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Digital logic circuits in yeast with CRISPR-dCas9
NOR gates
Miles W. Gander1, Justin D. Vrana2, William E. Voje3, James M. Carothers3,4 & Eric Klavins1,4

Natural genetic circuits enable cells to make sophisticated digital decisions. Building equally

complex synthetic circuits in eukaryotes remains difficult, however, because commonly used

components leak transcriptionally, do not arbitrarily interconnect or do not have digital

responses. Here, we designed dCas9-Mxi1-based NOR gates in Saccharomyces cerevisiae that

allow arbitrary connectivity and large genetic circuits. Because we used the chromatin

remodeller Mxi1, our gates showed minimal leak and digital responses. We built a

combinatorial library of NOR gates that directly convert guide RNA (gRNA) inputs into gRNA

outputs, enabling the gates to be ‘wired’ together. We constructed logic circuits with up to

seven gRNAs, including repression cascades with up to seven layers. Modelling predicted the

NOR gates have effectively zero transcriptional leak explaining the limited signal degradation

in the circuits. Our approach enabled the largest, eukaryotic gene circuits to date and will

form the basis for large, synthetic, cellular decision-making systems.
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L
iving cells make decisions based on information processing
genetic programmes. Many of these programmes execute
digital functions1–8. The capability to build synthetic digital

systems in living cells could allow engineers to build novel
decision-making regulatory networks for use in a variety of
applications9, ranging from gene therapies that modify cell state
based on sensed information10,11 to entirely new developmental
programmes for tissue engineering12,13. In electronics a
compositional approach has allowed the construction of digital
circuits of great complexity to be quickly designed and
implemented. Here, we have developed set of low-variability
genetic parts that can be routinely composed to create large
digital circuits in yeast cells.

Genetic components that implement simple logical operations,
which in principle could be interconnected to form complex logic
functions, have been demonstrated14–23. DNA-binding domains
(DBDs) such as zinc fingers and TALEs (transcription activator-
like effectors) have been used to construct libraries of
transcription factors in eukaryotes19,24–27. However, scaling
with DBDs in eukaryotes has been difficult because of
challenges in synthesizing libraries of orthogonal parts28,29.
Libraries of DBD-based parts have been shown in prokaryotes,
but extensive part characterization and computer-aided design
(CAD) was necessary to identify part combinations that yielded
functional logic circuits22. Recently, programmable and
orthogonal CRISPR-dCas9 transcription factors have been
employed18,20,30–34 to build up to five component circuits using

dCas9-mediated repression in prokaryotes18. Transcriptional
repression in these circuits is likely due to steric hindrance of
RNA polymerase by dCas9. Although dCas9 allows for
programmable interconnections, its response function is leaky
leading to signal degradation when layered18. Site-specific
recombinases have been employed in genetic circuits as a
means to reduce leak35–37, but there are a limited number of
such enzymes restricting the scalability of this approach. Here, we
address these issues, advancing the art of engineering living
digital circuits by focusing on two main engineering goals.

First, we built a universal, single-gene NOR logic gate; the NOR
gates are functionally complete38 and as such can be composed to
implement any logic function. Crucially, the input and output
signals of our gates have the same molecular types while still
being programmable so that, as in electronics, gates can be wired
together. To achieve this, we made use of the CRISPR-dCas9
system: the signals in our framework are guide RNAs (gRNAs)
whose sequences specifically match up to programmable target
sequences on our NOR gate promoters.

Second, we required a consistent ‘OFF’ state for our NOR gates.
To achieve this, we used the chromatin remodelling repression
domain Mxi1 to take advantage of the eukaryotic cell’s ability to
repress gene expression, by fusing this domain to dCas9 (ref. 30).
The Mxi1 domain is thought to recruit histone deacetylases39,40,
and with it we observed strong transcriptional repression in our
circuits. The strong and consistent ‘OFF’ behaviour we observe
with our NOR gates is a key factor that allows them to be
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Figure 1 | Schematic of the NOR gate architecture and circuit composition. (a) A NOR gate input stage consists of a Pol II pGRR promoter that is fully

repressed by the binding of either one or both of its cognate gRNA-dCas9-Mxi1 complexes. The output stage of the NOR gate is a gRNA transcript, flanked

by self-cleaving ribozymes (RGR). Cleavage sites are indicated by red arrows. The cleavage of the ribozymes prevents nuclear export of the gRNA,

indicated by dotted grey arrow. (b) The process of NOR gate library construction. Our library consists of a set of 400 two-input pGRR promoters and

20 RGR outputs for a total of 8,000 possible NOR gates. (c) Genomically integrating NOR gates into S. cerevisiae. (d) Arbitrary circuits are constructed by

integrating multiple NOR gates into a single strain.
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composed into larger circuits by minimizing accumulation of
transcriptional leak with every added layer. A mathematical
model of our NOR gates predicts that they have effectively no
transcriptional leak in their OFF states. We show that with low
leak there exist parameters that allow our NOR gates to be
composed without significant signal degradation. More
importantly, we show experimentally that we can build a
variety of digital logic circuits composed of up to five NOR
gates and seven internal gRNA wires, as well as cascades of gates
with up to seven layers that still have digital responses according
to our specifications.

In summary, we developed low-variability single-gene NOR
gates that can be regularly interconnected into arbitrary
topologies that implement large digital circuits in yeast cells.
Neither meticulous characterization of individual parts nor
sophisticated design tools were necessary to find combinations
of NOR gates that conferred functional circuits. Because the
technology is essentially generic and easy to rewire, it can in
principle be used to implement arbitrary internal logic for a
variety of synthetic cellular decision-making systems, such
as those being explored for diagnostics11,41, therapeutics41,42

and development43,44.

Results
NOR gate architecture. We built a universal, single-gene logic
gate, in our case a NOR gate (Fig. 1a). The NOR gate outputs are
then gRNAs that match the target sequences on other NOR gate
promoters (Fig. 1b). Our NOR gates are genomically integrated
into yeast cells (Fig. 1c). We avoided using RNA polymerase
(Pol) III promoters to express gRNAs20,30,31,34 because they have
low expression levels relative to Pol II promoters and are more
difficult to engineer45,46. By programming the NOR gate input
target sequences and output gRNA sequences in a set of gates, we
were able to construct a variety of circuit topologies (Fig. 1d).

Second, we required a consistent ‘OFF’ state for our NOR gates
that corresponded to complete or near complete repression of the
output promoter (Supplementary Fig. 1). we used the chromatin
remodelling repression domain Mxi1 to take advantage of the
eukaryotic cell’s ability to repress gene expression, by fusing this
domain to dCas9 (ref. 30) (Fig. 2a). When compared with a
number of repression domains, Mxi1 showed the strongest
repression (Supplementary Fig. 2). Our results suggest that such
repression provides a significantly improved and more consistent
‘OFF’ signal compared with repression via steric hindrance
(Fig. 2b), in which dCas9 is interfering with transcriptional
initiation, but is not remodelling chromatin. A mathematical
model of our NOR gates, fit to both steady-state and time
response data, predicts them have effectively zero transcriptional
leak in their OFF states. Additionally, the model predicts that
repression via steric hindrance leaks more than repression via
dCas9-Mxi1 (Fig. 2b).

Our approach allowed for the construction of the largest
eukaryotic gene circuits, to the best of our knowledge, ever
demonstrated (Table 1).

The gate NORi,j,k, with input signals ri and rj and output rk,
consists of a gRNA-responsive Pol II promoter (pGRRi,j) input
stage, driving an output stage, ribozyme-flanked gRNA (RGRk)
(Fig. 1a). According to NOR logic, rk is high only when both
ri and rj are low. A signal, ri, is defined as a gRNA complexed
with a dCas9-Mix1 fusion protein that confers strong transcrip-
tional repression when bound to DNA30. The gRNA signals
are distinguished by their unique 50 guide sequence.
A 20-component library of signals defining r1–r20 was used in
this work (Supplementary Table 1). The pGRRi,j promoter
contains two, 20 base-pair (bp) target sites that match ri and rj

respectively. Since we designed 20 signals, there are 203¼ 8,000
total NOR gates in the set. A NORi,j,k functions as a NOTj,k if the
pGRRi,j contains two identical target sites, if the pGRRi,j contains
only one target site from the 20 component library (pGRRi,null) or
if ri is simply not used in the circuit. A target sequence of ‘null’
refers to a pGRR that contains a target sequence that does not
match any gRNA used in the containing circuit.

Input stage promoter design. The pGRRi,j promoter is tightly
repressed when gRNA-dCas9-Mxi1 is bound to one or both of its
two 20 bp target sites. The core region of the pGRRi,j, the minimal
pCYC1 promoter, was chosen based on its successful use with
dCas9 in the past32. Because the promoter has relatively low
expression levels and we wanted its output to have a strong ON
output when not repressed, an upstream activating sequence
(UAS) from the strong pGPD promoter47 was added, forming the
base pGRR promoter. The UAS increased the unrepressed
expression level of the pGRR output by approximately threefold
while maintaining the same OFF state expression level in the
presence of ri and rj, further separating the digital ON and digital
OFF levels (Supplementary Fig. 3a). A pGRR promoter map
highlighting all relevant sequence features is included in
Supplementary Fig. 4. A library of 11 pGRRi,j promoters, with i
and j chosen from the 20 guide sequences, showed limited
expression variability when driving GFP, with an B18% s.d. from
the mean (Supplementary Fig. 3b) Of the 20 pGRRi,null:GFP
constructs (i ranging from 1 to 20), 16 were repressed to or near
the level of Saccharomyces cerevisiae autofluorescence in the
presence of the corresponding signal ri (Supplementary Fig. 1).

Output stage RNA design. Two different RNA pol II expression
methods were used in this work (Supplementary Fig. 5). The first
was an RGR design utilizing a 50 minimal hammerhead ribozyme
(mHH) and a 30 hepatitis delta virus ribozyme (HDV), flanking
the gRNA48. The second was an ‘insulated’ RGR (iRGR) with the
mHH replaced by an avocado sunblotch viroid (ASBV) ribozyme.
Both designs are intended to post-transcriptionally remove
nuclear export signals, the 50 cap and 30 poly-A tail49,50. It has
been shown that RNA device folding can be insulated from
surrounding sequence context through computational sequence
selection51,52. Ten guide sequences were chosen for the RGR
architecture that were computationally predicted to confer proper
folding of the mHH 50 ribozyme. Ten more guide sequences were
chosen for the iRGR context whose ASBV 50 ribozyme is
predicted to fold properly regardless of guide sequence. We
observed similar levels of dCas9-Mxi1-mediated repression with
gRNAs expressed from both iRGR and RGR constructs
(Supplementary Fig. 6). Interestingly, RGR transcripts lacking a
50 ribozyme also showed dCas9-Mxi1-mediated repression. These
results are consistent with previous studies that indicate a
majority of 50 extended gRNA target sequences are processed to
20 nucleotides53. No significant crosstalk was observed when all
r1–10 (RGR design) and r11–20 (iRGR design) were paired with all
pGRR1-20,null:GFP among noncognate pairs (Fig. 2a and
Supplementary Fig. 7). Out of 20 total RGRs (RGR1–10 and
iRGR11–20) when targeted to their cognate pGRR1-20,null:GFP
constructs, 16 repressed fluorescence to or near the level of
autofluorescence for S. cerevisiae (Supplementary Fig. 1).

Logic circuits. As a demonstration of the complex circuits
possible with our NOR gates, six two-input, one-output digital
logic circuits were built by integrating up to five NOR gate
cassettes into various selectable loci in the yeast genome
(Fig. 3a–f). The output of each circuit was made observable by
having the last NOR gate drive the expression of GFP. The
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circuits were constructed from the 16 guide sequences of the
20-component library that exhibited the strongest repression
(Supplementary Fig. 1). The truth table for each gate was
experimentally obtained by constructing four separate strains,
one for each pair of possible input values, in which the corre-
sponding gRNA input signals were expressed from constitutive
promoters (Supplementary Table 2).

We observed fluorescence intensity differences in the digital
ON and OFF states in various circuits. To distinguish circuit state,
value bands for digital ON, OFF and Undefined, fluorescence
values were determined with the 16 guide sequences and their
cognate pGRR promoters used in circuit construction
(Supplementary Fig. 8). For the state of a circuit to be considered
ON or OFF we specified that a majority of cell population fall in
the expected fluorescence band. Population fraction tables for all
circuits can be found in Supplementary Table 3.

Circuits containing different NOR gate variants can exhibit a
range of behaviours. For example, 15 versions of the XOR, from
Fig. 3e, constructed using different NOR gates exhibited a range
of performance (Supplementary Fig. 9). We hypothesize that

circuit performance variations are due to expression differences in
the pGRR promoters and repression efficiency variations of the
gRNA in the individual NOR gates of the circuit.

Cascades. To test the limits of size and complexity our NOR gate
circuits can achieve inverter cascades of depth one through seven
were composed with NOT gates (Fig. 4a). The cascade of depth D
was made by the addition of a NOT gate to repress the input stage
of the depth D–1 cascade. Each successive addition of a NOT gate
inverter resulted in switching the behaviour of the output GFP
expression. As seen previously with the two-input logic circuits,
there is considerable variability within the ON and OFF states.
However, circuits that are expected to exhibit ON or OFF
behaviour are clearly distinguishable from one another according
to our digital ON and OFF specification. As cascade depth
increased the fluorescence levels of the OFF states for all of the
odd depth cascades increased. Similarly, except for the cascade of
depth 6, as cascade depth increased the fluorescence levels of the
ON states decreased. This suggests a gradual degradation of
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Figure 2 | Orthogonality and repression via dCas9-Mxi1. (a) A constitutive promoter drives expression of gRNAs paired with a combinatorial library of

cognate promoters. Orthogonality of the gRNA guide sequences was tested by crossing the 20 pGRRi,null promoters, each expressing GFP, with the 20

gRNAi, creating 400 different strains of yeast. Fluorescence values of each strain were measured using flow cytometry. Fluorescence values from one

biological replicate are displayed in the matrix. (b) Dose response curves are shown for repression via dCas9-Mxi1 and dCas9 repression via steric hindrance

of pGRR driving GFP at three separate positions in the promoter. The three positions are annotated on the pGRR promoter representation. At all three

positions, at maximal induction, dCas9-Mxi1 represses the promoter to a lower fluorescence level than dCas9 alone. Model fits predicted the parameter

value L, representing transcriptional leak, for all curves. At all three positions the predicted L value is as small or smaller for dCas9-Mix1 than for steric

repression. Error bars represent the s.d. of three biological replicates measured over three separate experiments.
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circuit function as the number of layers increased. Similar
behaviour was also observed for other repression cascades that
were constructed (Supplementary Fig. 10). Alternative versions of
6 gRNA cascades were constructed and showed variability in their
levels of ON (Supplementary Fig. 11).

To investigate the temporal characteristics of the inverter
cascades, we analysed the kinetics of cascades of depth one
through four. A b-estradiol-inducible promoter54 was used to
activate transcription of the input gRNA and GFP expression was
periodically measured over the course of B30 h of log phase
growth (Fig. 4b). With increasing cascade depth, a clear delay in
output response was evident, with the cascades reaching
half-maximal expression at 4.1±0.5, 10.8±1.0, 12.0±1.2 and
17.8±1.0 h (residual s.d. deviation) for cascades of depth one
through four respectively. The dose response curves of the four
cascades were also measured after passaging cells over 5 days
(Fig. 4c). Consistent with the steady-state cascades, the induction
of a gRNA targeting the input of the cascade switched the output
of the cascade from OFF to ON (even depth cascades) or from
ON to OFF (odd depth cascades). Some signal degradation with
successive layers was observed (Fig. 4c), suggesting a limit to the
possible depth of the cascades.

Mathematical modelling. A kinetic model was constructed to
capture the behaviour of our synthetic cascades. The model
combines successive Hill functions to represent simple tran-
scription and repression associated with each gRNA-dCas9-Mxi1
signal. The parameters vd and kd roughly capture expression and
repression strengths of the promoters driving each gRNA-dCas9-
Mxi1 signal, rd. The parameter L represents the transcriptional
leak as a percentage of the maximal expression of a given gate
when maximally repressed parameters n and b capture the
cooperativity of repression. Degradation/dilution of gRNA-
dCas9-Mxi1 signals respectively (Fig. 4d). The steady-state dose
response and kinetic time course for inducible cascade data were
both fit to the model (Fig. 4b,c). Due to the different growth
conditions of the steady-state and kinetic cascade experiments,
two separate model fits were generated for each experiment. As
inducible cascades were built in such a way that they shared many
of the same pGRR and gRNA components (Fig. 4b), parameters

for the one-, two-, three- and four-layer cascades were shared
between the models and fit simultaneously. To address potential
model identifiability issues parameter values were constrained
based on published biological values (Supplementary Table 4). The
fitting results were found to correlate well with the experimental
data. The measured B18% s.d. from the mean for the promoter
strength values matches well with the B24% s.d. from the mean of
the promoter strength parameters, vd (Supplementary Table 4).

Model fits of the steady-state and time course data predict the
transcriptional leak of repression due to dcas9-Mxi1, the value of
L, to be effectively zero, L¼ 0.6±0.1% (s.d.), equivalent to the
production of roughly one transcript every 5 to 10 cell divisions.
The reported value of L was calculated as the average of the
predicted transcriptional leak from the model fits from Fig. 2b. To
demonstrate the ability of dCas9-Mxi1 to decrease transcriptional
leak compared with steric repression via dCas9, gRNA dose
response curves of repression at three pGRR promoter target site
positions were performed using dCas9 and dCas9-Mxi1 (Fig. 2b).
At maximal induction, dCas9-Mxi1 represses the promoter to a
lower fluorescence level than dCas9 alone at all three positions.
Repression via steric hindrance showed promoter positional
variations in predicted leak parameter values. The observed
positional variation is consistent with previous results32. In all
three positions dCas9-Mxi1 was predicted to have the same or
lower leak parameter L. These data indicate that in the context of
our NOR gates, dCas9-Mxi1 confers stronger and more consistent
repression than dCas9 alone. Alternative plots comparing dCas9
and dCas9-Mxi1 repression as a function of inducible promoter
activation driving gRNA are included in Supplementary Fig. 12.

The temporal responses of the cascades were predicted from
simulations using randomly sampled parameters within the range
of the model fit. Parameter values for kinetic simulations were
resampled from the model fit using the kinetic time course
experimental data. Response times were found to rise linearly
(r2¼ 0.83) with increasing circuit depth. Linear regression
analysis estimated the slope of the increase in response time
per layer to be equal to 184.9±0.2 (s.e.m.) min layer� 1 (Fig. 5a),
consistent with our experimental results. Response delay was
found to depend primarily on the degradation/dilution rate b of
gRNA-dCas9-Mxi1 (Supplementary Fig. 13) that controls the
overall timescale of the dynamics.

Table 1 | Synthetic circuit size comparison.

Publication No. of
gates
/parts

No. of
connections

No. of
inputs

Circuit complexity
(gates2þ connections2)1/2

Functionally complete
parts?

Medium

Cascade circuit 7 6 1 9.22 Yes S. cerevisiae
Nielsen et al.22 7 6 3 9.22 Yes E. coli
Qian et al.70 6 5 4 7.81 Yes In vitro
XOR circuit 5 4 2 6.40 Yes S. cerevisiae
Xie et al.11 5 4 6 6.40 No Mammalian
Auslander
et al.71

5 4 2 6.40 No Mammalian

Regot et al.72 5 3 2 5.83 Yes Multicellular
S. cerevisiae

Nissim et al.33 5 3 1 5.83 No Mammalian
Stanton et al.19 4 3 2 5 Yes E. coli
Nielsen et al.18 3 2 2 3.61 Yes E. coli
Kiani et al.20 2 2 1 2.83 No Mammalian

The best method for quantifying the size of synthetic biological circuits is an open question. Here we took the largest synthetic circuits constructed in recent publications and compared them with the two
largest circuits from this paper. We separated the inputs to the circuits from internal components. We also counted the number of connections between the internal components. By our definition, a ‘part’
is a molecular species that carries information necessary for the internal function of the circuit (as opposed to a helper protein such as cas9). A ‘connection’ is a molecular interaction between parts that
propagates information within the circuit.
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To extrapolate the model to predict the effect of leak on signal
degradation for deeper cascades, cascades of various lengths were
simulated, with increasing values of L, using randomly sampled
parameter sets within the range of dose response experimental
fits. Dynamic range of a cascade length D, rD, was calculated for
each cascade. Here dynamic range is defined as the log fold

change of the maximal and minimal response of a cascade,

rD¼ log max Gð Þ
min Gð Þ

� �
. A log-linear relationship was found between rD

and D. This relationship was used to calculate the signal
degradation, d, representing the percent loss in dynamic range
per each additional layer (Fig. 5b).
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Signal degradation was found to be largely dependent on the
transcriptional leak parameter, L (Fig. 5b and Supplementary
Fig. 12). As leak increases, d, on average, increases. At values of
L 480%, the median value of d trends to B80%. At values of
L o1.75%, the spread of performance of the cascades is
significantly larger. In this range the performance of the cascade
is more sensitive to other parameters in the model. Our estimate
of leak from the dose response experiments, L¼ 0.6±0.1% (s.d.),
falls within the sensitive range, indicating the importance of
utilizing well-performing NOR gates in large circuits built using

our architecture. In addition, these data show the significance of
reducing NOR gate leak when constructing larger circuits.

Discussion
We introduced a class of dCas9-based modular genetic NOR gates
that behave digitally, have low variability and show minimal
retroactivity or effects on cell growth. These features made these
gates relatively easy to combine into Boolean logic circuits that
are among the largest ever built in any organism. In particular, we
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gate. Cascades with an even number of layers express a high level of GFP, creating a digital ON output, and odd depth cascades express low levels of
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different biological replicates measured during a single experiment and were normalized so that area sums to unity. Fluorescence population ratios of the

circuits are included in Supplementary Table 3. (b) Temporal dynamics for cascades of one to four gRNAs. Expression of the input gRNA was induced with

b-estradiol. A model of the cascade, in which each layer is treated as a Hill function, was used to fit the data. The plot shows the data from one biological

replicate. As the number of layers in the cascade increases, signal degradation and increased time to steady state is observed. (c) The steady-state

response function for the four inducible cascades. Error bars represent the s.d. of three biological replicates measured over three separate experiments.

(d) A representation of the model. The model was used to generate the fits for the steady-state and kinetic inducible cascade experiments.
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found that most circuits in Figs 3 and 4 required that only a
handful of gate combinations be screened to identify a functional
design, and others required only one.

Table 1 compares our technology with selected published
circuits. We measured circuit complexity with a combination of
two metrics: the number of gates and the number of connections
among gates, allowing us to locate circuits in a two-dimensional
plot (Supplementary Fig. 14). We can calculate a complexity score
using the two metrics, complexity¼ (gates2þ connections2)1/2.
For example, the XOR gate had five gates and four connections,
producing a complexity of (52þ 42)1/2¼ 6.4, while the cascade
has a complexity of (72þ 12)1/2¼ 9.2. These complexities
compare well with gene circuits developed in Escherichia coli,
for example. Our NOR gates enabled extremely simple design and
construction of large gene circuits. Before genetic circuits can be
made much larger, however, many factors that influence the size
and complexity of synthetic genetic circuits must be addressed.

First, the gates in any framework must be well behaved. Gates
can suffer from retroactivity, where a downstream gate affects the
behaviour of upstream gates to which it is not connected by
design55–57. In this case it is quite difficult to design large circuits
even with CAD because we may not know the source of the
retroactivity, how to model it or how to design with it. In
addition, gates can be highly variable, where the outputs levels of
one gate do not match the input levels of the next. Electrical
engineers call this an impedance mismatch. A recent paper22

addressed retroactivity by adding insulators to their gates. By
meticulously characterizing the performance each gate, and using
CAD, they were able to select compatible subsets of parts out of
which they constructed circuits as large as those demonstrated
here, despite gate variability. Not all of the circuits predicted to
work by the CAD tool functioned correctly, possibly due to
residual retroactive effects, requiring the circuits to be screened
for function. In contrast, our gates are considerably less variable
and do not seem to be confounded by retroactive effects, at least
in circuits with complexities o9.0. In such a case and when
circuit sizes are small (o20 components) circuits are easy to
design by hand since any subset of components from a library is
likely to yield a functional circuit. Thus, in our case, the design
problem is easy enough that extensive part characterization and
CAD tools were not necessary at the circuit level (even though
CAD tools such as standard DNA editors and secondary structure
predictors for RNA were used at the sequence level).

Second, the host organism presents many unique challenges.
Each organism can be thought of as a different computer
operating system. Promoters, for example, in E. coli are B60 bp

of DNA long, and transcriptional regulation is a fairly well-
understood process58. In contrast, the size of promoter and
regulatory regions vary widely and can range from 250 bp to
10 kb in yeast and other eukaryotes. Transcriptional regulation
in eukaryotes is complex, involving a variety of mechanisms
including chromatin remodelling59–63, and understanding it
remains a highly active area of research64. Therefore,
unfortunately, any genetic circuit technology designed for one
kingdom of life is unlikely to be easily ‘ported’ to another,
especially those built on transcriptional or translational processes.
Thus, directly comparing circuit architectures between organisms,
as we did between yeast and E. coli in Table 1, is difficult.
Nevertheless, we believe that because CRISPR-dCas9 functions
in mammalian cells20,30–32,34,48, and the human Mxi1
repression domain has been used in synthetic contexts to
regulate transcription in human cells30,39,40, our NOR gates
could be ported into mammalian cells, with difficulties of strain
engineering likely dominating.

Third, the method by which circuits are constructed and the
genetic tractability of the host affects progress toward building
large circuits. For example, the circuits we present here are all
singly integrated into the yeast genome, because plasmid-based
systems exhibit cell-to-cell variation in copy number. That made
the process of building and testing strains slow, costly and
cumbersome and in fact limited our ability to build circuits much
larger than those shown here. Larger circuits and large libraries of
circuit variants will require that we develop, for example, one-pot
assembly methods for large DNA constructs65. Depending on the
technology, such assemblies may be more or less difficult to
harness. For example, our circuits currently benefit from the fact
that the gates are integrated into disparate genetic locations that
decreases the possibility of interference between gates due to
chromatin remodelling62,66 and of yeast’s tendency to recombine
nearby homologous regions67.

The success or failure of different approaches to building bigger
circuits may depend on how well behaved, insulated, simple and
scalable the input low-level devices and gates are. In addition,
relaxing the requirement that circuits be digital, so that analogue
or mixed analogue/digital circuits can be used when appropriate,
will likely open up the design space, further increasing the size of
the circuits we can build so that one day they can match the size
and performance of natural genetic circuits.

Methods
Construction of yeast strains. Yeast transformations were carried out using a
standard lithium acetate protocol68. Yeast cells were made competent by growing
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50 ml cultures in rich media to log growth phase, then spinning down the cells and
washing with H20. Next, linearized DNA, salmon sperm donor DNA, 50%
polyethylene glycol and 1 M LiOAc were combined with 50 ml of competent cells
and the mixture was heat shocked at 42 �C for 15 min. The cells were then spun
down, supernatant was removed and they were resuspended in H2O and then
plated on selective agar media. Transformations were done into MATa W303-1A
and MATalpha W303-1B background strains. Matings of the MATa and
MATalpha were performed by coculturing both mating types and plating the
culture onto selective agar media. All strains and sequences used in this work are
detailed in the Supplementary Data 1.

RNA design. RGR and iRGR sequences were computationally designed to enable
the 50 hammerhead ribozymes to fold into their target, functionally active, struc-
tures. ViennaRNA (RNAfold 2.1.9) was used to simulate long timescale (thermo-
dynamic equilibrium) at an input temperature of 37 �C. Kinefold
(kinefold_long_static_bianary 20060404) was used to simulate short timescale
folding (cotranscriptional folding) with inputs of low and high polymerization rates
of 25 and 50 nt s� 1 respectively, helix minimum free energy¼ 6.346 kcal mol� 1

and folded without pseudoknots or entanglements. A total of 12 Kinefold simu-
lations were run for each candidate sequence and agglomerated to generate average
folding trace data.

Ribozyme target structures needed for both viennaRNA and Kinefold
simulation evaluation were determined by folding ribozyme sequences (Minimal
HH: 50- NNNNNNCTGATGAGTCCGTGAGGACGAAACGAGTAAGCTCGT-
CNNNNNN-30 ASBV1: 50-GGGACGGGCCATCATCTATCCCTGAAGAGAC
GAAGGCTTCGGCCAAGTCGAAACGGAAACGTCGGATAGTCGCCCG-
TCCC-30) using RNAfold and Kinefold (melt and anneal of 1 min), respectively.
RGR targeting sequences and iRGR insulating sequences were screened in specific
50 promoter contexts (pGAL1min: 50-AGTATCAACAAAAAATTGTTAATAT-
ACCTCTATACT TTAACGTCAAGGAGAAAAAACTATACGGATTCTAG-
AACTAGTGGATCTACAAA-30 , pAHD1: 50-CAAGCTATACCAAGCATACA-
ATCAACTATCTCATATACAGGATTCTAGAA CTAGTGGATCTACAAA-30 ,
pCYC1: 50-ACTATACTTCTATAGACACACAAACACAAATACACACA-
CTAATCTAGATATTGGATTCT AGAACTAGTGGATCTACAAA-30) and in the
30 context of the targeting sequence and the gRNA handle sequence (gRNA handle:
50-GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATC-
AACTTGAAAAAG TGGCACCGAGTCGGTGCTTTT-30).

Randomly generated 20 bp candidate targeting sequences for RGR, of which the
most 50 6 bp defined the closing stem of the minimal HH ribozyme, were folded in
the context of each promoter to confirm that the target structure was present in the
MFE structure (viennaRNA) and that the target structure was present at 490% in
the RNA folding trace at both low and high polymerase rates (Kinefold). Targeting
sequences that enabled correct folding in the context of each promoter were
considered successful. For iRGRs, randomly generated 50 and 30 insulating
sequences were designed for each of the three promoter types and were screened
for function in the same manner. However, to select for the most robust insulating
sequences, each was screened against 75 randomly generated and 10 randomly
generated 20 bp guide sequences using viennaRNA and Kinefold, respectively.

Cytometry. Fluorescence intensity was measured with a BD Accuri C6 flow cyt-
ometer equipped with a CSampler plate adapter using excitation wavelengths of
488 and 640 nm and an emission detection filter at 533 nm (FL1 channel). A total
of 10,000 events above a 400,000 FSC-H threshold (to exclude debris) were
recorded for each sample with and core size of 22 mm using the Accuri C6 CFlow
Sampler software. Cytometry data were exported as FCS 3.0 files and processed
using the flowCore R software package and custom R scripts (Supplementary
Software 1) to obtain the mean FL1-A value at each data point.

Data collection for orthogonality matrix. Cytometry readings were taken with
cultures inoculated into synthetic complete with cells from freshly struck out on
agar. Colonies were picked from plates and grown for 3 h at 30 �C before reads
were taken.

Data collection for logic circuits and static cascades. Cytometry measurements
were taken on cells grown in cultures diluted 1:1,000 from saturated culture for
16 h at 30 �C.

Data collection for inducible cascades. Cells from saturated culture were diluted
1:100 into fresh media with a Beta Estradiol (be) concentration of 100 nm. Cyto-
metry measurements were taken over an B30 h period. During the time course,
cells were periodically diluted to keep them in log growth phase. Experimental data
collected for steady state were measured for four strains, each containing four
different be-inducible cascades. Each of the four strains was induced with 18
different doses of be ranging from 0 to 100mM in a single batch of 72 cultures.
Cells were diluted every 8–15 h to prevent culture saturation. Steady-state fluor-
escence readings were taken after 5 days when the cultures were in log phase.

Model description. A deterministic model of our system was described by three
ordinary differential equations characterizing transcription, degradation and
repression. The gRNA-dCas9-Mxi1 and green fluorescent protein (GFP) molecular
constituents were modelled as follows:

drd

dt
¼ b

vd 1� Lð Þ
1þ rdþ 1

kd

� �n þ Lvd � rd

0
@

1
A

drD

dt
¼b

V u
K

� �nu

1þ u
K

� �nu � rD

 !

d 2 1 . . . D� 1f g
dG
dt
¼B

1� L
1þ r1ð Þn

þ L�G

� �
;

rd is the concentration of the dth gRNA-dCas9-Mxi1, d ranges from 1 to D� 1,
where D is the number of layers in the cascade; rD is the input gRNA driven by the
inducible promoter; vd is the promoter strength driving each rd in terms of the
maximum steady-state concentration of gRNA from the promoter; G is the mea-
surable normalized concentration of GFP; b is the degradation/dilution rate of all
rd; B is the degradation/dilution for GFP; kd is the repression strength of rd to its
cognate promoter, in terms of the number of repressors required to suppress a
promoter to half strength; to its cognate promoter is modelled with kd, the number
of repressors required to suppress a promoter to half-strength; and n is a Hill
coefficient. For the transfer function, V, K, nu respectively represent the maximum
transcription, Michaelis–Menten constant and Hill coefficient of the inducible
promoter; u is the input be in mM. Concentration is rescaled as the Michaelis–
Menten constant or the number of gRNAs required to suppress a NOT gate to half-
maximal. Note that the model makes the assumptions that (1) there is no crosstalk
between gRNA components, (2) Mxi1 represses transcription completely with no
transcriptional leak and (3) dCas9-Mxi1 bind quickly and irreversibly to gRNA.

Fitting procedure. Parameters were optimized using differential evolution fol-
lowed by minimization using the BFGS (Broyden–Fletcher–Goldfarb–Shanno)
algorithm69. For the steady-state experiments, optimal parameter fits for the
parameters v0

ss� v3
ss, k0

ss� k3
ss, Vss, nss were generated from three separate

experiments. For each of the three experiments, 17 parameter fits were generated
using differential evolution/BFGS and means were calculated for a total of 51
steady-state parameter sets. The means from each experiment were used to
determine the experimental error (s) for estimating each parameter
(Supplementary Table 4). For the kinetics experiments, five parameter fits for
v0

kinetics� v3
kinetics, k0

kinetics� k3
kinetics, b, B, Vkinetics, nkinetics were generated from a

single experiment (Supplementary Table 4). As there were only data for a single
kinetics experiment, experimental errors for the kinetic parameter values were not
calculated. Parameters K and nu were determined in a separate experiment by
driving a YFP with the pGALZ4 b-estradiol inducible; this promoter is the same
promoter used in the inducible cascades. The kinetics and steady-state parameter
sets were resampled in downstream analyses to generate Monte Carlo simulations
of longer repression cascades (Supplementary Software 1).

Model predictions. Long repression cascades of 1 to 11 (D A {1 y 11}) layers
were simulated using the system of ordinary differential equations. Parameters for
simulated cascades were generated by resampling parameter sets generated during
the fitting procedure. For the kinetic model predictions, 10,000 simulated cascades
were generated by resampling parameters from 5 parameter sets estimated from the
kinetics experiment. The time-to-half max of GFP (G) was calculated for each
cascade length D and plotted in Fig. 5a. For the signal degradation (d) predictions
in Fig. 5b, 100,000 simulated cascades of length D¼ 7 were simulated by resam-
pling parameters from the 51 parameter sets estimated from the 3 steady-state
experiments. To compare L versus d, L was sampled from a uniform distribution
between 0 and 1. Signal degradation (d) was calculated as the percent change in
dynamic range per additional layer. The dynamic range at each layer d in a cascade
of length D was calculated as:

rd ¼ log
max rdð Þ
min rdð Þ

� �

Dynamic range was found to have a log-linear relationship with the length of the
cascade, and hence the average slope between d versus log(rd) was calculated using
linear regression for each of the 100,000 simulations of cascades of length D by:

Z ¼ D
P

d � log rdð Þð Þ�
P

dð Þ
P

log rdð Þð Þ
D
P

dð Þ2 �
P

dð Þ2
;

with D¼ 7. With Z being the change in log(rd) with each additional layer, the
percent loss in dynamic range per layer or signal degradation d is calculated as

d ¼ 1� 10n:

Values for L were binned using a bin size of 0.035 and d versus L was plotted to
generate Fig. 5b.
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Data availability. No data sets were generated during the current study. All data
values supporting the experimental conclusions are shown either in main or
Supplementary Figures (source data and DNA are available from corresponding
author). A list of strains and sequences used for plasmids constructed are included
in Supplementary Data 1. Custom software used in this work is available in
Supplementary Software 1.
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