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Many applications of machine-learning methods involve an iterative protocol in which
data are collected, a model is trained, and then outputs of that model are used to choose
what data to consider next. For example, a data-driven approach for designing proteins
is to train a regression model to predict the fitness of protein sequences and then use
it to propose new sequences believed to exhibit greater fitness than observed in the
training data. Since validating designed sequences in the wet laboratory is typically
costly, it is important to quantify the uncertainty in the model’s predictions. This is
challenging because of a characteristic type of distribution shift between the training
and test data that arises in the design setting—one in which the training and test data
are statistically dependent, as the latter is chosen based on the former. Consequently,
the model’s error on the test data—that is, the designed sequences—has an unknown
and possibly complex relationship with its error on the training data. We introduce
a method to construct confidence sets for predictions in such settings, which account
for the dependence between the training and test data. The confidence sets we construct
have finite-sample guarantees that hold for any regression model, even when it is used to
choose the test-time input distribution. As a motivating use case, we use real datasets to
demonstrate how our method quantifies uncertainty for the predicted fitness of designed
proteins and can therefore be used to select design algorithms that achieve acceptable
tradeoffs between high predicted fitness and low predictive uncertainty.
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1. Uncertainty Quantification under Feedback Loops

Consider a protein engineer who is interested in designing a protein with high fitness—
some real-valued measure of its desirability, such as fluorescence or therapeutic efficacy. The
engineer has a dataset of various protein sequences, denoted Xi , labeled with experimental
measurements of their fitnesses, denoted Yi , for i = 1, . . . ,n . The design problem is to
propose a novel sequence,Xtest, that has higher fitness,Ytest, than any of these. To this end,
the engineer trains a regression model on the dataset and then identifies a novel sequence
that the model predicts to be more fit than the training sequences. Can the engineer trust
the model’s prediction for the designed sequence?

This is an important question to answer, not just for the protein design problem just
described, but for any deployment of machine learning where the test data depend on
the training data. More broadly, settings ranging from Bayesian optimization to active
learning to strategic classification involve feedback loops in which the learned model and
data influence each other in turn. As feedback loops violate the standard assumptions of
machine-learning algorithms, we must be able to diagnose when a model’s predictions can
and cannot be trusted in their presence.

In this work, we address the problem of uncertainty quantification when the training
and test data exhibit a type of dependence that we call feedback covariate shift (FCS). A
joint distribution of training and test data falls under FCS if it satisfies two conditions
(Fig. 1). First, the test input, Xtest, is selected based on independently and identically
distributed (i.i.d.) training data, (X1,Y1), . . . , (Xn ,Yn). That is, the distribution of
Xtest is a function of the training data. Second, PY |X , the ground-truth distribution of
the label, Y , given any input, X , does not change between the training and test data
distributions. For example, returning to the example of protein design, the training data
are used to select the designed protein,Xtest; the distribution ofXtest is determined by some
optimization algorithm that calls the regression model to design the protein. However,
since the fitness of any given sequence is some property dictated by nature, PY |X stays
fixed. Representative examples of FCS are algorithms that use predictive models to choose
the test input distribution, such as in:

• The design of proteins, small molecules, and materials with favorable properties.
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Fig. 1. Illustration of feedback covariate shift. In Left graph, the blue dis-
tribution represents the training input distribution, PX . The dark gray line
sandwiched by lighter gray lines represents the mean ± the SD of PY|X ,
the conditional distribution of the label given the input, which does not
change between the training and test data distributions (Left and Right graphs,
respectively). The blue dots represent training data, Z1:n = {Z1, . . . , Zn} where
Zi = (Xi , Yi), which is used to fit a regression model (Center). Algorithms that
use that trained model to make decisions, such as in design problems,
active learning, and Bayesian optimization, give rise to a new test–time input
distribution, PX ;Z1:n (Right graph, green distribution). The green dots represent
test data.

• Active learning, adaptive experimental design, Bayesian opti-
mization, and machine-learning-guided scientific discovery.

We anchor our discussion and experiments by focusing on
protein design problems. However, the methods and insights
developed herein are applicable to a variety of FCS problems.

A. Quantifying Uncertainty with Valid Confidence Sets. Given
a regression model of interest, μ, we quantify its uncertainty on
an input with a confidence set. A confidence set is a function,
C : X → 2R, that maps a point from some input space, X , to a
set of real values that the model considers to be plausible labels.*
Informally, we examine the model’s error on the training data
to quantify its uncertainty about the label, Ytest, of an input,
Xtest. Formally, using the notation Zi = (Xi ,Yi), i = 1, . . . ,n
and Ztest = (Xtest,Ytest), our goal is to construct confidence sets
that have the frequentist statistical property known as coverage.

Definition 1. Consider data points from some joint distribution,
(Z1, . . . ,Zn ,Ztest)∼ P . Given a miscoverage level, α ∈ (0, 1), a
confidence set, C : X → 2R, which may depend on Z1, . . . ,Zn ,
provides coverage under P if

P (Ytest ∈ C (Xtest))≥ 1− α, [1]

where the probability is over all n + 1 data points, (Z1, . . . ,Zn ,
Ztest)∼ P .

There are three important aspects of this definition. First, coverage
is with respect to a particular joint distribution of the training
and test data, P , as the probability statement in Eq. 1 is over
random draws of all n + 1 data points. That is, if one draws
(Z1, . . . ,Zn ,Ztest)∼ P and constructs the confidence set for
Xtest based on a regression model fit to (Z1, . . . ,Zn), then the
confidence set contains the true test label,Ytest, a fraction of 1− α
of the time. In this work, P can be any distribution captured by
FCS, as we describe later in more detail.

Second, note that Eq. 1 is a finite-sample statement: It holds
for any number of training data points, n . Finally, coverage is a
marginal probability statement, which averages over all the ran-
domness in the training and test data; it is not a statement about
conditional probabilities, such as P(Ytest ∈ C (Xtest) | Xtest). We

*We use the term confidence set to refer to both this function and the output of this
function for a particular input; the distinction will be clear from the context.

will call a family of confidence sets, Cα, indexed by the mis-
coverage level, α ∈ (0, 1), valid if they provide coverage for all
α ∈ (0, 1).

When the training and test data are exchangeable (e.g., inde-
pendently and identically distributed), conformal prediction is an
approach for constructing valid confidence sets for any regression
model (1–3). Although recent work has extended the methodol-
ogy to certain forms of distribution shift (4–8), to our knowledge
no existing approach can produce valid confidence sets when
the test data depend on the training data. Here, we generalize
conformal prediction to the FCS setting, enabling uncertainty
quantification under this prevalent type of dependence between
training and test data.

B. Our Contributions. First, we formalize the concept of feedback
covariate shift, which describes a type of distribution shift that
emerges under feedback loops between learned models and the
data they operate on. Second, we introduce a generalization of
conformal prediction that produces valid confidence sets under
feedback covariate shift for any regression model. We also intro-
duce randomized versions of these confidence sets that achieve a
stronger property called exact coverage. Finally, we demonstrate
the use of our method to quantify uncertainty for the predicted
fitness of designed proteins, using several real datasets.

We recommend using our method for design algorithm selec-
tion, as it enables practitioners to identify settings of algorithm
hyperparameters that achieve acceptable tradeoffs between high
predictions and low predictive uncertainty.

C. Prior Work. Our study investigates uncertainty quantification
in a setting that brings together the well-studied concept of covari-
ate shift (9–12) with feedback between learned models and data
distributions, a widespread phenomenon in real-world deploy-
ments of machine learning (13, 14). Indeed, beyond the design
problem, feedback covariate shift is one way of describing and
generalizing the dependence between data at successive iterations
of active learning, adaptive experimental design, and Bayesian
optimization.

Our work builds upon conformal prediction, a framework
for constructing confidence sets that satisfy the finite-sample
coverage property in Eq. 1 for arbitrary model classes (2, 15,
16). Although originally based on the premise of exchangeable
(e.g., independently and identically distributed) training and test
data, the framework has since been generalized to handle various
forms of distribution shift, including covariate shift (4, 7), label
shift (8), arbitrary distribution shifts in an online setting (6), and
test distributions that are nearby the training distribution (5).
Conformal approaches have also been used to detect distribution
shift (17–23).

We call particular attention to the work of Tibshirani et al. (4)
on conformal prediction in the context of covariate shift, whose
technical machinery we adapt to generalize conformal prediction
to feedback covariate shift. In covariate shift, the training and test
input distributions differ, but, critically, the training and test data
are still independent; we henceforth refer to this setting as standard
covariate shift. The chief innovation of our work is to formalize
and address a ubiquitous type of dependence between training and
test data that is absent from standard covariate shift and, to the
best of our knowledge, absent from any other form of distribution
shift to which conformal approaches have been generalized.

For the design problem, in which a regression model is used to
propose new inputs—such as a protein with desired properties—
it is important to consider the predictive uncertainty of the
designed inputs, so that we do not enter “pathological” regions

2 of 12 https://doi.org/10.1073/pnas.2204569119 pnas.org

https://doi.org/10.1073/pnas.2204569119


of the input space where the model’s predictions are desirable
but untrustworthy (24, 25). Gaussian process regression (GPR)
models are popular tools for addressing this issue, and algorithms
that leverage their posterior predictive variance (26, 27) have
been used to design enzymes with enhanced thermostability and
catalytic activity (28, 29). Despite these successes, it is not clear
how to obtain practically meaningful theoretical guarantees for
the posterior predictive variance and consequently to understand
in what sense we can trust it. Similarly, ensembling strategies
such as in ref. 30, which are increasingly being used to quantify
uncertainty for deep neural networks (24, 25, 31, 32), as well as
uncertainty estimates that are explicitly learned by deep models
(33) do not come with formal guarantees. A major advantage of
conformal prediction is that it can be applied to any modeling
strategy and can be used to calibrate any existing uncertainty
quantification approach, including those aforementioned.

2. Conformal Prediction under Feedback
Covariate Shift

A. Feedback Covariate Shift. We begin by formalizing FCS,
which describes a setting in which the test data depend on the
training data, but the relationship between inputs and labels
remains fixed.

We first set up our notation. Recall that we let Zi =
(Xi ,Yi), i = 1, . . . ,n , denote n i.i.d. training data points
comprising inputs, Xi ∈ X , and labels, Yi ∈ R. Similarly,
let Ztest = (Xtest,Ytest) denote the test data point. We use
Z1:n = {Z1, . . . ,Zn} to denote the multiset of the training
data, in which values are unordered but multiple instances of
the same value appear according to their multiplicity. We also use
the shorthand Z−i = Z1:n \ {Zi}, which is a multiset of n − 1
values that we refer to as the i th leave-one-out training dataset.

FCS describes a class of joint distributions over (Z1, . . . ,Zn ,
Ztest) that have the dependency structure described informally in
Section 1. Formally, we say that training and test data exhibit FCS
when they can be generated according to the following three steps:

1)The training data, (Z1, . . . ,Zn), are drawn i.i.d. from some
distribution

Xi
i.i.d∼ PX ,

Yi ∼ PY |Xi
, i = 1, . . . ,n.

2)The realized training data induce a new input distribution
over X , denoted P̃X ;Z1:n

to emphasize its dependence on the
training data, Z1:n .

3)The test input is drawn from this new input distribution, and
its label is drawn from the unchanged conditional distribution

Xtest ∼ P̃X ;Z1:n

Ytest ∼ PY |Xtest .

The key object in this formulation is the test input distribution,
P̃X ;Z1:n

. Prior to collecting the training data, Z1:n , the specific
test input distribution is not yet known. The observed training
data induce a distribution of test inputs, P̃X ;Z1:n

, that the model
encounters at test time (for example, through any of the mecha-
nisms summarized in Section 1).

This is an expressive framework: The object P̃X ;Z1:n
can be an

arbitrarily complicated mapping from a dataset of size n to an
input distribution, as long as it is invariant to the order of the data
points. There are no other constraints on this mapping; it need not

exhibit any notion of smoothness, for example. In particular, FCS
encapsulates any design algorithm that makes use of a regression
model fitted to the training data,Z1:n , to propose designed inputs.

B. Conformal Prediction for Exchangeable Data. To explain
how to construct valid confidence sets under FCS, we first
walk through the intuition behind conformal prediction in the
setting of exchangeable data and then present the adaptation to
accommodate FCS.
Score function. First, we introduce the notion of a score function,
S : (X × R)× (X × R)m → R, which is an engineering choice
that quantifies how well a given data point “conforms” to a
multiset of m data points, in the sense of evaluating whether the
data point comes from the same conditional distribution, PY |X ,
as the data points in the multiset.† A representative example is the
residual score function, S ((X ,Y ),D) = |Y − μD(X )|, where
D is a multiset of m data points and μD is a regression model
trained on D . A large residual signifies a data point that the model
cannot easily predict, which suggests it does not obey the input-
label relationship present in the training data.

More generally, we can choose the score to be any notion of
uncertainty of a trained model on the point (X ,Y ), heuristic or
otherwise, such as the posterior predictive variance of a Gaussian
process regression model (28, 29), the variance of the predictions
from an ensemble of neural networks (16, 30–32), uncertainty
estimates learned by deep models (34), or even the outputs of
other calibration procedures (35). Regardless of the choice of the
score function, conformal prediction produces valid confidence
sets; however, the particular choice of score function will de-
termine the size, and therefore informativeness, of the resulting
sets. Roughly speaking, a score function that better reflects the
likelihood of observing the given point, (X ,Y ), under the true
conditional distribution that governs D , PY |X , results in smaller
valid confidence sets.
Imitating exchangeable scores. At a high level, conformal
prediction is based on the observation that when the training
and test data are exchangeable, their scores are also exchangeable.
More concretely, assume we use the residual score function,
S ((X ,Y ),D) = |Y − μD(X )|, for some regression model
class. Now imagine that we know the label, Ytest, for the test
input, Xtest. For each of the n + 1 training and test data points,
(Z1, . . . ,Zn ,Ztest), we can compute the score using a regression
model trained on the remaining n data points; the resulting n + 1
scores are exchangeable.

In reality, of course, we do not know the true label of the test
input. However, this key property—that the scores of exchange-
able data yield exchangeable scores—enables us to construct valid
confidence sets by including all “candidate” values of the test
label, y ∈ R, that yield scores for the n + 1 data points (the
training data points along with the candidate test data point,
(Xtest, y)) that appear to be exchangeable. For a given candidate
label, the conformal approach assesses whether or not this is true
by comparing the score of the candidate test data point to an
appropriately chosen quantile of the training data scores.

C. Conformal Prediction under FCS. When the training and test
data are under FCS, their scores are no longer exchangeable, since
the training and test inputs are neither independent nor from
the same distribution. Our solution to this problem is to weight

†Since the second argument is a multiset of data points, the score function must be
invariant to the order of these data points. For example, when using the residual as the
score, the regression model must be trained in a way that is agnostic to the order of the
data points.
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each training and test data point to take into account these two
factors. Thereafter, we can proceed with the conformal approach
of including all candidate labels such that the (weighted) candidate
test data point is sufficiently similar to the (weighted) training
data points. Toward this end, we introduce two quantities: 1) a
likelihood-ratio function, which will be used to define the weights,
and 2) the quantile of a distribution, which will be used to assess
whether a candidate test data point conforms to the training data.

The likelihood-ratio function, which depends on a multiset of
data points, D , is given by

v(X ;D) =
p̃X ;D(X )

pX (X )
, [2]

where p̃X ;D and pX denote the densities of the test and training
input distributions, respectively, and the test input distribution is
the particular one indexed by the dataset, D .

This quantity is the ratio of the likelihoods under these two
distributions and, as such, is reminiscent of weights used to
modify various statistical procedures to accommodate standard
covariate shift (4, 10, 11). What distinguishes its use here is
that our particular likelihood ratio is indexed by a multiset and
depends on which data point is being evaluated as well as the
candidate label, as will become clear shortly.

Consider a discrete distribution with probability masses
p1, . . . , pn located at support points s1, . . . , sn , respectively,
where si ∈ R and pi ≥ 0,

∑
i pi = 1. We define the β-quantile

of this distribution as

QUANTILEβ

(
n∑

i=1

pi δsi

)
= inf

⎧⎨
⎩s :

∑
i:si≤s

pi ≥ β

⎫⎬
⎭ ,

where δsi is a unit point mass at si .
We now define the confidence set. For any score function, S ;

any miscoverage level, α ∈ (0, 1); and any test input, Xtest ∈ X ,
define the full conformal confidence set as

Cα(Xtest) =

{
y ∈ R : Sn+1(Xtest, y)≤ [3]

QUANTILE1−α

( n+1∑
i=1

wy
i (Xtest) δSi (Xtest,y)

)}
,

where

Si(Xtest, y) = S (Zi ,Z−i ∪ {(Xtest, y)}), i = 1, . . . ,n,

Sn+1(Xtest, y) = S ((Xtest, y),Z1:n),

which are the scores for each of the training and candidate test
data points, when compared to the remaining n data points, and
the weights for these scores are given by

wy
i (Xtest)∝ v(Xi ;Z−i ∪ {(Xtest, y)}), i = 1, . . . ,n,

wy
n+1(Xtest)∝ v(Xtest;Z1:n),

[4]

which are normalized such that
∑n+1

i=1 wy
i (Xtest) = 1.

In words, the confidence set in Eq. 3 includes all real values,
y ∈ R, such that the candidate test data point, (Xtest, y), has a
score that is sufficiently similar to the scores of the training data.
Specifically, the score of the candidate test data point needs to
be smaller than the (1− α)-quantile of the weighted scores of
all n + 1 data points (the n training data points as well as the
candidate test data point), where the i th data point is weighted
by wy

i (Xtest).

Our main result is that this confidence set provides coverage
under FCS (see SI Appendix, section S1.A for the proof ).

Theorem 1. Suppose data are generated under feedback covariate
shift and assume P̃X ;D is absolutely continuous with respect toPX for
all possible values of D. Then, for any miscoverage level, α ∈ (0, 1),
the full conformal confidence set, Cα, in Eq. 3 satisfies the coverage
property in Eq. 1; namely, P(Ytest ∈ Cα(Xtest))≥ 1− α.

Since we can supply any domain-specific notion of uncertainty
as the score function, this result implies we can interpret the
condition in Eq. 3 as a calibration of the provided score function
that guarantees coverage. That is, our conformal approach can
complement any existing uncertainty quantification method by
endowing it with coverage under FCS.

We note that although Theorem 1 provides a lower bound
on the probability P(Ytest ∈ Cα(Xtest)), one cannot establish a
corresponding upper bound without further assumptions on the
training and test input distributions. However, by introducing
randomization to the β-quantile, we can construct a randomized
version of the confidence set, C rand

α (Xtest), that is not conservative
and satisfies P(Ytest ∈ C rand

α (Xtest)) = 1− α, a property called
exact coverage. See SI Appendix, section S1.B for details.
Estimating confidence sets in practice. In practice, one cannot
check all possible candidate labels, y ∈ R, to construct a con-
fidence set. Instead, as done in previous work on conformal
prediction, we estimate Cα(Xtest) by defining a finite grid of
candidate labels, Y ⊂ R, and checking the condition in Eq. 3 for
all y ∈ Y . Algorithm 1 outlines a generic recipe for computing
Cα(Xtest) for a given test input; see Section 2.D for important
special cases in whichCα(Xtest) can be computed more efficiently.

Algorithm 1 Pseudocode for approximately computing Cα(Xtest)

Input: Training data, (Z1, . . . ,Zn), where Zi = (Xi ,Yi); test
input,Xtest; finite grid of candidate labels,Y ⊂ R; likelihood ratio
function subroutine, v(·; ·); and score function subroutine S (·, ·).
Output: Confidence set, Cα(Xtest)⊂ Y .

1: Cα(Xtest)←∅
2: Compute v(Xtest;Z1:n)
3: for y ∈ Y do
4: for i = 1, . . . ,n do
5: Compute Si(Xtest, y) and v(Xi ;Z−i∪{(Xtest, y)})
6: Compute Sn+1(Xtest, y)
7: for i = 1, . . . ,n + 1 do
8: Normalize wy

i (Xtest) according to Eq. (4)
9: qy ← QUANTILE1−α

(∑n+1
i=1 wy

i (Xtest) δSi (Xtest,y)

)
10: if Sn+1(Xtest, y)≤ qy then
11: Cα(Xtest)← Cα(Xtest) ∪ {y}

Relationship with exchangeable and standard covariate shift set-
tings. The weights assigned to each score, wy

i (Xtest) in Eq. 4, are
the distinguishing factor between the confidence sets constructed
by conformal approaches for the exchangeable, standard covariate
shift, and FCS settings. When the training and test data are
exchangeable, these weights are simply 1/(n + 1). To accommo-
date standard covariate shift, where the training and test data are
independent, these weights are also normalized likelihood ratios—
but, importantly, the test input distribution in the numerator is
fixed, rather than data dependent as in the FCS setting (4). That is,
the weights are defined using one fixed likelihood-ratio function,

4 of 12 https://doi.org/10.1073/pnas.2204569119 pnas.org

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2204569119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2204569119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2204569119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2204569119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2204569119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2204569119/-/DCSupplemental
https://doi.org/10.1073/pnas.2204569119


v(·) = p̃X (·)/pX (·), where p̃X is the density of the single test
input distribution under consideration.

In contrast, under FCS, observe that the likelihood ratio that
is evaluated in Eq. 4, v(·;D), is different for each of the n +
1 training and candidate test data points and for each candidate
label, y ∈ R. To weight the i th training score, we evaluate the
likelihood ratio of Xi where the test input distribution is the one
induced by Z−i ∪ {(Xtest, y)},

v(Xi ;Z−i ∪ {(Xtest, y)}) =
p̃X ;Z−i∪{(Xtest,y)}(Xi)

pX (Xi)
.

That is, the weights under FCS take into account not just a
single test input distribution, but every test input distribution that
can be induced when we treat a leave-one-out training dataset
combined with a candidate test data point, Z−i ∪ {(Xtest, y)},
as the training data.

To further appreciate the relationship between the standard
and feedback covariate shift settings, consider the weights used
in the standard covariate shift approach if we treat PX ;Z1:n

as the
test input distribution. The extent to which PX ;Z1:n

differs from
PX ;Z−i∪{(Xtest,y)}, for any i = 1, . . . ,n and y ∈ R, determines
the extent to which the weights used under standard covariate
shift deviate from those used under FCS. In other words, since
Z1:n and Z−i ∪ {(Xtest, y} differ in exactly one data point, the
similarity between the standard covariate shift and FCS weights
depends on the “smoothness” of the mapping from D to P̃X ;D .
Input distributions are known in the design problem. The design
problem is a unique setting in which we have control over the
data-dependent test input distribution, PX ;D , since we choose
the procedure used to design an input. In the simplest case,
some design procedures sample from a distribution whose form
is explicitly chosen, such as an energy-based model whose energy
function is proportional to the predictions from a trained regres-
sion model (36) or a model whose parameters are set by solving
an optimization problem (e.g., the training of a generative model)
(24, 25, 37–43). In either setting, we know the exact form of the
test input distribution, which also absolves the need for density
estimation.

In other cases, the design procedure involves iteratively apply-
ing a gradient to, or otherwise locally modifying, an initial input to
produce a designed input (44–49). Due to randomness in either
the initial input or the local modification rule, such procedures
implicitly result in some distribution of test inputs. Although we
do not have access to its explicit form, knowledge of the design
procedure can enable us to estimate it much more readily than in a
naive density estimation setting. For example, we can simulate the
design procedure as many times as needed to sufficiently estimate
the resulting density, whereas in density estimation in general, we
cannot control how many test inputs we can access.

The training input distribution,PX , is also often known explic-
itly. In protein design problems, for example, training sequences
are often generated by introducing random substitutions to a
single wild-type sequence (24, 36, 49), by recombining segments
of several “parent” sequences (28, 29, 50, 51), or by independently
sampling the amino acid at each position from a known distribu-
tion (43, 52). Conveniently, we can then compute the weights
in Eq. 4 exactly without introducing approximation error due to
density ratio estimation.

Finally, we note that, by construction, the design problem
tends to result in test input distributions that place considerable
probability mass on regions where the training input distribution
does not. The farther the test distribution is from the training
distribution in this regard, the larger the resulting weights on

candidate test points, and the larger the confidence set in Eq. 3
will tend to be. This phenomenon agrees with our intuition about
epistemic uncertainty: We should have more uncertainty—that is,
larger confidence sets—in regions of input space where there are
fewer training data.

D. Efficient Computation of Confidence Sets under Feedback
Covariate Shift. Using Algorithm 1 to construct the full
conformal confidence set, Cα(Xtest), requires computing the
scores and weights, Si(Xtest, y) and wy

i (Xtest), for all i = 1, . . . ,
n + 1 and all candidate labels, y ∈ Y . When the dependence of
P̃X ;D on D arises from a model trained on D , then naively, we
must train (n + 1)× |Y| models to compute these quantities.
We now describe two important, practical cases in which this
computational burden can be reduced to fitting n + 1 models,
removing the dependence on the number of candidate labels. In
such cases, we can postprocess the outputs of these n + 1 models
to calculate all (n + 1)× |Y| required scores and weights (see
SI Appendix, Algorithm S2 for pseudocode); we refer to this as
computing the confidence set efficiently.

In the following two examples and in our experiments, we
use the residual score function, S ((X ,Y ),D) = |Y − μD(X )|,
where μD is a regression model trained on the multiset D . To
understand at a high level when efficient computation is possible,
first let μy

−i denote the regression model trained on Z y
−i = Z−i ∪

{(Xtest, y)}, the i th leave-one-out training dataset combined
with a candidate test data point. The scores and weights can be
computed efficiently when μy

−i(Xi) is a computationally simple
function of the candidate label, y , for all i—for example, a linear
function of y . We discuss two such cases in detail.
Ridge regression. Suppose we fit a ridge regression model, with
ridge regularization hyperparameter γ, to the training data. Then,
we draw the test input vector from a distribution that places more
mass on regions of X where the model predicts more desirable
values, such as high fitness in protein design problems. Recent
studies have employed this relatively simple approach to success-
fully design novel enzymes with enhanced catalytic efficiencies and
thermostabilities (36, 50, 53).

In the ridge regression setting, the quantity μy
−i(Xi) can be

written in closed form as

μy
−i(Xi) =

[(
XT

−iX−i + γI
)−1

XT
−iY

y
−i

]T
Xi [5]

=

(
n−1∑
j=1

Y−i;jA−i;j

)T

Xi + (AT
−i;nXi)y ,

where the rows of the matrix X−i ∈ R
n×p are the input vectors

inZ y
−i ,Y

y
−i = (Y−i , y) ∈ R

n contains the labels inZ y
−i , the ma-

trixA−i ∈ R
n×p is defined asA−i =

(
XT

−iX−i + γI
)−1

XT
−i ,

A−i;j denotes the j th column of A−i , and Y−i;j denotes the
j th element of Y−i .

Note that the expression in Eq. 5 is a linear function
of the candidate label, y . Consequently, as formalized by
SI Appendix, Algorithm S2, we first compute and store the slopes
and intercepts of these linear functions for all i , which can
be calculated as byproducts of fitting n + 1 ridge regression
models. Using these parameters, we can then compute μy

−i(Xi)
for all candidate labels, y ∈ Y , by simply evaluating a linear
function of y instead of retraining a regression model on
Z y
−i . Altogether, beyond fitting n + 1 ridge regression models,

SI Appendix, Algorithm S2 requires O(n · p · |Y|) additional
floating-point operations to compute the scores and weights for
all the candidate labels, the bulk of which can be implemented as
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one outer product between an n vector and a |Y| vector and one
Kronecker product between an (n × p) matrix and a |Y| vector.
Gaussian process regression. Similarly, suppose we fit a Gaussian
process regression model to the training data. We then select a
test input vector according to a likelihood that is a function of the
mean and variance of the model’s prediction; such functions are
referred to as acquisition functions in the Bayesian optimization
literature.

For a linear kernel, the expression for the mean prediction,
μy
−i(Xi), is the same as for ridge regression (Eq. 5). For arbitrary

kernels, the expression can be generalized and remains a linear
function of y (see SI Appendix, section S2.B for details). We can
therefore mimic the computations described for the ridge regres-
sion case to compute the scores and weights efficiently.

E. Data Splitting. For settings with abundant training data, or
model classes that do not afford efficient computations of the
scores and weights, one can turn to data splitting to construct
valid confidence sets. To do so, we first randomly partition the
labeled data into disjoint training and calibration sets. Next, we
use the training data to fit a regression model, which induces
a test input distribution. If we condition on the training data,
thereby treating the regression model as fixed, we have a setting
in which 1) the calibration and test data are drawn from different
input distributions, but 2) are independent (even though the test
and training data are not). Thus, data splitting returns us to the
setting of standard covariate shift, under which we can use the
data-splitting approach in ref. 4 to construct valid split conformal
confidence intervals (SI Appendix, section S1.C).

We also introduce randomized data-splitting approaches that
give exact coverage; see SI Appendix, section S1.D for details.

3. Experiments with Protein Design

To demonstrate practical applications of our work, we turn to
examples of uncertainty quantification for designed proteins.
Given a fitness function of interest, such as fluorescence, a typical
goal of protein design is to seek a protein with high fitness—in
particular, higher than we have observed in known proteins. ‡

Historically, this has been accomplished through several iterations
of expensive, time-consuming experiments. Recently, efforts have
been made to augment such approaches with machine-learning–
based strategies; see reviews by Yang et al. (54), Sinai and Kelsic
(55), and Wu et al. (56) and references therein. For example,
one might train a regression model on protein sequences with
experimentally measured fitnesses and then use an optimization
algorithm or fit a generative model that leverages that regression
model to propose promising new proteins (24, 28, 29, 36, 43, 46,
51, 53, 57–59). Special attention has been given to the single-shot
case in which we are given just a single batch of training data, due
to its obvious practical convenience.

The use of regression models for design involves balancing 1)
the desire to explore regions of input space far from the training
inputs, to find new desirable inputs, with 2) the need to stay close
enough to the training inputs that we can trust the regression
model. As such, estimating predictive uncertainty in this setting
is important. Furthermore, the training and designed data are
described by feedback covariate shift: Since the fitness is some
quantity dictated by nature, the conditional distribution of fitness

‡We use the term fitness function to refer to a particular property that can be exhibited by
proteins, while the fitness of a protein refers to the extent to which it exhibits that property.

Fig. 2. Illustration of single-shot protein design. The gray distribution repre-
sents the distribution of fitnesses under the training sequence distribution.
The blue circles represent the fitnesses of three training sequences, and the
goal is to propose a sequence with even higher fitness. To that end, we
fit a regression model to the training sequences labeled with experimental
measurements of their fitnesses and then deploy some design procedure that
uses that trained model to propose a new sequence believed to have a higher
fitness (green circle).

given any sequence stays fixed, but the distribution of designed
sequences is chosen based on a trained regression model.§

Our experimental protocol is as follows: Given training
data consisting of protein sequences labeled with experimental
measurements of their fitnesses, we fit a regression model, then
sample test sequences (representing designed proteins) according
to design algorithms used in recent work (36, 43) (Fig. 2). We
then construct confidence sets with guaranteed coverage for the
designed proteins and examine various characteristics of those
sets to evaluate the utility of our approach. In particular, we
show how our method can be used to select design algorithm
hyperparameters that achieve acceptable tradeoffs between high
predicted fitness and low predictive uncertainty for the designed
proteins. Code reproducing these experiments is available at
https://github.com/clarafy/conformal-for-design.

A. Design Experiments Using Combinatorially Complete
Fluorescence Datasets. The challenge when evaluating in silico
design methods is that in general, we do not have labels for
the designed sequences. One workaround, which we take here,
is to make use of combinatorially complete protein datasets
(57, 59–61), in which a small number of fixed positions are
selected from some wild-type sequence, and all possible variants
of the wild type that vary in those selected positions are measured
experimentally. Such datasets enable us to simulate protein design
problems where we always have labels for the designed sequences.
In particular, we can use a small subset of the data for training
and then deploy a design procedure that proposes novel proteins
(restricted to being variants of the wild type at the selected
positions), for which we have labels.

We used data of this kind from Poelwijk et al. (60), which
focused on two parent fluorescent proteins that differ at exactly
13 positions in their sequences and are identical at every other
position. All 213 = 8, 192 sequences that have the amino acid of
either parent at those 13 sites (and whose remaining positions
are identical to the parents) were experimentally labeled with a
measurement of brightness at both a “red” wavelength and a “blue”
wavelength, resulting in combinatorially complete datasets for two

§In this section, we use “test” and “designed” interchangeably when describing data. We
also sometimes say “sequence” instead of “input,” but this does not imply any constraints
on how the protein is represented or featurized.
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different fitness functions. In particular, for both wavelengths,
the label for each sequence was an enrichment score based on
the ratio of its counts before and after brightness-based selection
through fluorescence-activated cell sorting. The enrichment scores
were then normalized so that the same score reflects comparable
brightness for both wavelengths.

Finally, each time we sampled from this dataset to acquire
training or designed data, as described below, we added simulated
measurement noise to each label by sampling from a noise distri-
bution estimated from the combinatorially complete dataset (see
SI Appendix, section S3 for details). This step simulates the fact
that sampling and measuring the same sequence multiple times
results in different measurements.
A.1. Protocol for design experiments. Our training datasets
consisted of n data points, Z1:n , sampled uniformly at random
from the combinatorially complete dataset. We used n ∈
{96, 192, 384} as is typical of realistic scenarios (28, 36, 51, 57,
59). We represented each sequence as a feature vector containing
all first- and second-order interaction terms between the 13
variable sites and fitted a ridge regression model, μZ1:n

(x ), to
the training data, where the regularization strength was set to
10 for n = 96 and 1 otherwise. Linear models of interaction
terms between sequence positions have been observed to be both
theoretically justified and empirically useful as models of protein
fitness functions (60–62) and thus may be particularly useful for
protein design, particularly with small amounts of training data.

Sampling designed sequences. Following ideas in refs. 36 and
43, we designed a protein by sampling from a sequence distribu-
tion whose log-likelihood is proportional to the prediction of the
regression model:

p̃X ;Z1:n
(Xtest)∝ exp(λ · μZ1:n

(Xtest)), [6]

where λ > 0, the inverse temperature, is a hyperparameter. Larger
values of λ result in distributions of designed sequences that
are more likely to have high predicted fitnesses according to
the model, but are also, for this same reason, more likely to be
in regions of sequence space that are farther from the training
data and over which the model is more uncertain. Analogous
hyperparameters have been used in recent protein design work to
control this tradeoff between exploration and exploitation (36, 39,
43, 63). We took λ ∈ {0, 2, 4, 6} to investigate how the behavior
of our confidence sets varies along this tradeoff.

Constructing confidence sets for designed sequences. For each
setting of n and λ, we generated n training data points and
one designed data point as just described T = 2, 000 times.
For each of these T trials, we used SI Appendix, Algorithm S2 to
construct the full conformal confidence set, Cα(Xtest), using a
grid of real values between 0 and 2.2 spaced Δ= 0.02 apart as
the set of candidate labels, Y . This range contained the ranges
of fitnesses in both the blue and red combinatorially complete
datasets, [0.091, 1.608] and [0.025, 1.692], respectively.¶

We used α= 0.1 as a representative miscoverage value, cor-
responding to coverage of 1− α= 0.9. We then computed the
empirical coverage achieved by the confidence sets, defined as
the fraction of the T trials where the true fitness of the de-
signed protein was within half a grid spacing from some value in

¶In general, a reasonable approach for constructing a finite grid of candidate labels, Y ,
is to span an interval beyond which one knows label values are impossible in practice,
based on prior knowledge about the measurement technology. The presence or absence
of any such value in a confidence set would not be informative to a practitioner. The size
of the grid spacing, Δ, determines the resolution at which we evaluate coverage; that is,
in terms of coverage, including a candidate label is equivalent to including the Δ-width
interval centered at that label value. Generally, one should therefore set Δ as small as
possible, subject to one’s computational budget.

the confidence set; namely, min{|Ytest − y | : y ∈ Cα(Xtest)} ≤
Δ/2. Based on Theorem 1, assuming Y is both a large and a fine
enough grid to encompass all possible fitness values, the expected
empirical coverage is lower bounded by 1− α= 0.9. However,
there is no corresponding upper bound, so it will be of interest to
examine any excess in the empirical coverage, which corresponds
to the confidence sets being conservative (larger than necessary).
Ideally, the empirical coverage is exactly 0.9, in which case the
sizes of the confidence sets reflect the minimal predictive uncer-
tainty we can have about the designed proteins while achieving
coverage.

In our experiments, the computed confidence sets tended to
comprise grid-adjacent candidate labels, suggestive of confidence
intervals. As such, we hereafter refer to the width of confidence
intervals, defined as the grid spacing size times the number of
values in the confidence set, Δ · |Cα(Xtest)|.
A.2. Results. Here we discuss results for the blue fluorescence
dataset. Analogous results for the red fluorescence dataset are
presented in SI Appendix, section S3.

Effect of inverse temperature. First, we examined the effect of
the inverse temperature, λ, on the fitnesses of designed proteins
(Fig. 3A). Note that λ= 0 corresponds to a uniform distribution
over all sequences in the combinatorially complete dataset (i.e.,
the training distribution), which mostly yields label values less
than 0.5. For λ≥ 4, we observe a considerable mass of designed
proteins attaining fitnesses around 1.5, so these values of λ
represent settings where the designed proteins are more likely to
be fitter than the training proteins. This observation is consistent
with the use of this and other analogous hyperparameters to tune
the outcomes of design algorithms (36, 39, 43, 63) and is meant
to provide an intuitive interpretation of the hyperparameter to
readers unfamiliar with its use in design problems.

Empirical coverage and confidence interval widths. Despite the
lack of a theoretical upper bound, the empirical coverage does
not tend to exceed the theoretical lower bound of 1− α= 0.9
by much (Fig. 3B), reaching at most 0.924 for n = 96,λ= 6.
Loosely speaking, this observation suggests that the confidence
intervals are nearly as small, and therefore as informative, as they
can be while achieving coverage.

As for the widths of the confidence intervals, we observe that for
any value of λ, the intervals tend to be smaller for larger amounts
of training data (Fig. 3C ). Also, for any value of n , the intervals
tend to get larger as λ increases. The first phenomenon agrees
with the intuition that training a model on more data should
generally reduce predictive uncertainty. The second phenomenon
arises because greater values of λ lead to designed sequences with
higher predicted fitnesses, which the model is more uncertain
about. Indeed, for λ≥ 4,n ≤ 192 and λ= 6,n = 384, some
confidence intervals equal the whole set of candidate labels. In
these regimes, the regression model cannot glean enough infor-
mation from the training data to have much certainty about the
designed protein.

Comparison to standard covariate shift. Deploying full con-
formal prediction as prescribed for standard covariate shift (SCS)
(4), a heuristic with no formal guarantees in this setting, often
results in more conservative confidence sets than those produced
by our method (Fig. 3). To understand when the outputs of these
two methods will differ more or less, we can compare the forms
of the weights that both methods introduce on the training and
candidate test data points when considering a candidate label.

First, recall that for FCS and SCS, the weight assigned to the
i th training score is a normalized ratio of the likelihood of Xi

under a test input distribution and the training input distribution,
pX ; namely,
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A B C

D E F

Fig. 3. Quantifying predictive uncertainty for designed proteins, using the blue fluorescence dataset. (A) Distributions of labels of designed proteins, for
different values of the inverse temperature, λ, and different amounts of training data, n. Labels surpass the fitness range observed in the combinatorially
complete dataset, [0.091, 1.608], due to additional simulated measurement noise. (B and C) Empirical coverage (B), compared to the theoretical lower bound
of 1 − α = 0.9 (dashed gray line), and (C) distributions of confidence interval widths achieved by full conformal prediction for feedback covariate shift (our
method) over T = 2,000 trials. In A and C, the whiskers signify the minimum and maximum observed values. (D) Distributions of Jaccard distances between the
confidence intervals produced by full conformal prediction for feedback covariate shift and standard covariate shift (4). (E and F) Same as in B and C but using
full conformal prediction for standard covariate shift.

v(Xi ;Z−i ∪ {(Xtest, y)}) = p̃X ;Z−i∪{(Xtest,y)}(Xi)/pX (Xi),

v(Xi) = p̃X ;Z1:n
(Xi)/pX (Xi),

for FCS and SCS, respectively. For FCS, the test input distribu-
tion, p̃X ;Z−i∪{(Xtest,y)}, is induced by a regression model trained
on Z−i ∪ {(Xtest, y)} and therefore depends on the candidate
label, y , and also differs for each of the n training inputs. Conse-
quently, for FCS the weight on the i th training score depends on
the candidate label under consideration, y . In contrast, for SCS
the test input distribution, pX ;Z1:n

, is simply the one induced by
the training data, Z1:n , and is therefore fixed for all training scores
and all candidate labels.

Note, however, that the SCS and FCS weights depend on
datasets, Z1:n and Z−i ∪ {(Xtest, y)}, respectively, that differ
only in a single data point: The former contains Zi , while the
latter contains (Xtest, y). Therefore, the difference between the
weights—and the resulting confidence sets—is a direct conse-
quence of how sensitive the mapping from dataset to test input
distribution, D → p̃X ;D (given by Eq. 6 in this setting), is to
changes of a single data point in D . Roughly speaking, the less
sensitive this mapping is, the more similar the FCS and SCS
confidence sets will be. For example, using more training data
(e.g., n = 384 compared to n = 96 for a fixed λ) or a lower
inverse temperature (e.g., λ= 2 compared to λ= 6 for a fixed
n) results in more similar SCS and FCS confidence sets (Fig.
3D and SI Appendix, Figs. S2D and S5). Similarly, using regres-
sion models with fewer features or stronger regularization also
results in more similar confidence sets (SI Appendix, Figs. S3, S4,
and S6).

One can therefore think of and use SCS confidence sets as a
computationally cheaper approximation to FCS confidence sets,
where the approximation is better for mappings D → p̃X ;D that
are less sensitive to changes in D . Conversely, the extent to
which SCS confidence sets are similar to FCS confidence sets will
generally reflect this sensitivity. In our protein design experiments,
SCS confidence sets tend to be more conservative than their FCS

counterparts, where the extent of overcoverage generally increases
with fewer training data, higher inverse temperature (Fig. 3D
and SI Appendix, Fig. S2D), more complex features, and weaker
regularization (SI Appendix, Figs. S3 and S4).

Using uncertainty quantification to set design procedure hyper-
parameters. As the inverse temperature, λ, in Eq. 6 varies, there
is a tradeoff between the mean predicted fitness and predictive
certainty for designed proteins: Both mean predicted fitness and
mean confidence interval width grow as λ increases (Fig. 4A).
To demonstrate how our method might be used to inform the
design procedure itself, one can visualize this tradeoff (Fig. 4)
and use it to decide on a setting of λ that achieves both a mean
predicted fitness and degree of certainty that one finds acceptable,
given, for example, some resource budget for evaluating designed
proteins in the wet laboratory. For datasets of different fitness
functions, which may be better or worse approximated by our
chosen regression model class and may have different amounts of
measurement noise, this tradeoff—and therefore the appropriate
setting of λ—will be different (Fig. 4).

For example, protein design experiments on the red fluores-
cence dataset result in a less favorable tradeoff between mean
predicted fitness and predictive certainty than the blue fluores-
cence dataset: The same amount of increase in mean predicted
fitness corresponds to a greater increase in mean interval width for
red compared to blue fluorescence (Fig. 4A). We might therefore
choose a smaller value of λ when designing proteins for the former
compared to the latter. Indeed, predictive uncertainty grows so
quickly for red fluorescence that, for λ > 2, the empirical proba-
bility that the smallest value in the confidence interval is greater
than the true fitness of a wild-type sequence decreases rather than
increases (Fig. 4B), which suggests we may not want to set λ > 2.
In contrast, if we had looked at the mean predicted fitness alone
without assessing the uncertainty of those predictions, it grows
monotonically with λ (Fig. 4A), which would not suggest any
harm from setting λ to a higher value.
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A B C

Fig. 4. Comparison of tradeoff between predicted fitness and predictive certainty on the red and blue fluorescence datasets. (A) Tradeoff between mean
confidence interval width and mean predicted fitness for different values of the inverse temperature, λ, and n = 384 training data points. (B) Empirical
probability that the smallest fitness value in the confidence intervals of designed proteins exceeds the true fitness of one of the wild-type parent sequences,
mKate2. (C) For n = 384 and λ = 6, the distributions of both confidence interval width and predicted fitnesses of designed proteins.

In contrast, for blue fluorescence, although the mean interval
width also grows with λ, it does so at a much slower rate than
for red fluorescence (Fig. 4A); correspondingly, the empirical
frequency at which the confidence interval surpasses the fitness
of the wild type also grows monotonically (Fig. 4B).

We can observe these differences in the tradeoff between blue
and red fluorescence even for a fixed value of λ. For example,
for n = 384,λ= 6 (Fig. 4C ), observe that proteins designed for
blue fluorescence (blue circles) have confidence intervals with
widths mostly less than 1. That is, those with higher predicted
fitnesses do not have much wider intervals than those with lower
predicted fitnesses, except for a small fraction of proteins with
the highest predicted fitnesses. In contrast, for red fluorescence,
designed proteins with higher predicted fitnesses also tend to have
wider confidence intervals.

B. Design Experiments Using Adeno-Associated Virus Capsid
Packaging Data. In contrast with Section 3.A, which represented
a protein design problem with limited amounts of labeled data
(at most a few hundred sequences), here we focus on a setting
in which there are abundant labeled data. We can therefore
employ data splitting as described in Section 2.E to construct
confidence sets, as an alternative to computing full conformal
confidence sets (Eq. 3) as done in Section 3.A. Specifically, we
construct a randomized version of the split conformal confidence
set (SI Appendix, Algorithm S1), which achieves exact coverage.

This subsection, together with the previous subsection, demon-
strates that in both regimes—limited and abundant labeled data—
our proposed methods provide confidence sets that give coverage,
are not overly conservative, and can be used to visualize the trade-
off between predicted fitness and predictive uncertainty inherent
to a design algorithm.
B.1. Protein design problem: Adeno-associated virus capsid pro-
teins with improved packaging ability. Adeno-associated viruses
(AAVs) are a class of viruses whose capsid, the protein shell that
encapsulates the viral genome, is a promising delivery vehicle for
gene therapy. As such, the proteins that constitute the capsid
have been modified to enhance various fitness functions, such
as the ability to enter specific cell types and evade the immune
system (64–66). Such efforts usually start by sampling millions of
proteins from some sequence distribution and then performing
an experiment that selects out the fittest sequences. Sequence
distributions commonly used today have relatively high entropy,
and the resulting sequence diversity can lead to successful out-
comes for a myriad of downstream selection experiments (43, 49).

However, most of these sequences fail to assemble into a capsid
that packages the genetic payload (66–68)—a function called
packaging, which is the minimum requirement of a gene therapy
delivery mechanism and therefore a prerequisite to any other
desiderata.

If sequence distributions could be developed with higher pack-
aging rate, without compromising sequence diversity, then the
success rate of downstream selection experiments should improve.
To this end, Zhu et al. (43) use neural networks trained on
sequence-packaging data to specify the parameters of DNA se-
quence distributions that simultaneously have high entropy and
yield protein sequences with high predicted packaging ability. The
protein sequences in these data varied at seven promising con-
tiguous positions identified in previous work (65) and elsewhere
matched a wild type. To accommodate commonly used DNA
synthesis protocols, Zhu et al. (43) parameterized their DNA se-
quence distributions as independent categorical distributions over
the four nucleotides at each of 21 contiguous sites, corresponding
to codons at each of the seven sites of interest.
B.2. Protocol for design experiments. We followed the methodol-
ogy of Zhu et al. (43) to find sequence distributions with high
mean predicted fitness—in particular, higher than that of the
commonly used “NNK” sequence distribution (65). Specifically,
we used their high-throughput data, which sampled millions of
sequences from the NNK distribution, and labeled each with an
enrichment score quantifying its packaging fitness, based on its
count before and after a packaging-based selection experiment.
We introduced additional simulated measurement noise to these
labels, where the parameters of the noise distribution were also
estimated from the pre- and postselection counts, resulting in
labels ranging from −7.53 to 8.80 for 8,552,729 sequences (see
SI Appendix, section S4 for details).

We then randomly selected and held out 1 million of these data
points, for calibration and test purposes described shortly, and
then trained a neural network on the remaining data to predict
fitness from sequence. Finally, following ref. 43, we approximately
solved an optimization problem that leveraged this regression
model to specify the parameters of sequence distributions with
high mean predicted fitness. Specifically, let {pφ : φ ∈ Φ} denote
the class of sequence distributions parameterized as independent
categorical distributions over the four nucleotides at each of 21
contiguous sequence positions. We set the parameters of the de-
signed sequence distribution by using stochastic gradient descent
to approximately solve the following problem:
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A B C

Fig. 5. Quantifying uncertainty for predicted fitnesses of designed AAV capsid proteins. (A) Mean true fitness of designed sequences resulting from different
values of the inverse temperature, λ ∈ {1, 2, . . . , 7}. The dashed black line is the mean true fitness of sequences drawn from the NNK sequence distribution (i.e.,
the training distribution). (B) Top, empirical coverage of randomized staircase confidence sets (SI Appendix, section S1.D) constructed for designed sequences.
The dashed black line is the expected empirical coverage of 1 − α = 0.9. Bottom, fraction of confidence sets with infinite size (dashed gray line) and mean size
of noninfinite confidence sets (solid gray line). The set size is reported as a fraction of the range of fitnesses in all the labeled data, [−7.53, 8.80]. (C) Tradeoff
between mean predicted fitness and mean confidence set size for λ ∈ {1, 2, . . . , 7}. The dashed black line is the mean predicted fitness for sequences from
the training distribution.

φλ = arg min
φ∈Φ

DKL(p
�
λ||pφ), [7]

where p�
λ(X )∝ exp(λ · μ(X )), μ is the neural network fitted to

the training data, and λ≥ 0 is an inverse temperature hyperpa-
rameter. After solving for φλ for a range of inverse temperature
values, λ ∈ {1, 2, 3, 4, 5, 6, 7}, we sampled designed sequences
from pφλ

as described below and then used a randomized data-
splitting approach to construct confidence sets that achieve exact
coverage.

Sampling designed sequences. Unlike in Section 3.A, here we
did not have a label for every sequence in the input space—
that is, all sequences that vary at the seven positions of interest
and that elsewhere match a wild type. As an alternative, we
used rejection sampling to sample from pφλ

. Specifically, recall
that we held out 1 million of the labeled sequences. The input
space was sampled uniformly and densely enough by the high-
throughput dataset that we treated 990,000 of these held-out
labeled sequences as samples from a proposal distribution (that is,
the NNK distribution) and were able to perform rejection sam-
pling to sample designed sequences from pφλ

for which we have
labels.

Constructing confidence sets for designed sequences. Note
that rejection sampling results in some random number, at
most 990,000, of designed sequences; in practice, this number
ranged from single digits to several thousand for λ= 7 to λ= 1,
respectively. To account for this variability, for each value of
the inverse temperature, we performed T = 500 trials of the
following steps. We randomly split the 1 million held-out labeled
sequences into 990,000 proposal distribution sequences and
10,000 sequences to be used as calibration data. We used the
former to sample some number of designed sequences and then
used the latter to construct randomized staircase confidence sets
(SI Appendix, Algorithm S1) for each of the designed sequences.
The results we report next concern properties of these sets averaged
over all T = 500 trials.
B.3. Results.

Effect of inverse temperature. The inverse temperature hyper-
parameter, λ, in Eq. 7 plays a similar role to that in Section 3.A:
Larger values result in designed sequences with higher mean true
fitness (Fig. 5A). Note that the mean true fitness for all considered
values of the inverse temperature is higher than that of the training
distribution (dashed black line, Fig. 5A).

Empirical coverage and confidence set sizes. For all considered
values of the inverse temperature, the empirical coverage of the
confidence sets is very close to the expected value of 1− α=
0.9 (Fig. 5B, Top). Note that some designed sequences, which
the neural network is particularly uncertain about, are given a
confidence set with infinite size (Fig. 5B, Bottom). The fraction
of sets with infinite size and the mean size of noninfinite sets both
increase with the inverse temperature (Fig. 5B, Bottom), which
is consistent with our intuition that the neural network should
be less confident about predictions that are much higher than
fitnesses seen in the training data.

Using uncertainty quantification to set design procedure hy-
perparameters. As in Section 3.A.2, the confidence sets we con-
struct expose a tradeoff between predicted fitness and predictive
uncertainty as we vary the inverse temperature. Generally, the
higher the mean predicted fitness of the sequence distributions
is, the greater the mean confidence set size as well (Fig. 5C ).#
One can inspect this tradeoff to decide on an acceptable setting
of the inverse temperature. For example, observe that the mean
set size does not grow appreciably between λ= 1 and λ= 4,
even though the mean predicted fitness monotonically increases
(Fig. 5B, Bottom and C ); similarly, the fraction of sets with infinite
size also remains near zero for these values of λ (Fig. 5B, Bottom).
However, both of these quantities start to increase for λ≥ 5.
By λ= 7, for instance, more than 17% of designed sequences
are given a confidence set with infinite size, suggesting that pφ7

has shifted too far from the training distribution for the neural
network to be reasonably certain about its predictions. Therefore,
one might conclude that using λ ∈ {4, 5} achieves an acceptable
balance of designed sequences with higher predicted fitness than
the training sequences and low enough predictive uncertainty.

4. Discussion

The predictions made by machine-learning models are increas-
ingly being used to make consequential decisions, which in turn
influence the data that the models encounter. Our work presents
a methodology that allows practitioners to trust the predictions of

#The exceptions are the sequence distributions corresponding to λ = 2 and λ = 3, which
have a higher mean predicted fitness but on average smaller sets than λ = 1. One likely
explanation is that experimental measurement noise is particularly high for very low
fitnesses, making low-fitness sequences inherently difficult to predict.
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learned models in such settings. In particular, our protein design
examples demonstrate how our approach can be used to navigate
the tradeoff between desirable predictions and predictive certainty
inherent to design problems.

Looking beyond the design problem, the formalism of FCS
introduced here captures a range of problem settings pertinent to
modern-day deployments of machine learning. In particular, FCS
often occurs at each iteration of a feedback loop—for example,
at each iteration of active learning, adaptive experimental design,
and Bayesian optimization methods. Applications and extensions
of our approach to such settings are exciting directions for future
investigation.

Data, Materials, and Software Availability. Code and all data for reproduc-
ing our experiments are available at https://github.com/clarafy/conformal-for-
design (69). Previously published data were also used for this work (60).
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