering drugs) and switching the modality to PD
(Figure 1).

Cool dialysate

Reducing the temperature of the dialysate below the core body
temperature is one of the most-used preventive methods
against IDH. In fact, EBPGs recommend the use of cool dialysate
as a first-line option to prevent IDH [10] (Table 2) . Cool dialysate
decreases the risk of IDH development by inducing vasocon-
striction and activating the sympathetic nervous system [68]. In
a meta-analysis of 26 trials including a total of 484 patients, cool
dialysis reduced the rate of IDH by 70% (95% CI 49–89) and in-
creased intradialytic BP by 12 mmHg (95% CI 8–16), while the ad-
equacy of dialysis was not affected, with no significant
difference in Kt/Vurea [69]. Similarly, a systematic review of 22
studies including 408 patients determined that IDH occurred
7.1-fold (95% CI 5.3–8.9) less frequently and post-dialysis MAP
was 11.3 mmHg (95% CI 7.7–15.0) higher with cool dialysis.
Moreover, none of the studies showed a reduction in urea clear-
ance, a measure of dialysis adequacy, with cool dialysate [70]. In
clinical trials, cool dialysate was also reported to prevent IDH-
related complications such as myocardial stunning [46], HD-
associated cardiomyopathy [71] and HD-related brain white
matter changes [53]. While the efficacy of cool dialysate is
proven in chronic HD patients, its efficacy in preventing IDH in
acute kidney injury (AKI) patients receiving sustained low-effi-
ciency dialysis will be assessed in an ongoing randomized trial
with 38 patients (ClinicalTrials.gov identifier NCT03397992), fol-
lowing previous promising results [72]. Using cool dialysate is
completely safe, simple and entails no additional costs. The one
drawback is the unpleasant sensations described by many
patients, which reduce patient tolerability [69]. Nevertheless, an
anecdotal small study of 10 HD patients reported that 8/10
patients who experienced cool dialysate (35�C) for three ses-
sions felt more energetic after those dialysis sessions and

Dialysis prescription:
• Cool dialysate
• Slower ultrafiltration rate
• Sodium profiling
• High flux hemodiafiltration

Safety signal

Safety signal

• Lower interdialysis weight gain:
  - Low sodium intake
  - Loop diuretics
• Blood pressure-lowering drugs

Interventions during dialysis:
• Fluid administration
  - Prophylactic mannitol
• Decrease food intake
• Intradialysis exercise
• Intermittent pneumatic compression
• Drugs:
  - Midodrine
  - L-carnitine

Transversal topics:
• Optimized dry weight assessment
• Preservation of residual renal function
• Increased number of weekly dialysis sessions

HD HD HD HD

Short interdialysis period Long interdialysis period

FIGURE 1: Approaches to prevent and treat intradialysis hypotension. Approaches in which a safety signal has been described suggesting that outcomes may be im-

paired are indicated by the red ’Safety signal’.
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requested to be always dialysed with cool dialysate [73].
Assessment of patient expectations and patient education be-
fore the introduction of cool dialysate may be beneficial for in-
creasing patient tolerance. Alternatively, individualizing cool
dialysate temperature to individual pre-dialysis core body tem-
peratures still maintained the beneficial effects on intradialysis
BP and myocardial stunning, while causing no patient distress
[74].

UFR

Recent studies have consistently shown the detrimental effects
of higher UFR on the incidence of IDH and cardiovascular/all-
cause mortality [19, 20, 75]. Thus, decreasing UFR is a promising
intervention. The Dialysis Outcomes and Practice Patterns
Study (DOPPS), which included 22 000 HD patients from seven
countries, found that a UFR>10 mL/h/kg correlated with higher
odds of IDH [odds ratio (OR) 1.30; P¼ 0.045] and a higher risk of
all-cause mortality (relative risk 1.09; P¼ 0.02), while there was
no association between UFR and cardiovascular mortality [18].
A smaller study of 287 HD patients also found that high UFR
was independently associated with mortality (HR 1.22,
P< 0.0001) and estimated a relative receiver operating charac-
teristic curve cut-off value of 12.4 mL/h/kg UFR for predicting
death within 5 years [19]. Flythe et al. [20] compared three cate-
gories of UFR for associated mortalities: UFR<10, 10–13 and
>13 mL/h/kg. The risk of all-cause and cardiovascular mortal-
ities began to increase at UFRs >10 mL/h/kg in spline analysis.
Of note, all studies so far were observational. Thus they did not
completely exclude the existence of potential confounders,
such as RRF, that explain the association between UFR and mor-
tality [75]. In this regard, the issue will only be settled by ran-
domized controlled clinical trials that explore whether
decreasing IDH by decreasing UFR has an impact on mortality.

Nevertheless, in 2015 the Kidney Care Quality Alliance set
two fluid-related quality measures, including avoidance of high
UFRs (�13 mL/h/kg), hoping to decrease the incidence of IDH,
end organ damage in the heart, brain and kidney and mortality
[19, 20, 75]. Decreasing the UFR may be achieved by having lon-
ger or more frequent dialysis sessions, which may deter many
clinics and patients from such an intervention, or by limiting
interdialysis weight gain (discussed below) [75]. The introduc-
tion of biofeedback mechanisms may limit the impact on dialy-
sis session duration or frequency by individualizing the UFR
continuously in response to momentary BP and blood volume
changes. Most biofeedback devices continuously monitor BP or
estimate plasma refilling from the relative blood volume calcu-
lated from haematocrit changes. This information is then proc-
essed by the software to adjust the UFR and conductivity
accordingly. In a meta-analysis including eight studies, biofeed-
back significantly decreased the incidence of IDH [risk ratio 0.61
(95% CI 0.44–0.86)] [76]. However, the evidence for an effect on
mortality lacked sufficient power for evaluation [76]. Large ran-
domized clinical trials are required to assess the impact of bio-
feedback devices on hard outcomes.

Accurate estimation of target dry weight is crucial for every
HD patient. Although it is usually done clinically, novel meth-
ods assess target dry weight objectively, including bioelectrical
impedance spectroscopy (BIS), lung ultrasonography (US) and
measurement of the inferior vena cava [77–80]. BIS measures
the fluid status through the body resistance to electrical cur-
rents. In a cross-sectional study including 194 HD patients,
patients who had hypovolaemia by multifrequency bioimpe-
dance developed more frequent IDH episodes [81]. BIS can be

used to identify patients prone to IDH and prevent IDH develop-
ment, as well as to routinely assess post-dialysis target dry
weight. In a randomized controlled trial including 298 Asian HD
patients, BIS-based post-dialysis target weight assessment sig-
nificantly lowered the incidence of IDH when compared with
clinical-based assessment (6.10 versus 6.62%, P< 0.05) and im-
proved hypertension control, while the incidence rate for all-
cause hospitalization and mortality did not significantly differ
[82]. Another randomized control trial of 131 HD patients ob-
served a greater decline in relative fluid overload and carotid
and femoral pulse wave velocities, a marker of arterial stiffness,
in the bioimpedance-assessed group than in the clinically
assessed group after 2.5 years, which indicated improved car-
diovascular end points, while the frequency of IDH between the
groups did not differ [83]. In 2017, a meta-analysis on the effect
of bioimpedance-estimated dry weight on mortality in HD
patients revealed no association between the use of BIS and all-
cause mortality [84].

Besides BIS, lung US is emerging as a reliable and non-
invasive estimate of body fluid status. Lung US detects lung
congestion using the B-line score, a straightforward yet
training-requiring tool [85]. While the use of BIS and lung US are
accepted as accurate tools to assess volume overload [85, 86],
their long-term outcomes and associations with IDH are yet to
be confirmed. In a randomized clinical trial including 250 HD
patients, dry weight assessment based on lung US with bioim-
pedance was not superior to clinical assessment in terms of all-
cause mortality, cardiovascular outcomes or IDH frequency [79].

Sodium profiling

The ideal sodium concentration of dialysate has long been a
topic of discussion [87]. Waste removal by diffusion during HD
decreases extracellular fluid osmolarity and causes a shift of ex-
tracellular fluid into cells. Such a shift is avoided by raising dial-
ysate sodium concentrations, which restores the osmotic
gradient and plasma refill. Yet, increasing the sodium concen-
tration causes thirst and volume expansion and increases BP
[88]. Excess sodium has additional adverse consequences, inde-
pendent of its osmotic effects, such as increasing endothelial
cell stiffness [89], impairing nitric oxide release [89] and increas-
ing sympathetic outflow [90]. Sodium profiling is proposed to
limit such negative effects. During sodium profiling (modelling),
dialysate sodium concentration is high in the beginning of the
dialysis session and is gradually decreased as waste solutes are
cleared from plasma. In a meta-analysis of 10 studies compar-
ing two methods of sodium modelling, stepwise profiling signif-
icantly reduced IDH, while linear sodium profiling did not [91].
A more recent randomized, triple-blind, crossover clinical trial
randomly assigned 80 patients to four different combinations of
sodium modelling (decreasing from 150 to 138 mmol/L) and/or a
dialysate temperature reduction (35�C) in changing orders. The
two treatment schedules that included sodium profiling re-
duced the number of IDH episodes when compared with control
or cool dialysate, while cool dialysate reduced IDH episodes
compared with standard dialysis but had no additive effect on
sodium profiling [92]. Yet, interdialysis weight gain was not
reported, possibly obscuring the negative effects of sodium pro-
filing. Thus, despite the positive impact of sodium profiling on
IDH episodes, a recent analysis of the DOPPS cohort, which in-
cluded 10 250 patients in 273 international facilities, showed
that the routine use of sodium profiling to prevent IDH was ac-
tually associated with higher all-cause and cardiovascular mor-
tality [HR 1.36 (95% CI 1.14–1.63) and HR 1.34 (95% CI 1.04–1.73),
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respectively] [93]. Due to the conflicting evidence and concerns
about safety, EBPGs currently do not recommend sodium profil-
ing [10] (Table 2).

High-flux haemofiltration

High-flux convection was suggested to reduce IDH episodes
when compared with diffusive techniques like low-flux HD [94].
In two consecutive studies by the Sardinian Collaborative
Group, pre-dilution online haemofiltration was associated with
fewer IDH episodes than high-flux HD (P< 0.04 and P¼ 0.003, re-
spectively) [95, 96]. A more recent mult-centre, open-label ran-
domized study assessed the number of IDH episodes in 146
long-term dialysis patients on low-flow HD, online pre-dilution
haemofiltration and/or haemodiafiltration. The frequency of
IDH episodes increased for HD (from 7.1 to 7.9%) and decreased
for haemofiltration (from 9.8 to 8.0%) and, above all, for haemo-
diafiltration (from 10.6 to 5.2%) (P< 0.001) when compared with
the run-in HD period. However, the pre-dialysis SBP signifi-
cantly increased in the haemodiafiltration group, suggesting a
positive sodium balance as an explanation for the decreased
IDH episodes [94]. The impact of haemodiafiltration on mortal-
ity is still controversial, despite a clinical trial concluding that
high-efficiency post-dilution online haemodiafiltration reduces
all-cause mortality in HD patients [97–99].

Midodrine

Midodrine is an oral prodrug alpha 1 adrenergic receptor agonist
that is removed via HD with a half-life of 3 h [100]. In a meta-
analysis including 117 patients from 10 studies, midodrine was
associated with a 13.3 mmHg (95% CI 8.6–18.0) higher nadir SBP,
and 6/10 studies reported improved IDH symptoms. No adverse
effects were reported, but the number of patients studied was
too low [101]. In this regard, in a recent retrospective observa-
tional study of 1046 patients who were prescribed midodrine for
IDH and 2037 controls it was found that midodrine use was as-
sociated with a higher adjusted incidence rate ratio of mortality
[1.37 (95% CI 1.15–1.62)] and all-cause and cardiovascular hospi-
talization [1.31 (95% CI 1.19–1.43) and 1.41 (95% CI 1.17–1.71), re-
spectively]. Although the models were adjusted for the
presence of cardiovascular morbidities and residual confound-
ing may affect the results [102], the safety signal identified sug-
gests that midodrine should not be routinely used for IHD until
prospective clinical trials confirm its safety and efficacy.

L-carnitine

L-carnitine transports cytosolic long-chain fatty acids as acyl-
carnitines across the inner mitochondrial membrane for b-oxi-
dation and subsequent adenosine triphosphate production in
the mitochondria and thus it is required for optimal energy pro-
duction by, among others, cardiovascular cells. As with other
molecules, it may be lost in the dialysate and it was suggested
that L-carnitine supplementation may prevent IDH and
European best Practice quidelines (EBPGs) state that ‘carnitine
supplementation should be considered for the prevention of
IDH if other treatment options have failed’ [10]. However, a 2008
meta-analysis of five studies concluded that the available evi-
dence does not confirm a beneficial effect of L-carnitine supple-
mentation on IDH [103] and a more recent randomized clinical
trial enrolling 92 patients that had IDH as a secondary endpoint
did not find any differences between intravenous L-carnitine
and placebo [104]. However, an even more recent, but small trial
(n¼ 33, n¼ 7–10 per group) enriched in patients with a past

history of IHD did observe significantly fewer IDH episodes in
patients supplemented with intravenous L-carnitine prior to
the HD session [105]. We should be aware that oral L-carnitine
supplementation may result in the increased formation of the
uraemic toxin trimethylamine N-oxide [106].

Fluid administration

Fluid administration, including colloids and crystaloids, has
long been used to reverse IDH. Isotonic saline administration is
problematic since it limits the achievement of a negative fluid
balance. Hypertonic saline and colloids, including albumin,
have also been used during the episode [107]. Mannitol is a well-
known medication to boost intravascular volume [100], al-
though its efficacy as a therapy and prophylactic agent for IDH
is questionable [108]. In a prospective study including 102
patients, routine (preventive) mannitol administration before
the dialysis session was associated with a 5.4 mmHg higher na-
dir SBP (P¼ 0.03), 25% less decline in SBP (P¼ 0.03) and 50% lower
odds of having a hypotensive event [OR 0.50 (95% CI 0.29–0.83)]
in adjusted models [109]. However, a double-blind randomized
controlled trial by the same group enrolling 52 patients could
not confirm the effect of mannitol administration on SBP de-
cline during dialysis sessions and the decrease in IDH risk was
of borderline significance (P¼ 0.05) [110]. Of note, neither study
addressed the impact on volume overload or long-term effects.

Food intake

The overall impact of food consumption during the HD session
on IDH is controversial. Given that malnutrition and hypoalbu-
minaemia are prevalent in ESRD patients undergoing dialysis,
commonly referred to as protein-energy wasting, and are strong
predictors of mortality, in-centre supplementation of high-
protein meals during HD appears to be practical and cost
effective [111]. Yet there are concerns about an increased inci-
dence of IDH with such intervention. In an observational study
including 166 HD patients, food and fluid consumption during
dialysis sessions was a strong predictor for IDH (P¼ 0.003) and
the need for mannitol use (P¼ 0.000). The consumption of >200
calories increased the risk of IDH 2-fold, but this was not statis-
tically significant (P¼ 0.058) [112]. Similarly, a randomized
crossover study of 13 patients reported an increased incidence
of symptomatic IDH requiring intervention with food intake
during dialysis (P¼ 0.025) [113]. These results can be explained
with the hypothesis that increased splanchnic blood flow pre-
disposes to IDH due to redistribution of blood volume, as dis-
cussed above. However, another observational study including
126 HD patients found no correlation between food intake and
the number of IDH episodes [114]. Additionally, in a very recent
non-randomized parallel-arm study including 18 HD patients, a
high-protein meal during dialysis sessions did not change the
frequency of symptomatic IDH. The different results may de-
pend on the population studied (general dialysis populations
versus IDH-prone individuals), the local HD session prescription
practices and the nature of the food provided. Larger, long-term
studies are warranted that explore the impact of high-protein
supplementation during dialysis in individuals prone to IDH.

Intradialytic exercise and intermittent pneumatic
compression of the lower limbs

Intradialytic exercise has been studied recently as a new prom-
ising therapy for IDH. In a randomized trial including 22 HD
patients, a combination of aerobic exercise with bicycle
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ergometer and anaerobic exercise with elastic bands decreased
the incidence of IDH (P< 0.05) [115]. A randomized crossover
study of 21 HD patients compared the effects of cyclic exercise
and intermittent pneumatic compression of the lower limbs
during the first hour of dialysis sessions with controls (no inter-
vention). Only pneumatic compression significantly decreased
IDH frequency (24% versus 43% of control patients, P¼ 0.014),
while the modest reduction with exercise (38% of patients) was
not statistically significant [116]. A recently completed (30 April
2019) randomized crossover clinical trial including 112 HD
patients evaluated the impact of early versus late (during the
HD session) intradialytic exercise on IDH, but results are not
currently available (ClinicalTrials.gov identifier NCT03504943).
Further investigations on the utility of pneumatic compression
for IDH are warranted.

Lower IDWG

Since the rapid loss of volume by ultrafiltration is one of the
main drivers of IDH, restricting the IDWG is one approach to
prevent IDH. Preservation of RRF by avoiding the use of nephro-
toxic agents and excessive ultrafiltration in incident dialysis
patients is the key to maintain low IDWG for longer periods.
Dietary sodium restriction is also a key factor limiting IDWG.
This is a key concept that should be carefully explained to inci-
dent patients and new dialysis unit staff: there is a widespread
misconception that the key to low IDWG is low fluid intake;
however, thirst will make impossible any attempt at decreasing
fluid intake when there is no concomitant dietary sodium re-
striction. Furthermore, education on occult sources of sodium is
necessary, as well as dietary recommendations for alternative
flavouring agents. Unfortunately, sodium restriction is not al-
ways possible to accomplish in daily practice. Low-salt proc-
essed foods are hard to find, patients may not be able to cook
with raw ingredients and their long-established dietary prefer-
ences frequently prevent such personal sacrifice [117].
Nevertheless, strict salt restriction resulted in less frequent IDH
episodes, lower left ventricular mass and less left ventricular
hypertrophy compared with antihypertensive drug usage [118].
In patients with RRF, high-dose furosemide, as practiced in
some countries, may increase urine output and decrease IDWG
[119].

BP-lowering drugs

As many as 50–90% of ESRD patients suffer from hypertension
[120] and finding the balance between antihypertensive man-
agement and IDH risk can be a huge challenge. The mainstream
practice is withholding BP-lowering medications prior to HD
sessions [120]. In a UK-based cohort study of 2630 HD patients,
the number of IDH episodes was significantly higher in patients
who were not on antihypertensive drugs than in patients on an-
tihypertensive drugs [121]. The pre-dialysis BP values in the two
groups were not significantly different, but it is not possible to
eliminate the bias arising from the different haemodynamic
characteristics of the patients who do and do not need antihy-
pertensive medications to achieve the same BP target. A small
double-blind crossover study with 10 patients assessed the ef-
fect of verapamil, a non-dihydropyridine calcium channel
blocker, administered 1 h before dialysis on the occurrence of
IDH. Verapamil was chosen because of its benefits on left ven-
tricular compliance and relaxation, with less pronounced vaso-
dilatory effects. Two 2-week verapamil periods alternated with
two 2-week placebo periods. No significant difference was

found in the severity or frequency of IDH episodes between the
periods [122]. Another study monitored the initiation of atenolol
in eight hypertensive HD patients. The drug was given thrice
weekly at the end of each HD session and the study found MAP
was successfully reduced with no effect on IDH [123]. However,
the drug was administered at the end of HD sessions and not in
between, thus not directly exploring the impact of same-day,
prior-to-HD-session antihypertensive drugs and IDH. In a study
with 21 hypertensive HD patients, the incidence of IDH episodes
did not increase after the addition of antihypertensive medica-
tions [124]. A similar result was found in a randomized,
placebo-controlled trial including 251 hypertensive HD patients,
where the administration of amlodipine 10 mg did not cause a
significant difference in the frequency of IDH episodes while
successfully decreasing mean pre-dialysis BP [125]. Of note,
these studies only included hypertensive patients who needed
BP-lowering medications, presumably hypotension-resistant
patients. Current evidence is not enough to assess the benefits
and disadvantages of withholding antihypertensives and to
compare IDH risks of different antihypertensive medications.

Switching to PD

The ultimate solution to intractable IDH is changing the dialysis
modality to PD, since IDH is mainly a complication of HD and is
not seen in PD. A careful assessment of the potential barriers
for PD and the patient’s desire to perform self-care is needed.

LIMITATIONS AND A ROADMAP FOR IDH
RESEARCH

Currently the most important limitation of IDH research is the
lack of a consensus IDH definition. Current definitions based on
symptoms and/or interventions are clinically relevant but not
well suited for large-scale studies. This is also the case for defi-
nitions in other fields of nephrology. For example, the AKI defi-
nition based on urinary output is not well suited for large-scale
studies. Thus we propose to develop a novel consensus defini-
tion using large-scale data focused on both short-term (hospi-
talization) and long-term (mortality) outcomes. That is, as for
other definitions, ranging from hypertension and hypercholes-
terolaemia to chronic kidney disease or AKI, the consensus defi-
nition should be based on the implications for health, i.e. on the
risk for adverse outcomes, of specific BP thresholds. The defini-
tion may have two aspects: a threshold BP to define an individ-
ual IDH episode and a frequency parameter identifying what
number of IDH episodes per unit of time is clinically relevant.
Ideally, the threshold BP to define an individual IDH episode
should be based on big data analysis and may be represented by
an absolute drop in systolic or mean BP, by a percentage drop in
systolic or mean BP over baseline, by an absolute SBP nadir or
by a BP nadir that represents a percentage of baseline values,
among others. Thus we should be open to novel concepts re-
garding the definition of a BP threshold. A consensus IDH defi-
nition usable in large databases may facilitate the development
of larger, long-term prospective observational studies or clinical
trials that would provide evidence-based indicators of IDH and
guidelines for the prevention and treatment of IDH [14]
(Figure 2).
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