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Objective: This study aimed to create a prediction model of postoperative pulmonary

complications for the patients with emergency cerebral hemorrhage surgery.

Methods: Patients with hemorrhage surgery who underwent cerebral hemorrhage

surgery were included and divided into two groups: patients with or without

pulmonary complications. Patient characteristics, previous history, laboratory tests, and

interventions were collected. Univariate and multivariate logistic regressions were used to

predict postoperative pulmonary infection. Multiple machine learning approaches have

been used to compare their importance in predicting factors, namely K-nearest neighbor

(KNN), stochastic gradient descent (SGD), support vector classification (SVC), random

forest (RF), and logistics regression (LR), as they are the most successful and widely used

models for clinical data.

Results: Three hundred and fifty four patients with emergency cerebral hemorrhage

surgery between January 1, 2017 and December 31, 2020 were included in the study.

53.7% (190/354) of the patients developed postoperative pulmonary complications

(PPC). Stepwise logistic regression analysis revealed four independent predictive

factors associated with pulmonary complications, including current smoker, lymphocyte

count, clotting time, and ASA score. In addition, the RF model had an ideal

predictive performance.

Conclusions: According to our result, current smoker, lymphocyte count,

clotting time, and ASA score were independent risks of pulmonary complications.

Machine learning approaches can also provide more evidence in the prediction of

pulmonary complications.

Keywords: machine learning, postoperative, postoperative pulmonary complications, emergency, cerebral

hemorrhage surgery
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INTRODUCTION

Complications after major surgery occur frequently and are an
important cause of mortality and morbidity, especially when
they affect the lungs (1). Indeed, one in every seven patients
who develops a so-called postoperative pulmonary complication
(PPC) dies before hospital discharge and patients who survive
often suffered from a sustained reduction in functional status (2).
Early identification of patients at risk of developing PPCs could
enable the use of preventive measures as well as timely treatment.

However, the current predictive indicators are very limited
in severe craniocerebral surgery, especially cerebral hemorrhage
(3, 4). Patients with severe craniocerebral surgery often suffer
from coma, lack of spontaneous breathing for a period of time,
or need to be assisted breathing by the ventilator, and often
combined with multiple severe multi-system symptoms. The
incidence of PPC in emergency intracerebral hemorrhage (ICH)
patients is much higher than that of conventional surgery, and
the occurrence of complications often leads to poor prognosis,
even directly related to patient death. However, there is a paucity
of literature that investigates the deleterious effects of PPCs in
neurosurgical patients, particularly in those requiring emergency
ICH surgery which could face up to the highest rate of surgical
complications rate. Therefore, we believe that better prediction
of patients’ PPC and taking preventive measures can greatly
improve the prognosis of patients. In this study, the model of
PPC in patients with ICH was established by multiple machine
learning methods.

MATERIALS AND METHODS

The study was approved by our local institutional review
board. The clinical data of patients who underwent emergency
ICH surgery at a single institution during a 4-year period
between January 1, 2017 and December 31, 2020 were reviewed
and analyzed in a retrospective fashion. The characteristics of
the patients included in this study were sex, age, education,
medical history (coronary heart disease history, stroke history,
hypertension history, and diabetes history), respiratory history,
whether a current smoker, Glasgow coma scale (GCS), glucose,
Albumin (Alb), WBC, lymphocyte count, leukocyte, RBC,
platelet, clotting time, early enteral nutrition, preventive
tracheotomy respirator use, operative time, anesthesia time, the
blood loss, ASA classification, and craniotomy.

In accordance with past studies (1–7), these diagnoses
were identified in critical care reports, radiographic reports,
and/or the discharge summary. During the study period, Acute
Respiratory Distress Syndrome (ARDS) was clinically diagnosed
based on the American-European Consensus Conference on
ARDS reported in 1994 (8). Outcome measures postoperative
parameters included the presence of PPCs (defined as pulmonary
edema, pneumonia, pneumothorax, pulmonary embolism, or
ARDS). Patients who had developed PPCs during their hospital
stay were compared to their non-PPC counterparts.

Statistical analysis using Student’s t-test and one-way
ANOVA was performed to determine characteristics that were
statistically significantly different between the two groups.

FIGURE 1 | Forest plot of predictors for pulmonary.

Pearson correlation analysis was performed for the risk factors
and variables with P < 0.05 were deemed to have statistically
significant associations. Variables with P < 0.05, as determined
by univariate analysis, were included for multivariate analysis.
Multivariate logistic regression analysis was employed to identify
independent predictors of unfavorable outcomes.

A method that combines automatic algorithms and artificial
selection aimed at dimension reduction was used for feature
extraction from thousands of variables in this analysis. All
features were selected by clinicians based on their experience
in diagnosis before automatic analysis. The random forest
algorithm was used for final extraction. According to the
descending order of importance, the feature score higher than
0.0005 was selected for final analysis. Multiple algorithms were
chosen to improve the probability of good discrimination
performance. This study used the following classifiers: K-nearest
neighbor (KNN), stochastic gradient descent (SGD), support
vector classification (SVC), random forest (RF), and logistics
regression (LR).

The whole data samples were randomly split into training
and test sets according to a division of 7:3. Optimal features and
hyperparameters combinations for the model were determined
on the training set. Furthermore, 5-fold cross-validation (23) was
used in the process of feature selection and hyperparameters
(Figure 1).

The important indicators of the machine learning model
include precision and recall. Precision refers to the actual positive
samples among all predicted positive samples. The formula is
as follows: Precision = TP/(FP + TP). Recall refers to the
probability of being predicted to be a positive sample in all
samples. Its formula is as follows: Recall rate = TP/(TP+FN).
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TABLE 1 | Results of univariate analysis for all feature variables.

With PPC Without PPC p Odds ratio 95% CI

(n = 190) (n = 164)

Sex 135 (71.1) 131 (79.9) 0.05 1.124 0.998–1.266

Age 55.79 ± 14.31 54.77 ± 18.49 0.55 1.004 0.991–1.017

Education (More than a high school) 28 (14.7) 20 (12.2) 0.64 1.083 0.773–1.518

Current smoker 60 (31.6) 30 (18.3) 0.004 1.194 1.058–1.347

GCS 61 (32.1) 50 (30.5) 0.74 1.024 0.889–1.179

ASA classification (≥3) 126 (66.3) 52 (31.7) 0.00 2.575 1.721–3.854

Previous history CHD 6 (3.2) 10 (6.1) 0.18 1.931 0.717–5.198

Stroke 26 (13.7) 28 (17.1) 0.38 1.248 0.763–2.039

Hypertension 120 (63.2) 81 (49.4) 0.01 1.757 1.148–2.687

Diabetes 22 (11.6) 19 (11.6) 0.99 1.001 0.562–1.782

Pneumonia 14 (7.4) 8 (4.9) 0.33 1.027 0.974–1.083

Laboratory Test Glucose 8.62 ± 3.40 7.14 ± 2.91 0.00 1.183 1.092–1.282

Alb (g/dL) 36.52 ± 6.61 39.75 ± 5.43 0.00 0.914 0.881–0.951

WBC (1,000/Cumm) 11.13 ± 9.81 5.32 ± 4.89 0.01 1.054 1.009–1.100

LYM 1.75 ± 3.04 1.39 ± 1.65 0.18 1.066 0.969–1.172

Leukocyte 10.46 ± 4.87 7.89 ± 4.47 0.00 1.128 1.074–1.185

RBC 3.83 ± 0.71 4.18 ± 0.66 0.00 0.459 0.327–0.645

Platelet (1,000/Cumm) 171.89 ± 70.89 186.50 ± 69.93 0.05 0.997 0.994–1.001

Clotting time 20.55 ± 8.91 24.96 ± 10.12 0.00 0.953 0.931–0.975

Intervention EEN 103 (54.2) 90 (54.9) 0.90 0.985 0.784–1.239

Preventive tracheotomy 93 (48.9) 27 (16.5) 0.00 1.636 1.401–1.910

Respirator use 59 (31.1) 30 (18.3) 0.01 2.012 1.219–3.321

Operative time (minutes) 195.57 ± 93.03 148.59 ± 82.22 0.00 1.006 1.004–1.009

Anesthesia time (minutes) 242.42 ± 106.17 181.08 ± 93.53 0 1.005 1.003–1.008

Blood lose (ml) 180.42 ± 140.36 120.15 ± 127.11 0 1.004 1.002–1.005

Craniotomy 42 (22.1) 66 (40.2) 0 0.421 0.265–0.670

To consider the two factors, F1 score were calculated as F1 = 2
precision-recall rate/(precision+ recall rate).

To assess the discriminative performance of this risk score in
both the development and validation subsamples, we used the c-
statistic, which was also displayed graphically as the area under
the receiver operating characteristic (ROC) curve. An area under
the ROC curve (AUC) of 0.5 indicates no discrimination, whereas
an AUC of 1 indicates perfect discrimination.

The model was subsequently tested on the independent
test set, which had not been seen by the model during the
training process so as to avoid overfitting. To avoid bias due
to the random split of the training and test sets, the above
procedures were repeated 10 times, and the performance of
different models was compared. The comparison of different
models’ performance in the 10 repeats was examined by
Wilcoxon signed ranks test as suggested by a previous study
(9, 10). All continuous variables were normalized to the range
of 0 to 1. Categorical variables were transformed into binary
variables using one-hot encoding. Besides commonly used
metrics such as AUC, we also reported results of the areas under
the precision-recall curve, which is more informative on the
imbalanced dataset. The four machine learning models were
also compared.

RESULTS

The study included 354 patients with emergency cerebral
hemorrhage surgery between January 1, 2017, and December 31,
2020. Furthermore, 53.7% (190/354) of the patients developed
PPC during hospitalization. The mean age was 55.79 ± 14.31
years and the sex ratio was 71.1% in the PPC group; while the
mean age was 54.77 ± 54.77 ± 18.49 years and the sex ratio was
79.9% in the non-PPC group (P > 0.05) (Table 1). Univariate
analysis showed that there were statistically significant differences
in the current smoker, ASA classification, hypertension, glucose,
Alb (g/dL), WBC, leukocyte, RBC, clotting time, preventive
tracheotomy, respirator use, operative time, anesthesia time,
blood loss, and craniotomy between the two groups (P < 0.05),
as shown in Table 1.

The occurrence of PPC was taken as the dependent variable,
and statistically significant factors in univariate analysis were
taken as independent variables. Logistic regression analysis was
performed. Variables were screened by stepwise method (the
model inclusion level was 0.05 and the exclusion level was 0.1).
The results showed that the chi-square test of likelihood ratio
suggested that the regression model had statistical significance
(P < 0.05). Current smoker, lymphocyte count, clotting
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TABLE 2 | Multivariate unconditional Logistic regression analysis of postoperative pulmonary complications.

β SE woldX2 P OR 95% CI

Constant −2.129 0.689 9.56 0.002 0.119

Current smoker 0.702 0.29 5.874 0.015 2.018 1.144∼3.56

Leukocyte 0.074 0.026 7.991 0.005 1.077 1.023∼1.134

Coltting time −0.056 0.014 16.002 0 0.946 0.92∼0.972

ASA 1.116 0.179 39.047 0 3.052 2.151∼4.331

FIGURE 2 | Multivariate unconditional logistic regression analysis and forest map of postoperative pulmonary complications.

time, and ASA classification were all independent influencing
factors for the occurrence of pulmonary complications (Table 2,
Figure 2).

In the correlation analysis, we could see that glucose
(0.225705), operative time (0.257506), leukocyte (0.264244),
anesthesia time (0.291870), preventive tracheotomy (0.342191),
ASA (0.345156) was closely correlated with PPC (Figure 3).
In the RF model, we observed the importance of features,
and the top five are glucose, lymphocyte counterpoint, clotting
time, anesthesia time, and Alb (Figure 4). The ROC curves of
the five derived models are plotted in Figure 5. The model
achieved the highest AUC of 0.653, followed by the LR model
of 0.774194. SGD (0.712871) model showed a relatively poor
result in the ROC curve. When we observed f1, RF also performs

relatively well, especially the f1 value of 0.69 in the test set
(Table 3).

DISCUSSION

Postoperative pulmonary complications (PPC) are a well-
described cause of post-surgical detrimental outcomes,
including intensive care unit admission, prolonged admissions,
perioperative mortality, and increased hospital expenditures in
patients who underwent surgery. Moreover, the complication
rate of neurosurgery is naturally high. Previous studies have
shown that pulmonary complications occur between 1.3
and 22%, depending on the different types of neurosurgery
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FIGURE 3 | Heat map of correlation analysis results indicates the the risk factors association with PPC.

(1–4, 11). Now there are some predictors of pulmonary
complications, such as the “Assess Respiratory Risk in
Surgical Patients in Catalonia” (ARISCAT) risk score,
the “Surgical Lung Injury Prediction” (SLIP) model, and
LAS VEGAS risk score which are two well-established
prediction scores used for the identification of patients at
risk of developing PPC or ARDS, respectively (12, 13).
But these indicators are inapplicable to neurosurgery in
clinical practice.

In this study, the incidence of PPC reached 53.7%. Since all our
patients were in emergent and severe conditions comparative, the
incidence of PPC tended to be higher. Some studies have shown
that the mortality rate of patients undergoing decompressive
craniectomy is as high as 40.9%. In this study, traditional
logistic reviews identified some independent risk factors by
univariate and multivariate regression analyses. In particular,
current smoker, lymphocyte count, clotting time, and ASA
classification were independent risk factors for PPC. It was
basically consistent with the results of previous studies (14–
20). However, we noticed that some important risk factors
reported in previous literature, such as patients’ blood glucose
level and operation time, had not reached the multivariate
regression inclusion criteria in our study. We thought it might
be due to insufficient sample size, or our review of pulmonary
complications was relatively broad.

In terms of preventing PPC, some of these risk factors
are controllable and some are not. Careful timing of surgery,
smoking reduction, regulation of blood glucose, and preventive
use of antibiotics could minimize complications. However, most
of the thrombo-embolic events are often unpredictable and
unpreventable, and low molecular weight heparin in the context
of protocols for thromboprophylaxis could also be a beneficial
attempt (21).

In recent years, machine learning has been used to predict
the prognosis of various neurological diseases with remarkable
results (22–27). RF is an ensemble learner composed of the
decision tree, which also highlights the importance of each
indicator. In this study, RF cast light on the importance of
blood glucose indicators. In contrast, the p-value of blood
glucose is on the margin of 0.05, so that it could be missing in
the analysis. Comprehensively, the LR model performed better
overall, including in the training set and test set. In particular,
the test set performance remained stable, far outperforming other
machine learning methods. As a most popular machine learning
algorithm, RF provides accurate results without exhaustive
hyper-parameter tuning and can be applied to both regression
and classification problems, when the number of potential
explanatory variables is far more than the observed values. In
addition, all the other five models showed moderate classification
ability (AUC ranging from 0.6 to 0.71). The current study could

Frontiers in Surgery | www.frontiersin.org 5 January 2022 | Volume 8 | Article 797872

https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org
https://www.frontiersin.org/journals/surgery#articles


Jing et al. PPC After Cerebral Hemorrhage Surgery

FIGURE 4 | Rank of feature importance of PPC in RF model.

be considered as a novel exploration of the modified machine
learning approach for PPC. In particular, the machine learning
model can find some potential risk factors, such as the blood
glucose index in this paper that could not be found in previous
studies due to different learning models, especially in the case of
limited sample size.

Although machine learning models are powerful, they are
often more complex, which makes them difficult to understand
like a: “black box” (28). Therefore, the interpretation of machine
learning results particularly depends on the experience of
clinicians, especially for the prediction of complications, in order
to identify high-risk patients and adapt treatment plans as early
as possible, so as to reduce the incidence of complications
and improve the prognosis of patients. According to different
situations, we can adjust the recall rate appropriately to avoid
missing high-risk patients, and the requirement for precision
can be relaxed, because once missing patients with pulmonary
complications, it may cause serious consequences. For example,
in this study, RF model with the parameters C = 1, precision =

0.76, recall rate= 0.82 is a relatively good prediction model.

This study has several limitations. First, the diagnosis of PPC
relied on the attending physicians’ evaluation in this retrospective
study; therefore, the potential of either underestimation or
overestimation of the actual incidence of PPC could not
be avoided. Our inclusion indicators were relatively loose,
and although some patients were diagnosed with pulmonary
edema, they did not need special intervention. Second, the
definition of PPC was based on radiology evidence rather
than etiological results. Another limitation of the study is
that the diagnosis of PPC was occasionally a clinical one
and that there was no clear source of infection. At the
same time, our study was a retrospective analysis, and the
number of specimens was relatively low considering the large
amount required in machine learning analysis. Fortunately,
we have adopted a variety of machine learning models to
analyze and process the data to minimize the omission of
important indicators.

Finally, in this study, the prediction models of pulmonary
complications in patients with severe emergency ICH were
established. Compared with traditional statistical methods, the
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FIGURE 5 | The ROC curve analysis of the four derived models (KNN), Stochastic Gradient Descent (SGD), Support Vector Classification (SVC), Random Forest (RF),

Stochastic Gradient Descent (SGD) and logistics regression (LR).

TABLE 3 | Performance comparison of machine learning model.

Model Linear SVC KNN Random forest SGD LR (C = 1)

Train set precision 0.734848 0.78626 0.756757 0.716535 0.765957

Train set recall 0.702899 0.746377 0.811594 0.65942 0.782609

Train set f1 0.718519 0.765799 0.783217 0.686792 0.774194

Train set ROC area 0.780282 0.776393 0.794475 0.712871 0.78693

Test set percision 0.666667 0.607143 0.655172 0.634146 0.661017

Test set recall 0.730769 0.653846 0.730769 0.500000 0.750000

Test set f1 0.697248 0.62963 0.690909 0.55914 0.702703

Test set ROC area 0.683916 0.616783 0.652797 0.637063 0.665734

machine learning model was more comprehensive and flexible,
providing new ideas for the prediction model of pulmonary
complications in the future.
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