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The softness of objects can be perceived through several
senses. For instance, to judge the softness of a cat’s fur,
we do not only look at it, we often also run our fingers
through its coat. Recently, we have shown that
haptically perceived softness covaries with the
compliance, viscosity, granularity, and furriness of
materials (Dovencioglu, Üstün, Doerschner, & Drewing,
2020). However, it is unknown whether vision can
provide similar information about the various aspects of
perceived softness. Here, we investigated this question
in an experiment with three conditions: in the haptic
condition, blindfolded participants explored materials
with their hands, in the static visual condition
participants were presented with close-up photographs
of the same materials, and in the dynamic visual
condition participants watched videos of the
hand-material interactions that were recorded in the
haptic condition. After haptically or visually exploring
the materials, participants rated them on various
attributes. Our results show a high overall perceptual
correspondence among the three experimental
conditions. With a few exceptions, this correspondence
tended to be strongest between haptic and dynamic
visual conditions. These results are discussed with
respect to information potentially available through the
senses, or through prior experience, when judging the
softness of materials.

Introduction

Objects in our world consists of single or composite
materials. To be able to swiftly judge and recognize
properties of materials is important, because perceived
material qualities influence how we interact with an
object. Humans have this ability and are able to make

judgments about materials visually and haptically: we
move a polished gemstone to visually judge its sparkle
and rub a cloth to understand if it is soft enough to
wear it. Recent research suggested that perceptions of
different aspects of material qualities may be mediated
by different senses (e.g. vision or touch, Adams,
Kerrigan, & Graf, 2016; Sahli, Prot, Wang, Müser,
Piovarči, Didyk, & Bennewitz, 2020). Often, however,
also the same aspects of material qualities are judged
through different senses: to judge the softness of our
cat’s fur, we do not only look at it, but we also run our
fingers through its coat. In this example, the softness of
the material can be assessed directly, by touching the cat
(Lederman & Klatzky, 1987; Di Luca, 2014; Cavdan,
Doerschner, & Drewing, 2021; Dövencioglu et al.,
2018), and also indirectly, by looking at it (Bergmann
Tiest & Kappers, 2007; Giesel & Zaidi 2013; Schmidt,
Paulun, van Assen, & Fleming, 2017). What is not
known though is whether these two routes of processing
might yield the same evaluations of softness.

Not just softness, but many material qualities are
directly available through touch. Indeed, the topic has
attracted attention in haptics community for quite
a while (Lederman, 1974; Srinivasan, Whitehouse,
& LaMotte, 1990; Srinivasan & LaMotte, 1995; for
a review, see Bergmann Tiest, 2010) — increasingly
so in the past few years (Cellini, Kaim, & Drewing,
2013; Drewing, Weyel, Celebi, & Kaya, 2018; Vardar,
Wallraven & Kuchenbecker, 2019; Mezger & Drewing,
2019; Dövencioglu et al., 2018; Cavdan et al., 2021;
see Okamoto, Nagano, & Yamada, 2013 for a review).
According to a meta-analysis by Okamoto et al. (2013)
the tactual properties of materials can be categorized in
five main sections, which are warmness (cold/warm),
hardness (hard/soft), micro and macro roughness, and
friction (moistness/dryness and stickiness/slipperiness).
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Visually, only some material properties can be judged
directly from images, such as surface gloss, transparency,
or translucency. Thus, a large majority of research on
the visual material perception has centered on those
problems (e.g. see Chadwick & Kentridge, 2015 for a
review). Softness is related to the subjective impression
of the compressibility and deformability characteristics
of things and materials, which typically includes a
relation to forces that can be directly sensed by touch,
but not by vision. However, because of our lifelong
experiences with materials (i.e. looking at them while we
interact with them), we are also able to judge indirectly
material properties from images (e.g. their rigidity,
wobbliness, or stickiness; Schmidt et al., 2017; Alley,
Schmid,&Doerschner, 2020). Especially, whenwewatch
objects move and materials deform, impressions of
material qualities can be perceived quite vividly (Sakano
& Ando, 2010; Doerschner, Fleming, Yilmaz, Schrater,
Hartung, & Kersten, 2011; Yilmaz & Doerschner, 2014;
Kawabe, Maruya, & Nishida, 2015a; Kawabe, Maruya,
Fleming, & Nishida, 2015b; Bi & Xiao, 2016; Marlow
& Anderson, 2016; Morgenstern & Kersten, 2017;
Schmidt et al., 2017; Schmid & Doerschner, 2018; van
Assen, Barla, & Fleming, 2018; Mao, Lagunas, Masia,
& Gutierrez, 2019; Alley et al., 2020).

Interestingly, it is not just the deformation of a
material that triggers a particular impression of the
material quality but also watching the interaction
with a material: when we actively explore materials
in order to gain information about the objects, we
adjust our hand and finger motions to the material
properties (e.g. we tend to rub rough materials such as
felt; Dövencioglu et al., 2018) and to the information
we want to gain (e.g. we apply pressure when we wish
to find out about an object’s deformability; Lederman
& Klatzky, 1987; Lezkan, Metzger, & Drewing, 2018;
Cavdan, Doerschner, & Drewing, 2019; Zoeller &
Drewing, 2020; Cavdan et al., 2021). We know that
observers can estimate the weight of lifted objects
by just observing the lifting motion (Bingham, 1987;
Hamilton, Wolpert, & Frith, 2004; Hamilton, Joyce,
Flanagan, Frith, & Wolpert, 2005; Auvray, Hoellinger,
Hanneton, & Roby-Brami, 2011; Maguinness, Setti,
Roudaia, & Kenny, 2013), and more recent work has
shown that humans can distinguish compliance by
observing someone else’s finger motions (Cellini et al.,
2013; Drewing & Kruse, 2014). Similarly, there has
been evidence that visually observing exploratory hand
motions of others can yield impressions of material
qualities (Yokosaka, Kuroki, Watanabe, & Nishida,
2018; Wijntjes, Xiao, & Volcic, 2019).

Do these sources of information (i.e. images,
motion/deformations of the material, watching hand
movements, and haptic exploration1), provide rather
complimentary or mostly redundant information? A
high degree of redundancy might yield quite similar
perceptual spaces when estimating material qualities
on any of these sources of information (images,

haptic, image motion, etc.) in isolation. Whereas
complimentary processing might yield somewhat
different impressions of a material quality, say softness,
when elicited by different sources of information.
Although cue combination studies might provide
some important insights into how information is
integrated (Wolfe, 1898; Lederman, Thorne, & Jones,
1986; Ellis & Lederman, 1999; Cellini et al., 2013;
Lacey & Sathian, 2014; Adams et al., 2016), it is also
of interest to understand how much the perception
of a material quality from one source of information
corresponds to the perception of the same material
quality from another source of information. There
are only a few studies that have investigated this.
For example, Vardar et al. (2019) analyzed similarity
ratings for a set of various materials (mounted flat
on wood) based on visual or haptic comparisons
and found the organization of the perceptual spaces
suggests that vision and touch rely on congruent
perceptual representations. Baumgartner, Wiebel, and
Gegenfurtner (2013) used a more extended set of
materials, but again limited to textures mounted flat
on wood, and assessed ratings of material qualities
for visually and haptically presented materials. They
conclude that material representations might overall be
similar in visual and haptic domains, however, how well
ratings in visual and haptic domains agree, appears to be
depended on the attribute being rated (Baumgartner et
al. 2013, their figure 7). Xiao, Bi, Jian, Wei, and Adelson
(2016) investigated the perception of fabrics and found
that visuo-haptic matching improves when visually
presented fabrics were draped instead of mounted flat,
and Wijntjes et al. (2019) showed that movies can reveal
more about how fabrics feel than can still images.

What might complicate comparisons of perceptual
experience across the senses is that many perceptual
attributes are not very well defined. For example, we
have recently shown that, perceived softness, which, in
haptic research, has traditionally been equated with
the compliance of a material (Kaim & Drewing, 2011;
Cellini et al., 2013; Di Luca, 2014; Punpongsanon,
Iwai, & Sato, 2015; Kitada, Doizaki, Kwon, Tanigawa,
Nakagawa, Kochiyama, Kajimoto, Sakamoto, &
Sadato, 2019; Zoeller, Lezkan, Paulun, Fleming, &
Drewing, 2019) is in fact a multidimensional construct,
that consists of several qualities, such as surface
softness, granularity, and viscosity (Cavdan et al.,
2019; Dövencioglu et al., 2018; Cavdan et al., 2021).
This makes intuitively sense: the softness of sand on
a beach is different than the softness of a rabbit’s fur,
or the softness of an avocado, and we even found that
this dimensionality is reflected in the way we explore
the material and what property we judge (Cavdan
et al., 2019; Dövencioglu et al., 2018; Cavdan et al.,
2021). Thus, if one were to compare haptic and visual
perception of softness, one would have to be careful
to compare all of the underlying dimensions of this
perceptual attribute. This is the goal of this study.
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Specifically, we seek to understand to what extent
the dimensions of perceived softness, that we found
in previous haptic experiments, are also present in
vision. To do so we conducted an experiment with
two visual conditions, including a wide range of
materials. In one condition, we present movies showing
interactions with materials while doing a rating task.
This provided observers with the maximum amount
of visual information possible, not just showing how
materials deform but also typical interactions while
rating material qualities (dynamic condition). In a
second condition, the visual information was reduced,
showing only still photographs of the same set of
materials (static visual condition). We compare results
of the visual experiment to data from a corresponding
haptic study by our group (Cavdan et al., 2021). We
hypothesize that the correlation between the perceptual
softness spaces yielded by the two visual conditions
should be stronger than the correlation between
visual and haptic perceptual spaces, because ratings
in the former are based on the same type of indirect
information (i.e. visual; Paulun, Schmidt, van Assen, &
Fleming, 2017; van Assen et al., 2018; Wijntjes et al.,
2019). Given previous results by (Wijntjes et al., 2019),
we further hypothesize that the correlation between
the perceptual spaces yielded by the dynamic visual
condition and the haptic experiment should be stronger
than the one between the static visual condition and the
haptic experiment.

General methods

Overview

We investigate to what extent the dimensions of
perceived softness that we found in previous haptic
experiments are also present in visual representation
of material qualities. To do this we selected a set of
everyday materials that we found to be representative
for the various perceptual dimensions of softness in
haptic experiments (Cavdan et al., 2019; Dövencioglu
et al., 2018; Cavdan et al., 2021). Similarly, we used
rating attributes that we found to be strongly associated
with the respective perceptual dimensions of softness.
Previously recorded hand movements during haptic
exploration of these materials were used for the
dynamic visual condition, and still photographs of
images of the materials in the static visual condition.
Participants rated all stimuli on all attributes. A
Principal Component Analysis (PCA) was used to
determine the perceived softness dimensions for static
and dynamic visual conditions. We then formally
compare the resulting visual and haptic perceptual
softness spaces using Procrustes and correlation
analyses. Along with information pertaining to the
visual experiments, we will highlight the relevant
methodological and analysis aspects of the previous

haptic study (data from the haptic condition has been
reported in part in Cavdan et al., 2021, also see this
paper for more methodological details), which we refer
to as haptic condition in the remainder of this paper.

Participants

Ninety students participated in the experiments:
static visual condition: 20 women and 10 men; mean
age 23.4 years, range = 20 to 31 years; dynamic visual
condition: 21 women; age range = 20 to 33 years; mean
age = 25.1; haptic condition = 21 women and 9 men;
mean age = 23.6 years; range = 18 to 38 years. All
of them were right-handed according to self-report,
spoke German at a native speaker level, and were
naïve to the purpose of the experiment. Participants
in both visual conditions had normal or corrected-to
normal visual acuity and normal color vision (Ishihara,
2004). Participants in the haptic condition had no
sensory, motor, or cutaneous impairments and had
a two-point discrimination threshold, at the index
finger of the right (dominant) hand, of 3 mm or better.
Participants provided written informed consent prior
to the experiments. All the experiments were approved
by the local ethics committee of Giessen University,
LEK FB 06, and were conducted in accordance with
the Declaration of Helsinki.

Stimuli

Material items were the same as in our previous
haptic study (Cavdan et al., 2021), and included those
that had resulted in extreme positive or negative values
on four softness-related (Deformability, Fluidity,
Hairiness, and Granularity) and one control dimensions
(Roughness), but included also those that did not
show either extreme positive values in any perceptual
dimension or that showed extreme values in more than
one dimension (see Figure 1, and Dövencioglu et al.,
2018, Cavdan et al., 2021). Roughness is a well-establish
material dimension in haptics (Bergmann Tiest &
Kappers, 2007; Okamoto et al., 2013). Therefore, in
order to test the validity of our paradigm (in Cavdan
et al., 2021) we included adjectives that are known
to load high on this dimension as well as materials
that are known to be perceived as haptically rough.
However, it is quite possible that visual information
of haptically rough materials might not provide
adequate information for judging the roughness of
more fine-grained textures (Heller, 1989), which might
lead to differences in what the roughness dimension
might look like (e.g. its patterns of adjective loadings)
in the visual experiments.

Still images
To generate still photographs of all 19 materials

we placed individual materials on a green cloth (see
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Figure 1. Images used as static visual stimuli (column 1), associated dimensions of the materials (negative loadings (-), positive
loadings (+)), associated hand movements from Cavdan et al. 2021 (column 7), and example frames from dynamic visual stimuli
(column 8). The names of the materials from top to bottom are pebbles, stress balls, play dough, hair gel, hand cream, fur, velvet,
sand, salt, sandpaper, felt, aluminum foil, paper balls, wool, linen, lentils, cranberries, sponge, and cotton balls.

Figure 1). Where possible we added traces of a manual
manipulation (e.g. playdough with indentation of
fingers and sand with some run-through marks) in order
to increase the available shape cues to the respective
material properties. Photographs were taken close-up
using a Sony Digital 4K Video Camera Recorder, which
took 60-bit images at a spatial resolution of 3840 ×
2160 pixels (white balance shift disabled), and with
materials illuminated by two 1320 lumen light bulbs
placed left and right to the material. This setup yielded
a natural look of the materials and minimized harsh
shadows. Postprocessing of images centering of the
material and cropping to a size of 2049 × 1464 pixels
(The GIMP Development Team, 2019).

Dynamic stimuli
For the dynamic visual condition, we used some of

the previously recorded hand movements in the haptic
experiments. We selected movies as follows:

First, we determined either the one or two most
frequently used typical exploratory hand movements

per material using the taxonomy of Cavdan et al.
(2021). For example, the most frequently used hand
movements for salt were “run through” and “rotate”
(run through: “Picking up some parts/portion of
the material and letting them trickle through the
fingers,” rotate: “Lifting parts of the material to
move and turn its boundaries typically inside the
finger(tip)s”; Cavdan, et al., 2021, page 2). Definitions
of all exploratory hand movements can be found
in Supplementary Methods S1. Most frequently
associated hand movements for each material can be
found in Figure 1, column 8.

Second, from the movie material collected during the
haptic experiment, we selected videos of different
participants that performed these typical hand
movements. For each of the 19 materials, we
randomly choose videos of 3 different participants
performing the same hand motion, in order to
avoid perceptual biases due to a given participant’s
potentially unique exploration style. Videos were
clipped to 6 seconds (180 frames) with a resolution
of 1012 × 1080 pixels. This resulted in 3 matched
sets of 19 clips each (one clip per material). Figure 1,
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column 7 shows sample snapshots from the movies
used in the dynamic visual condition.

Adjectives
Stimuli were rated on the same 15 sensory adjectives

that we used in the previous haptic experiment (Cavdan
et al., 2021). These adjectives had been selected based
on their association (positive or negative) with the
above-described softness dimensions or the control
dimension (Dövencioglu et al., 2018). These were soft,
elastic, hard, inflexible, moist, wobbly, sticky, sandy,
powdery, granular, velvety, fluffy, hairy, rough, and
smooth (see Cavdan et al., 2021 for more details of the
selection criteria for adjectives).

Apparatus

In the static visual condition, stimuli were displayed
on a Samsung UHD (U32D970Q) 32 inch Professional
LED monitor (resolution: 3840 × 2160, refresh rate:
55 Hz). Participants were seated at a distance of about
70 cm from the screen, thus the stimulus size in visual
angle on the screen was about 24 degrees in width and
about 20 degrees in height.

In the dynamic visual information condition,
stimuli were presented on a DELL UltraSharp
monitor (resolution: 2560 × 1440, refresh rate: 56 Hz).
Participants were seated at a distance of about 70 cm
from the screen, thus the stimulus size in visual angle
on the screen was about 15 degrees in width and about
15 degrees in height. Videos were played at a rate of 30
frames per second.

The experiment was programmed in MATLAB
2017a (2007; MathWorks Inc., New York, NY, USA)
using Psychtoolbox routines (Brainard, 1997; Kleiner,
Brainard, & Pelli, 2007). Responses were collected with
a keypad.

In the previous haptic experiment (Cavdan et al.,
2021), we used a curtain to hide the materials from
the participant’s view and active noise cancelling
headphones to eliminate any contact sounds. Material
stimuli were presented on a plastic plate and the
participant’s arm was placed on a wrist rest that allowed
to explore the materials comfortably from a defined
position. Hand movements of the participants were
recorded and used in the dynamic visual condition, as
described in the sections above (for more details of this
study please see Cavdan et al., 2021).

Design and procedure

Static condition
On each trial, participants first saw the to-be-rated

adjective. After pressing the space button, an image
of a material appeared and stayed for 2 seconds at
the center of the screen. After the image disappeared,
observers gave their ratings using the keypad. The task
was to indicate how much a given adjective applies to
the just seen material on a 5-point Likert scale item
ranging from 1 (adjective not applicable) to 5 (adjective
strongly applies). Participants completed 285 trials
(19 materials × 15 adjectives) in about 1 hour. The
order of material-adjective pairs was randomized, every
participant saw every material-adjective pair only once
(Figure 2).

Figure 2. Time course of a trial across conditions in the experiment. First, in all conditions, the adjective to be rated appeared on the
screen. After pressing the space button an image was presented on the screen for 2 seconds in static visual and a video presented on
the screen for 6 seconds in the dynamic visual condition. In the haptic condition a sound (beep) signaled the start for 4 seconds of
exploration, and a second beep signaled the end of the trial. Subsequently, in all conditions, participants indicated how much the
given adjective applied to the material on a 5-point Likert scale.
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Dynamic condition
The procedure in the dynamic visual condition

was similar to the static visual condition except that,
instead of a static image, observers now saw a 6 second
movie clip showing the exploration of a material
(see Figure 2). Observers had to rate all three sets of
dynamic visual stimuli, each set on a separate day. Each
session (19 movie clips × 15 adjectives) took about 1
hour.

Haptic condition
A typical trial in the haptic condition is shown

in Figure 2. In summary, participants first saw the
to-be-rated adjective, then pressed the space button to
start exploration. Materials were explored for 4 seconds
with the right hand. After the exploration, participants
removed their hands from the material and rated the
material according to the adjective by using keypad
using with their left hand. The order of materials and
adjectives was randomized, and the experiment took
about 1.5 hours.

Analysis

The goal of this study was to determine the
dimensionality of visually perceived softness and
to compare it to the dimensionality of the haptic
perceptual space.

As a first step, we assessed interobserver consistency
in the ratings, and checked whether this was
approximately in the same range as that obtained
for haptic data. Because we acquired three data
points for each material-adjective combination in
the dynamic visual condition (i.e. 3 videos for each
material-exploration stimulus) we used the average
of these three scores in the consistency and all
subsequent analyses. Next, we performed separate
PCAs for static and dynamic visual conditions based on
average observer data from material-adjective pairs (19
materials × 15 adjectives = 285 data points). We also
extracted Bartlett scores which essentially provide an
estimate of how strongly each stimulus (material) scores
on each extracted dimension. The score is calculated
from the adjective ratings for that material weighted
by the adjective loadings for the respective dimension.
Comparing the resulting factor structure and loadings
would allow for a first assessment of similarities
between visual softness dimensions, and for comparing
these to the previously determined haptic perceptual
space. To formally assess the degree of similarity we
conducted a Procrustes analysis on the Bartlett score
values of each material across conditions. Should the
visual perceptual spaces turn out to be overall similar

to each other and the haptic space, we would follow
this analysis with a combined PCA on ratings of the
visual conditions and the previous haptic experiment.
This would allow for a more fine-grained assessment
of the structural similarities of static visual, dynamic
visual, and haptic perceptual softness spaces (e.g. by
inspecting the correlations of the respective Bartlett
scores between spaces), for all softness dimensions;
(e.g. static visual dimension 1 versus haptic dimension
1: static visual dimension 1 versus haptic dimension 2,
etc.).

Last, we directly investigated whether there were
rating differences between the two visual conditions
and the haptic condition. To this end, we first
calculated mean ratings across participants for each
material-adjective pair for the two visual conditions
and the haptic experiment, and then computed
the distances between these means (3 distances:
static-dynamic, static-haptic, dynamic-haptic, for
each of the 285 material-adjective pairs). Then we
resampled these data using Monte Carlo methods
(Efron, 1979), creating a random sample of 10,000
rating distances. We determined the 95% percentile of
this distribution and report the conditions in which
rating difference exceeded this cutoff value. Assuming
that the distribution of distances does not depend
on the conditions that are being compared (H versus
D versus S), makes the following prediction: in the
extreme 5%, the case count (n) of distances should be
the same when considering haptic and static visual
ratings (HS), haptic and dynamic visual ratings (HD),
and visual static and dynamic ratings (SD), such that
nHS (i.e. number of extreme haptic-static distances) =
nSD (i.e. number of static-dynamic distances) = nHD
(i.e. number of haptic-dynamic distances). However, if
our three hypotheses are true, then we would expect this
to be reflected in the case count of each comparison
(i.e. nHS > nSD, nHD > nSD, nHS > nHD).

Using a binomial distribution, we test, for each of
the three hypotheses, whether the number of extreme
cases is equal.

Results

Interobserver consistency

Overall, all interindividual correlations between
participants’ ratings in static and dynamic visual
conditions where significant (p < 0.01), and ranged
between 0.41 to 0.81 and 0.41 to 0.95, respectively (also
see Supplementary Figures S1, S2). These values were
comparable to previously reported results in the haptic
condition (0.45 - 0.86, Cavdan et al., 2021) and suggest
that participants’ interpretation of the perceptual
meaning of adjectives tended to agree. All subsequent
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Table 1. Adjective loadings after rotation for static and dynamic visual data, as well as for the previous haptic experiment. Each factor
labeled based on the adjectives load high (>40% of mean variance per adjective explained: 0.68 static visual, 0.62 dynamic visual,
and 0.74 for haptic sequentially) and load higher on a specific factor than the others. Bold if loading both maximal for adjective and
>40% of mean variance per adjective explained, italic if loading only maximal for adjective. Darker colors show positive loadings and
lighter colors indicate negative loadings.

analyses were done on ratings that were averaged across
participants.

PCA for static and dynamic visual rating data

Because participants showed high consistency
in their rating data, we performed next covariance
PCAs for static and dynamic visual conditions. The
Keyser-Meyer-Olkin (KMO) criterion was 0.4, and
0.5 for the static and dynamic visual conditions,
respectively, which are borderline values. However,

Bartlett’s test of sphericity was significant for both
conditions (p < 0.01): χ2 (105) = 370.32, χ2 (105)
= 360.03, suggesting that the observed correlations
between adjectives were meaningful. Components
which had eigenvalues bigger than one were extracted
and rotated using the varimax method.

In the static visual condition, we extracted three
components explaining 83.9% of the total variance
(see Table 1). The first component, which we termed
surface softness/deformability, accounted for 38.2% of
the variance with significant loadings of the adjectives
soft, elastic, hard, velvety, hairy, fluffy, and inflexible;
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the second component, which we named granularity,
accounted for 25.8% of the variance with significant
loadings of the adjectives granular, sandy, powdery,
rough, and smooth; the third component, termed
viscosity, accounted for 19.9% of the variance with
significant loadings of the adjectives wobbly, sticky, and
moist.

In the dynamic visual condition, we extracted 4
components explaining 89.2%. Whereas three of the
components were rather similar in their structure to
the static visual condition (surface softness [25.2%,
soft, velvety, hairy, and fluffy], granularity [23.7%,
granular, sandy, powdery, and smooth], viscosity
[21.8%, wobbly, sticky, moist, and rough]), a fourth
component appeared to be exclusively related to the
deformability of the material. This fourth component
accounted for 18.5% of the variance with significant
loadings of the adjectives elastic, hard, and inflexible.

In comparison, in our previously reported haptic
condition, we had extracted four components related to
softness (surface softness [25.9%, soft, velvety, hairy,
and fluffy], viscosity [20.6%, wobbly, sticky, and moist],
granularity [20.6%, granular, sandy, and powdery],
deformability [17.8%, elastic, hard, and inflexible]) as
well as one component related to the roughness of the
material (roughness [9.5%, rough and smooth]).

Although there are some differences in the number
of extracted components between the two visual
conditions and the haptic one, it becomes also apparent
that there are some structural similarities in the
extracted components between the visual and haptic
conditions. In particular, inspecting Table 1, in all
three conditions, the components of surface softness,
granularity, and viscosity account for most of the
variance in the ratings, with nearly the same patterns
of adjective loadings. To formally assess the degree
of similarity we conducted a Procrustes analysis on
the Bartlett score values of each material across these
three components (surface softness, granularity, and
viscosity) among static visual, dynamic visual, and
haptic conditions. This analysis aims to map two
multidimensional representations onto each other using
linear transformations (reflection, translation, and
orthogonal rotation). From this analysis we obtained
an index of the error (mean squared error across point
pairs) that remains after applying this transform,
with lower values indicating better fits. Comparing
the mapping of perceptual spaces among the three
conditions we obtained values of 0.19 (static visual
versus dynamic visual), 0.20 (static visual versus haptic),
and 0.25 (dynamic visual versus haptic). These values
were all comparably low (also see Supplementary
Figure S4), indicating a rather high similarity among
the three perceptual spaces, spanned by the dimensions
of surface softness, granularity, viscosity (also see
Supplementary Figure S3). Thus, we determined that
the structural similarity was sufficient to proceed with

a combined PCA for static visual, dynamic visual,
and haptic rating data, which would allow us to make
more fine-grained comparisons among the static
visual, dynamic visual, and haptic spaces of perceived
softness.

Combined PCA for static visual, dynamic visual,
and haptic rating data

A KMO value of 0.68 and a statistically significant
Bartlett’s test of sphericity (χ2 (105) = 1225.62, p <
0.01) suggest that a PCA was indeed appropriate for
the combined dataset (Francis & Field, 2011). The
combined PCA yielded 4 components explaining 88.6%
of the total variance. The adjectives soft, fluffy, hard,
velvety, and hairy loaded high on the first component,
which explained 30.04% of the total variance, and given
its loading patterns we named it surface softness. The
adjectives sandy, granular, powdery, inflexible, and
elastic loaded high on the second component, which
explained 27.37% of the total variance. We named
this second component granularity. The adjectives
sticky, moist, and wobbly loaded high on the third
component, which appeared to be related to the
viscosity of materials, accounting for 22.30% of the
variance. The adjectives rough and smooth loaded
high on the fourth component, which explained 8.89%
of the variance. Because of these loading patterns we
called it roughness. Table 2 shows the adjective loadings
for each of the four components in this combined
PCA analysis, and Figure 3 shows the corresponding
Bartlett scores of all materials, sorted according to
their sign and magnitude in the haptic condition (i.e. in
order to allow for a better comparison across the three
conditions, we kept the ordering of materials in the two
visual conditions the same as in the haptic one).

Assessing similarities between the static visual,
dynamic visual, and haptic spaces of perceived
softness

In order to determine the similarities between the
static visual, dynamic visual, and haptic perceptual
spaces of perceived softness, we compared the
correlation scores of the Bartlett scores of the three
softness dimensions (surface softness, granularity,
and viscosity) and roughness across all materials (see
Figure 3). The correlations among perceptual spaces
(i.e. dynamic-haptic, static-haptic, and dynamic-static)
were significantly different from 0 (Bonferroni corrected
for 3 tests, α = 0.05/3 = 0.017). Figure 4 shows that,
overall, the correlations were high among the three
perceptual spaces: static and dynamic (r = 0.964, p <
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Table 2. Rotated Adjective loadings obtained from the combined PCA analysis (static visual, dynamic visual and haptic conditions).
Color-codes, font styles, and criterion for significance (>40% of mean variance = 0.67) are as in Table 1.

0.001), dynamic and haptic (r = 0.96, p < 0.001), and
static and haptic spaces (r = 0.93, p < 0.001).

We next tested our three hypotheses, namely that the
correlation between the two visual conditions should
be significantly stronger than any other correlation
and that the correlation between the dynamic visual
condition and the haptic experiment should be stronger
than the correlation between static visual condition and
haptic experiment. These are planned comparisons, and
we therefore did not correct for multiple comparisons.
We computed Fisher r to z transformations for
analyzing the statistical significance of the difference
between two correlation coefficients (Fisher, 1915; Eid,
Gollwitzer, & Schmitt, 2011). Figure 4 illustrates that
the correlation between dynamic visual and static visual

spaces was indeed significantly larger than that between
static visual and haptic spaces (p = 0.02, one-tailed),
however, it was not significantly larger than the
dynamic-haptic correlation (p = 0.37). Pertaining to the
third hypothesis we found indeed that the correlation
between the dynamic-haptic spaces was larger than
that between static visual and haptic spaces (p = 0.04,
one-tailed).

It is further possible that the strength of the
correspondence might vary between the respective
softness dimensions (i.e. for surface softness,
granularity, viscosity, or roughness). To investigate
this possibility, we computed the correlations of
Bartlett scores also at the dimensional level (note that
significance level was determined after correcting
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Figure 3. Rotated component scores (Bartlett scores) of materials — in each perceptual softness dimension: surface softness,
granularity, viscosity, and roughness dimensions — for haptic, dynamic visual, and static visual conditions, respectively. Darker,
saturated colors indicate positive loadings and desaturated, lighter colors represent negative loadings. Light violet and white areas
indicate that loadings were larger than -1 standard deviation, or smaller than 1 standard deviation.

Figure 4. Comparisons of correlation coefficient r across
dynamic visual information-haptic, static visual
information-haptic, and dynamic visual information-static visual
information conditions. Asterisks represent significance levels
(*: p < 0.05).

for 48 tests: α = 0.05/48 = 0.001; Curtin & Schulz,
1998). As expected, the correlations across conditions
(static visual, dynamic visual, and haptic) within the
respective dimensions were very high and statistically
significant (Figure 5, dark blue colors, all p < 0.001),
and correlations across the respective dimensions were
low and not significantly different from 0 (light blue
colors).

We next also put here our three hypotheses to the test.
Regarding the first two hypotheses, which state that the
correlation between the two visual conditions should
be strongest, we find, in line with our prediction, that
for all tested dimensions (surface softness, granularity,
viscosity, and roughness) the correlation between
static-dynamic spaces was higher than that between
static-haptic spaces (rsoftness = 0.975 vs. 0.961, p =
0.26, rgranularity = 0.993 vs. 0.969, p = 0.02, rviscosity =
0.973 vs. 0.942, p = 0.13, rroughness = 0.927 vs. 0.877,
p = 0.22, all one-tailed). However, the correlation
between static-dynamic spaces was higher than that
between dynamic-haptic spaces only for two of the
dimensions: softness and granularity (rsoftness = 0.975
vs. 0.968, p = 0.36, rgranularity = 0.993 vs. 0.973, p = 0.03,
rviscosity = 0.973 vs. 0.982, p = 0.28, rroughness = 0.927 vs.
0.927, p = 0.05, all one-tailed). Note, that none of the
individual comparisons reached statistical significance
after correcting for multiple (4) comparisons (pcorrected
= 0.05/4 = 0.0125). Our third hypothesis was that the
correlation between the dynamic visual and the haptic
conditions would be stronger than the correlation
between the static visual and haptic conditions.
Whereas, again, we numerically observed this trend for
all four dimensions (rsoftness = 0.986 vs. 0.961 rgranularity =
0.973 vs. 0.969, p = 0.42, rviscosity = 0.982 vs. 0.942, p =
0.046, rroughness = .927 vs. 0.877, p = 0.22, all one-tailed),
none of the differences were statistically significant
(pcorrected = 0.05/4 = 0.0125).

These analyses suggest that despite an overall good
agreement among static visual, dynamic visual, and
haptic perceptual softness spaces, there are also some
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Figure 5. Correlations between Bartlett scores across materials for either pair of component scores from the haptic, the dynamic, and
the static visual conditions. Darker colors (blue) show higher while lighter colors (white) show lower correlations.

interesting trends that suggest that the softness of
some materials is represented slightly differently in
each of these spaces. In the next analysis, we will
follow-up on this observation and analyze the ratings
directly in order to understand for what material-
adjective pairs the ratings of participants differ the
most.

Rating differences among static visual, dynamic
visual, and haptic conditions

Overall, only 35 out of the 855 (285 × 3) rating
differences exceeded the determined cutoff value. If
our three hypotheses were true, then we would expect
the case count in these extreme 5% to be different
in each comparison such that nHS > nSD, nHD >
nSD, nHS > nHD. We tested this with a binomial
test, where we determined, for each of the three
hypotheses, whether the number of extreme cases
is equal (p = 0.05). In line with our expectation,
we find that haptic-static extremes (N = 19) were
significantly more cases than static-dynamic (N = 2; p
< 0.01), that haptic-dynamic extremes (N = 14) were
significantly more than static-dynamic (N = 2; p <
0.01), and the number of haptic-dynamic haptic-static
extremes (N = 19 and N = 14) were about the same
(p = 0.24). Consequently, we rejected the idea that,
overall, the extreme rating differences came from a
random distribution, and proceeded with the inspection
of patterns in the cases where we found extreme
differences between haptic and one or both visual
conditions.

Three groups of difference patterns can be
distinguished. In one group, there were extreme
differences between haptic and both visual conditions.
In Figure 6, we show these differences in a bar plot. The
x-axis shows the corresponding adjective and material
that elicited these rating difference. To appreciate what
a specific bar height means, remember that ratings in
all experiments varied between 1 (does not apply at all)
and 5 (strongly applies). A positive difference implies
that participants thought that a particular adjective
applied more to the material in question (e.g. that
pebbles, lentils, or cranberries felt more granular than
they looked in either the dynamic visual or static visual
conditions, that linen felt softer than it looked, or that
fur feels more velvety than it looks). For this group, it
appears that haptic information conveys information
about material properties that is distinct from that
conveyed by visual information (consistent with our
first and second hypotheses above).

In a second group, there were extreme differences
between haptic and static visual conditions but not
between haptic and dynamic visual ones. For example,
the softness of sand, salt, and cranberries was judged
differently in haptic and static visual conditions, as was
the hardness of stress balls (Figure 7). Here, it appears
that the dynamic visual condition conveyed similar
information as the haptic condition (as we also expected
in our third hypothesis above).

Last, the third group of differences was the most
surprising, containing cases with extreme differences
between haptic and dynamic visual conditions only
(Figure 8). This goes directly against our third
hypothesis (nHS > nHD), which proposed that
dynamic visual and haptic conditions should yield
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Figure 6. Extreme distances in haptic-static and haptic-dynamic.Mean rating differences between haptic-dynamic and haptic-static
for specific material-adjective pairs. HD refers to the differences in rating between haptic and dynamic visual conditions (dark blue)
and HS to the differences in rating between haptic and static visual conditions (light blue). * Show the mean differences larger than
95% percentile cut off value (see Methods).

Figure 7. Extreme distances in haptic-static. Mean rating differences between haptic-dynamic and haptic-static for specific
material-adjective pairs. Symbols and colors as in Figure 6.

more similar outcomes. Instead, for judgments of
“how smooth lentils are” or “how velvety linen
is,” dynamic visual information appears to bias

the participants away from the material properties
perceived by inspecting a static image or by feeling the
materials.
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Figure 8. Extreme distances in haptic-dynamic.Mean rating differences between haptic-dynamic and haptic-static for specific
material-adjective pairs. Symbols and colors as in Figures 6 and 7.

Discussion

Softness is a prominent object property that renders
it — depending on our intentions — useful (soft
pillows) or useless (soft tables), appealing (soft fur)
or repulsive (soft apples) to us. Whereas we think of
softness as primarily a mechanical property that can
be perceived through touch (Lederman & Klatzky,
1987; Cellini et al., 2013; Okamoto et al., 2013; Di
Luca, 2014; Cavdan et al., 2019; Higashi, Okamoto,
Yamada, Nagano, & Konyo, 2019; Kitada et al., 2019;
Dövencioglu et al., 2018; Xu, He, Hauser, & Gerling,
2020) softness can also be judged visually (Drewing,
Ramisch, & Bayer, 2009; Baumgartner et al., 2013;
Bouman, Xiao, Battaglia, & Freeman, 2013; Giesel &
Zaidi, 2013; Bi & Xiao, 2016; Bi, Jin, Nienborg, & Xiao,
2018; Schmid & Doerschner, 2018). This latter ability
is most likely acquired through countless multisensory
interactions with objects in the environment, where
simultaneous activation of visual and haptic senses
leads to strong associations across modalities (Lacey,
Flueckiger, Stilla, Lava, & Sathian, 2010; Yildirim &
Jacobs, 2013; Desmarais, Meade, Wells, & Nadeau,
2017). For example, while exploring a type of fabric (e.g.
silk or wool), its optical properties and the way it folds
and deforms (i.e. its shape) might become associated
with a particular perceived softness. This association
can become so strong that when looking at an image of
a material that has optical and shape properties that
strongly resemble the originally experienced fabric,
it can elicit the same “sensation” of soft (also see
Anderson, 2011; Schmidt et al., 2017; or Schmid &
Doerschner, 2018, for a discussion of this potential
association route). This might also explain why there

is a high degree of consistence between visually
tactile perceived material properties (Baumgartner
et al., 2013; Vardar et al., 2019). However, to some
degree this overlap is surprising, because of the
inherently different information that is available in
each sense. Whereas visual stimulus is basically a distal
extended intensity pattern (image) that often changes
across time (unless we look at a static image), haptic
information is proximal, inherently serial, point by
point, and contains also direct signals about the applied
force.

In this experiment, we asked whether perceived
softness from visual images and movies is comparable
to perceived softness from haptic interactions (Cavdan
et al., 2021). The most important finding is that not
just haptic, but also visually perceived softness is a
multidimensional construct. Consequently, one should
keep this in mind when asking participants to judge
the “softness” of materials or objects in perceptual
experiments. A second important result is that the
haptic perceptual space is more differentiated (5
dimensions) than the visual ones, with the dynamic
visual space (4 dimensions) resembling the haptic space
more closely. Overall, we found beyond these differences
in differentiation also very good agreement between
the perceptual spaces yielded by visual and haptic
experiments, which is also in line with earlier studies
comparing texture perception across visual and haptic
domains (Binns, 1937; Lederman & Abbott, 1981;
Bergmann Tiest & Kappers, 2007; Stilla & Sathian,
2008; Baumgartner et al., 2013; Xiao et al., 2016;
Vardar et al., 2019).

In particular, we found three softness dimensions:
surface softness, granularity, and viscosity that were
common to all conditions. Although the amount of
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agreement between visual and haptic experiments is
substantial for the softness dimensions of surface
softness, granularity, and viscosity, Table 1 also shows
several interesting differences between these conditions,
which we will review next.

Differences in dimensionality

The individual principal component analyses revealed
three softness dimensions: surface softness, granularity,
and viscosity in all three conditions (static visual,
dynamic visual, and haptic). However, in dynamic visual
and haptic conditions, also the dimension deformability
emerged, and roughness emerged as a fifth dimension
in the previous haptic experiment.

Why might deformability not have emerged as a
separate dimension in the static visual condition? The
deformability of a material is related to its kinematic
properties and can therefore in static images only be
judged from shape or texture cues (Schmidt et al., 2017;
Schmid & Doerschner, 2018; van Assen et al., 2018)
or by association (Schmidt et al., 2017). Association,
however, relies on two conditions: (1) the material
has to be familiar, and (2) the familiar material has
had to be judged on the same attribute before. This
might, however, not have been the case for many
attribute-material combinations: participants might
have never judged the elasticity of cranberries before
and could thus not rely on their previous experience.
Instead, they had to rely on the available image
information (shape and texture cues), which might have
highly overlapped with those used for surface softness.
In contrast, dynamic visual information can convey the
deformability of a material much more convincingly
(Bouman et al., 2013; Bi & Xiao, 2016; Schmidt et al.,
2017; Bi et al., 2018; Schmid & Doerschner, 2018; van
Assen et al., 2018; Alley et al., 2020), in particular, if
also manual interactions with the material are shown
(Cellini et al., 2013; Drewing & Kruse, 2014; Paulun et
al., 2017; Yokosaka et al., 2018; Wijntjes et al., 2019).

Why might roughness not have emerged as a
dimension in the visual conditions? In the present study,
there may have only been a limited number of adjectives
that were strongly associated with the roughness
dimension, namely smooth and rough. In haptics,
roughness is a known as a particular salient dimension
(e.g. Okamato et al., 2013), the value of which is quickly
processed from the information gathered through the
finger pads (Lederman & Klatzky, 1997). Thus, also
with only limited measurement sensitivity, roughness
can be detected as a haptic dimension. However,
visually roughness is a much less salient and important
dimension, and hence we might have missed to detect
visually associated roughness in the present experiment.
Indeed, visual ratings on roughness-related adjectives
were not very variable across materials or used for

dimensions other than roughness. Previous research
on roughness perception found high correspondence
between vision and touch (Brown, 1960; Björkman,
1967; for a review, see Lederman & Klatzky, 2004;
Bergmann Tiest & Kappers, 2007). However, tactile
information, tended to be weighted more than visual
information when the roughness information is
mismatched between the two modalities (Guest &
Spence, 2003; Whitaker, Simoes-Franklin, & Newell,
2008; Eck, Kaas, Mulders, & Goebel, 2013), or while
matching abrasive papers (Lederman & Abbott, 1981).
Guest and Spence (2003) even reported a lack of
visuo-tactile interactions for finer roughness stimuli. It
could be that such fine texture information might have
not been available in our visual conditions, which might
explain the lack of a roughness dimension in the visual
conditions. This would be consistent with the view that
touch is superior to vision when detecting finer surface
textures (Heller, 1989).

Differences in the perceptual softness space
structure

With a combined PCA we were able to zoom in on
differences among static visual, dynamic visual, and
haptic spaces for the softness dimensions common to
all three: surface softness, granularity, viscosity, and
roughness. As can be seen in Figure 4, the overall
pattern that emerged when correlating the Bartlett
scores among the three spaces (across all 4 dimensions)
was that the two visual spaces were highly similar,
however, only when compared to the static-haptic
correlation; dynamic-haptic spaces correlated just
as high as the two visual spaces. However, we also
noted some differences to this general pattern when
looking at the Bartlett score correlation across spaces
for each individual perceptual dimension, especially
with respect to the latter finding. For example, whereas
surface softness was numerically consistent with this
general trend (see Figure 5), there was no significant
difference in the correspondence between spaces. For
viscosity, there was a trend for the correlation between
dynamic visual and haptic spaces being stronger than
that between dynamic visual and static visual spaces.
What might be the reason for this? Inspecting Figure 3
might provide a hint: the Bartlett scores of the material
stress balls show high values in viscosity of haptic and
dynamic visual spaces but not in the static visual space.
Stress balls, although being quite squishy and sticky
to the touch, in their “resting” shape, do not convey
these properties strongly. Therefore, the shape of the
material might cause the visual system to activate a
not-so-viscous material association (Schmidt et al.,
2017). This emphasizes the potential relevance of
dynamic visual information in transporting viscosity.
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Although it is undebated that static images can
successfully convey information about viscosity, they do
so primarily via (shape) association. However, when the
shape is unfamiliar or unusual, static images might fail
to unambiguously convey the viscosity of a material.

Another exception to the described overall
correlation pattern was found for granularity. Here, the
correspondence between the two visual conditions was
marginally higher than between dynamic visual and
haptic spaces. This suggests two things: (1) granularity
can be judged well and consistently from images, with
observers likely using the size of individual items
(sand corns, lentils, pebbles, etc.), which would be
available both in static images and videos; and (2) these
visually estimated properties differ somewhat from
those estimated by touch. This could be because vision
might strongly rely on particle size while touch might
additionally consider interaction characteristics of the
particles (e.g. how well they can be run through the
fingers or be rotated).

Differences in ratings

Our interpretations above suggest that the differences
that we find among the perceptual softness spaces of
static visual, dynamic visual, and haptic conditions
might be particularly driven by some special material-
adjective combinations in our experiments. In order to
sift these out, we identified the conditions that yielded
the largest rating differences across conditions. Those
material-adjective combinations that yielded rating
differences between conditions will be discussed next.

Extreme distances in haptic-static and haptic-dynamic
Material adjective combinations in this group

appears that material information conveyed by vision
and haptics diverged. In those cases, we see that
this pattern emerged primarily for judgments related
to the granularity and surface softness. We already
offered an explanation about the differences between
visual and haptic perception of granularity above.
Why do we, however, not see such differences for
granularity judgments of sand? One reason for this
could be sand or salt are materials that most observers
are very familiar with, and when identifying the
materials, prior experiences with the material might
become activated enabling participants to make
these judgments (Kangur, Toth, Harris, & Hesse,
2019; Metzger & Drewing, 2019). Conversely, it is
possible that, when judging the granularity of lentils,
pebbles, or cranberries, such a prior experience is not
available and therefore participants are left with visual
information “only,” which might lead to different
perceptions.

This kind of argument could also apply for judgments
of surface softness. Figure 6 shows that the differences
between visual and haptic conditions are generally
positive suggesting that felt, fur, and linen were judged
to be more soft, hairy, and velvety, respectively, when
interacted with. In a sense, the experiences of surface
softness tend to be lower from visual images, which
highlights the special role of interactive touch for
perceiving this material quality.

Extreme distances in haptic-static
In contrast to the first group, adjective-material

pairs in this group elicited similar judgments in
dynamic visual and haptic conditions. Why did static
visual information yield different ratings than haptic
condition? Figure 7 illustrates that this kind of pattern
emerged primarily for judgments of surface softness
(how soft), but also for judgments of deformability
(how elastic and how hard), or viscosity (how moist
and how wobbly). The fact that surface softness
occurs also in this group is unexpected, as we have
just concluded that softness tends to be lower from
any type of visual information, compared to that
from haptic experience. It appears that we will have to
modify this statement. One way to reconcile the data
from Figures 6 and 7 is to consider the stimuli in the
dynamic visual condition. The movies contained three
sets of cues to material properties: (1) pictorial cues,
(2) deformation cues, and (3) interaction cues. Whereas
pictorial cues must have played a predominant role
in the difference pattern of the first group (i.e. haptic
and visual information each convey different material
qualities), we believe it is the second set of cues that
might be responsible for the higher similarity between
dynamic visual and haptic ratings. This is in line with
the example for elasticity (or hardness) rating of stress
balls in the section above, but similar arguments can
be made for judging the wobbliness of cranberries
or the softness of sand. Why deformation was not
effective for the first group of material-adjective pairs,
would be an interesting question to pursue in future
research.

Extreme distances in haptic-dynamic
This occurred just for five material-adjective pairs,

but it was a highly interesting pattern, as it was
in contradiction to our hypothesis, that dynamic
visual and haptic conditions should yield more similar
outcomes.Whymight haptic and static visual conditions
yield more similar ratings? One interpretation is that
static images triggered associations of material qualities
that were similar to those experienced through haptic
exploration. It is possible that — in contrast —
dynamic visual stimuli showed either deformation
of interaction cues that elicited a slightly different
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activation of material properties. Why might this be
the case? We have shown, for example, in previous
work (Cavdan et al., 2019; Cavdan et al., 2021) that
exploratory hand movements not only vary with the
material being explored but also as a function of
the task (i.e. what is being judged while exploring a
material). When selecting the stimuli for the dynamic
visual condition we focused on the most frequent
hand movement for a material type, neglecting the
effect of task (because it was a smaller affect in our
previous work). For example, for lentils, we only used
the hand movement run through, yet people might need
to see rotation in order to understand how smooth
lentils are. It might be that this very subtle factor
might have influenced observers’ judgments in the
dynamic visual condition. This possibility could be
explored in future work. However, given the small
number of cases the pattern needs to be confirmed
beforehand.

Representing softness across modalities

How we visually or haptically perceive objects
is profoundly affected by our multisensory prior
experiences with the object/or similar objects (Witzel,
Valkova, Hansen, & Gegenfurtner, 2011; Metzger &
Drewing, 2019; Zoeller et al., 2019; see Rock, 1985
for a review). Over time, multisensory experiences
may lead to the formation of a semantic category
for a particular material, entailing all its visual and
haptic properties and variations thereof. Thus, when
a particular semantic category is activated, such as
“squash ball,” both visual (small, round, and rubbery)
and haptic (elastic and high-friction surface) properties
might also become activated and can be recalled.
Moreover, if information of only one modality would
be available (e.g. visual), category activation would
allow us to also make haptic judgements, based on
visual information alone. For instance, when we visually
recognize a squash ball as such, even without handling,
we know it is much more deformable than a petanque
ball. If, however, an object or material is unfamiliar,
category knowledge is not available (e.g. not knowing or
recognizing the petanque ball), then we have to rely on
the sensory input (e.g. we perceive a sphere, but it might
be ambiguous whether it is hard or soft, especially
if we are only provided with a static image of the
ball).

In both cases, not knowing/recognizing an ambiguous
sensory information, we would expect to find differences
in the dimensionality of softness in visual and haptic
domains. This difference could potentially be reduced
or eliminated in the first case (knowledge): for example,
by familiarizing the participants with all materials
prior to the experiment. If, however, the difference
arises from the ambiguity of the visual information

then prior familiarization might not be as effective
in eliminating differences if softness dimensionalities
between modalities. This could be investigated in future
experiments.

Several scientific disciplines and applied fields are
interested in understanding how humans perceive
materials through vision and touch or how realistic
experiences of material interactions can be created
(e.g. via augmented or virtual reality). Although many
previous studies have used computer-rendered (for
visual experiments) or somewhat uniform stimuli (e.g.
silicone with different degrees of compliance for haptic
experiments), we have used natural, and real-world
materials in our experiments. Whereas experiments
using computer renderings and unidimensional haptic
stimuli have a high degree of control and certainly
provided important insights, they do lack some
ecological validity, and results from such experiments
may not fully be representative of our day-to-day
visuo-haptic experience of materials in the world. Using
real materials, we were able to show that perceiving
softness from photographs and movie clips of real
materials has a similar dimensionality as haptically
perceived softness. Yet, we also found that for some
materials and attributes visual information may lead to
somewhat different assessments about material qualities
than haptic information (see Figure 6), and yet, in
other cases, dynamic visual information (showing
interactions with materials) might be quite effective in
communicating the haptic experience (see Figure 7).
This result is potentially valuable for researchers,
engineers, or designers who aim to optimize the visual
depiction of a particular material quality. In future
experiments, it would be interesting to find out how a
specific kind of softness is optimally (with respect to
the haptic sense) conveyed in static and moving images
and based on this data to develop an image-computable
model that allows us to parametrically manipulate, for
a given material, the degree of expression along each
softness dimension.

Conclusion

Softness is a prominent property that renders an
object useful or useless, appealing, or repulsive to us.
Results of this study confirm that perceived softness
is a multidimensional construct. This should be taken
into consideration when asking participants to make
judgments about the softness of materials in research or
applied contexts. This multidimensional softness space
is similar for visually and haptically presented materials,
however, results also suggest that there might be some
noteworthy differences between these modalities. We
suggest that these differences might appear primarily
emerge when participants cannot draw on previous
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visuo-haptic experiences with a material for a particular
judgment, or when visual cues are ambiguous to the
material property in question.

Keywords: material perception, softness, haptics,
vision, granularity, viscosity
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Footnote
1In addition, auditory cues play a role in material perception, however
these are not the focus of this investigation (Klatzky, Pai, & Krotkov,
2000; Fujisaki, Goda, Motoyoshi, Komatsu, & Nishida, 2014; Fujisaki,
Tokita, & Kariya, 2015).
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