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More and more developed and inexpensive next-generation sequencing (NGS) technologies allow us to extract vast sequence data
from a sample containing multiple species. Characterizing the taxonomic diversity for the planet-size data plays an important role
in the metagenomic studies, while a crucial step for doing the study is the binning process to group sequence reads from similar
species or taxonomic classes. The metagenomic binning remains a challenge work because of not only the various read noises but
also the tremendous data volume. In this work, we propose an unsupervised binning method for NGS reads based on the one-
dimensional cellular automaton (1D-CA). Our binning method facilities to reduce the memory usage because 1D-CA costs only
linear space. Experiments on synthetic dataset exhibit that our method is helpful to identify species of lower abundance compared
to the proposed tool.

1. Introduction

With the rapid development of next-generation sequencing
(NGS) technologies, the ability to gain experimental data has
far surpassed the capability to proceed with further analysis.
High-throughput NGS machine is capable of sequencing
millions to even billions of reads (short DNA fragments) in
parallel from a sample containingmany species.Within a rea-
sonable cost, an individual laboratory can generate terabase
scales of sequencing data within a day [1], which also inspires
many mining tools to interpret these data [2]. Instead of
traditional works for studying microbial genome on an indi-
vidual bacterial strain, NGS technologies as a powerful tool
greatly facilitates researchers to study the genomes ofmultiple
microorganisms from environmental samples, while it is
known as metagenomics. Several metagenomic projects have
successfully offered valuable insights to the diverse microbial
communities, such as the soil [3] and human gut [4].

An important step inmetagenomic analysis is the binning
procedure to keep together reads from similar species or
taxonomic classes. There are two major methodologies for

binning algorithm: supervised and unsupervised methods
[5]. The former is taxonomy-dependent and similarity-based
where individual reads are taxonomically grouped by align-
ing them to known genomes in reference databases, and
subsequently reads aligned to similar genomes are grouped
into bins. However, in a typical metagenomic scenario, most
reads (up to 99% [6]) come from genomes of hitherto
unknown organisms, which are then nonexistent in current
reference databases. Taxonomy-dependent binning methods
fail to identify such reads, and generally categorize them
as unassigned. One alternative approach is to align the
taxonomic marker genes, for example, recA, rpoB, and 16S
ribosomal RNA (rRNA) [7], or particular genomic regions,
for example, the internal transcribed spacer (ITS) regions [8].

As for the unsupervised method, it is taxonomy-
independent and groups reads from the dataset based on the
genomic signatures, such as 𝑘-mer distribution, G + C con-
tent, and codon usage [5, 9], which can be directly extracted
from the nucleotide sequences. According to different sig-
natures or observations, a number of composition-based
methods are proposed as the binning tools. AbundanceBin
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[10] utilizes the 𝑘-mer frequency to group reads, while TOSS
[11] is based on sufficiently long mers and integrates Abun-
danceBin into separating reads from species with different
abundances. Both fail to tackle reads from different species
with similar abundance ratio [12]. The series of unsupervised
binning tools of MetaCluster [12] are developed according to
multiple observations, and MetaCluster 5.0 can compute the
number of species shaped by the sequence reads. However,
it often gives inaccurate number of species for the relatively
large number of species in the dataset from the performance
comparison to the binning tool MCluster [13].

On the other hand, a cellular automaton (CA) is a discrete
computational model studied for the complex systems in
mathematics, computer science, economics, biology, and so
forth. It consists of a regular array of cells, with each being
a finite state automaton (FSA), while the array can be in a
positive number of dimensions. The state of a cell at time
𝑡 is a function of the states of its neighboring cells at time
𝑡 − 1, where the function is a set of transition rules. One-
dimensional CA considers the cells over a one-dimensional
array andhas beenused for solving synchronization problems
[14], prime generation [15], data clustering [16], real-time
language recognition [17], and so on. In this work, we propose
a new binning approach for NGS reads from metagenomic
sequences based on one-dimensional CA by the extension
of previous work [16]. Since a one-dimensional CA requires
only linear memory space when running, our binning
methodmoderates the tremendous amount ofmemory usage
caused by NGS data. In addition, we conduct experiments to
evaluate the performance and compare it with the proposed
tool.

This paper is organized as follows. Section 2 introduces
one-dimensional CA and our binning method step by step.
Subsequently, we take the simulated dataset to assess the
performance in Section 3. Finally, Section 4 draws our con-
clusion.

2. Binning by One-Dimensional Cellular
Automaton

2.1. One-Dimensional Cellular Automaton. Cellular automata
are discrete models for dynamic systems, where it was orig-
inally introduced as a computational medium for machine
self-replication guided by a set of rules. The classical version
of CA is based on the use of a regular array, local variables,
and a function working over a neighborhood. More formally,
the regular grid of CA is a set of locally interconnected FSAs
that is typically placed over a regular 𝑑-dimensional latticeL
[18]. Take the two-dimensional CA as an example, it consists
of a lattice of L = 𝑚 × 𝑛 squares called cells, where each is
in one of a finite number of states. The neighborhood of a cell
𝐶 is a set of topologically neighboring cells around 𝐶, and
a transition rule 𝜙 applied to 𝐶 defines the change of each
cell in the neighborhood of 𝐶 from its current state to a new
one. At each iteration, the transition rule is performed on all
cells. Though the number of CA applications to engineering
problems is relatively few, CA has been largely involved in the
simulations of complex systems [18].
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We introduce herein a mathematical model based on the
one-dimensional CA, whose cells are placed over a linear
latticeL, to describe the binning procedure formetagenomic
sequences. The number of cells in the discrete lattice L
equals the number of data items 𝑁 in the dataset. At the
𝑡th iteration, each cell 𝑐

𝑖
(𝑡) for 𝑖 ∈ L is the 𝑖th cell of

L and associates with a specific item in the dataset. For a
particular 𝑟 ∈ {3, 4, . . . , 𝑅}, applying the transition rule 𝜙

𝑟
to

the cell, 𝑐
𝑖
updates the neighborhood of 𝑐

𝑖
within the range 𝑟,

where the parameter 𝑅 can be calculated from the number of
cells 𝑁. A greater value of 𝑅 allows a greater size of cluster.
Moreover, the boundary condition of one-dimensional CA
can be periodic, fixed, or reflecting among others [18]. Here,
we set the periodic manner to simulate a circular boundary;
that is, 𝑐

𝑁+1
= 𝑐
1
.

2.2. Transition Rules. In the beginning of 𝑡 = 0, the data
item is randomly assigned to a cell in L, and then each
cell evolves according to the function of its current state
and neighboring cells, which is identified by the transition
rule 𝜙

𝑟
for 𝑟 ∈ {3, 4, . . . , 𝑅}. The value of 𝑟 starts from 3

due to the minimum requirement of three neighboring cells.
We say that an iteration is finished if all transition rules
are performed on each cell in L. There are two common
terminated criteria to the whole process: one is the user-
defined value for the maximum number of iterations and the
other is the convergence ofL to a stable state; that is, 𝑐

𝑖
(𝑡) =

𝑐
𝑖
(𝑡 − 1), ∀𝑖 = 1, 2, . . . , 𝑁. We adopt the latter criterion in this

work. In other words, our algorithm is terminatedwhen there
is no state change between two consecutive iterations.
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Figure 2: Chainmap diagram to our simulation result, where only
the distances of cell numbers from 300 to 800 in the final state are
shown.The average distance of whole dataset is 31.13, while the ideal
boundary is marked at the cell 𝑐

586
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the features of data is of great importance as it directly affects
the measurement among data items. Typically, ideal features
should be useful in distinguishing homologous patterns from
the dataset, immune to noises as well as easy to extract and
interpret. Such an elegant selection of features can greatly
reduce the workload and simplify the subsequent clustering
process. For metagenomic data, composition-based binning
methods have employed several features to assign reads
to different groups, where these features can be directly
extracted from the nucleotide sequences including the 𝑘-mer
frequency, G + C content, and codon usage [5]. In this work,
we select the 𝑘-mer spectrum of a read as its feature. Previous
studies suggest that 𝑘 = 4 or 5 is the better choice to extract
features frommetagenomic sequences [12, 19]. As a result, we
take 𝑘 = 5 to represent each read as a 45-dimensional vector,
and, by the transition rules, sequence reads with similar
feature vectors are assembled.When the one-dimensional CA
converges after a number of iterations, the reads within the
same cluster would be arranged in sequence at the lattice.

2.3. Boundary Detection. The transition rules arrange the
data with similar feature vectors in a chain of cells, while a
problem emerges from the chain order of data: how to group
the consecutive data overL as clusters. A feasible strategy is
to identify the boundary point, which is the data object located
in the edge of a cluster and thus may have multiple cluster
features. Boundary detection of clusters plays an important
role in applications, such as image processing and machine
learning, but its study is still in the infancy since the first
work [20]. As usual, it is challenging to accurately recognize
boundary points in an efficient way due to the interference of
noise and outlier points.

We detect the boundary points according to the partial
order over L given by the one-dimensional CA. Figure 2
is the chainmap diagram of our simulation result, in which
only the cell numbers from 300 to 800 in the final stationary
state are shown. This diagram is composed of the distances
between two items at consecutive cells, and generally the low

distances of consecutive cells imply that the corresponding
items should be in the same cluster. Conversely, the cells
with sharp variation on distances could be candidates for
the cluster boundary. It seems as if the challenge to detect
boundary here can be solved by the basic sequential cluster-
ing scheme (BSAS) [21], but they are slightly different. First,
the data items are arranged in a particular order retrieved
from the convergence result of one-dimensional CA; second,
the user-specified parameters, including the threshold of
dissimilarity and maximum allowable number of clusters, as
in the conventional BSAS, are not required.

It looks like there are two different clusters in Figure 2
because the distance distribution is not consistent in these
cells, which inspires us to develop a straightforward way
for detecting cluster boundaries. In the final state of one-
dimensional CA, we consider the data item 𝑥

𝑖
at 𝑐
𝑖
. Let avg𝑖

𝑘

and sd𝑖
𝑘
be the average and standard deviation, respectively,

from the starting item of the cluster 𝑘 to the item 𝑥
𝑖
at 𝑐
𝑖
.

Also, the average distance of the whole dataset is denoted as
avg. Therefore, a item 𝑥

𝑖
is regarded as a starting point of

a new cluster if the following three conditions are satisfied:
(1) 𝑑(𝑥

𝑖
, 𝑥
𝑖+1
) < avg; (2) 𝑑(𝑥

𝑖−1
, 𝑥
𝑖
) > max(avg, avg𝑖−1

𝑘
+

sd𝑖−1
𝑘
), where 𝑥

𝑖−1
belongs to the cluster 𝑘; (3) 𝑑(𝑥

𝑖−1
, 𝑥
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) >

𝑑(𝑥
𝑖
, 𝑥
𝑖+1
) > 𝑑(𝑥

𝑖+1
, 𝑥
𝑖+2
). The first criterion asks that the

starting point of a new cluster should have a smaller distance
than the average; the second one requests the distance
between two consecutive items of a cluster boundary, that
is, one is the end and the other is the start of two distinct
clusters, respectively, to be bigger enough; the final criterion
emphasizes the relations among consecutive items near the
boundary, which is helpful to filter the noise.We use the three
criteria to determine whether 𝑥

𝑖
is the starting point of a new

cluster, and if yes, the item 𝑥
𝑖−1

is also the boundary of the
preceding cluster.

2.4. Binning Method. The binning approach takes the se-
quencing reads from metagenomic sequences as the input,
and its output is to cluster homogeneous reads together as
accurate as possible. At first, our binning method assigns
to each read a cell of the lattice L at random. Then, the
one-dimensional CA with the transition rules introduced in
Section 2.2 is invoked to move reads accordingly. After a
number of iterations, the system converges to a stable state
where all reads associated with similar feature vectors are
continuously placed onL. As long as CA arranges the reads
in the chain order by composition-based comparison, the
next step is to divide the chain into different slices, that is,
clusters. The boundary detection given in Section 2.3 shows
three criteria so as to find out the cluster boundaries. In some
cases, the second condition of the three criteria for boundary
detection is easy to achieve because of the small standard
deviation for few items in a new cluster, resulting in excessive
noises.Therefore, the value 30 is used to be theminimum size
of cluster as a rule of thumb [22]. In other words, if 𝑥

𝑖
at the

cell 𝑐
𝑖
is the starting item of a cluster, then the item located

beyond the (𝑖 + 30)th cell can be the boundary candidate
of this cluster. By this way, reads in the chain order can be
divided into distinct clusters more correctly.
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Figure 3: Experimental result of our binning method, where each row in a subdiagram represents the successive states of the corresponding
cell and each column shows the cell’s state in an iteration. There are totally 5,000 rows (or cells) divided into four parts, and the 1D-CA
converges after 114 iterations. There are three colors associated with three species of dataset, and the rightmost bars in the four subdiagrams
are the output of our binning method.

3. Experimental Results

Though there is no generally acknowledged benchmark for
binning NGS reads at present, several tools are recently
proposed for simulating metagenomics, such as ART [23],
NeSSM [24], BEAR [25], and MetaSim [26]. Our binning
method is based on the one-dimensional CA (1D-CA) to
automatically determine the clusters for reads, and to validate
it, the dataset as the work in [13] is generated using MetaSim.
The synthetic dataset D9 in [13] consists of three species
with the average length of 1,000 bp and the read number
of 5,000 as well as the abundance ratio of 1 : 3 : 9. The
three species in D9 are 𝑃𝑠𝑒𝑢𝑑𝑜𝑚𝑜𝑛𝑎𝑠 𝑎𝑒𝑟𝑢𝑔𝑖𝑛𝑜𝑠𝑎 𝑃𝐴𝑂1,
𝐿𝑒𝑔𝑖𝑜𝑛𝑒𝑙𝑙𝑎 𝑝𝑛𝑒𝑢𝑚𝑜𝑝ℎ𝑖𝑙𝑎 𝑠𝑡𝑟. 𝐿𝑒𝑛𝑠, and 𝐶𝑦𝑐𝑙𝑜𝑐𝑙𝑎𝑠𝑡𝑖𝑐𝑢𝑠 𝑠𝑝.

𝑃1. In addition, we run each experiment ten times and
compare the result with MCluster [13].

Figure 3 exhibits the successive states of 1D-CA. This
is a grayscale image with three colors, namely, white, gray,
and black, assigned to three species, respectively: white
corresponds to the species of the greatest abundance, gray
corresponds to the species of the smallest abundance, and
black corresponds to the remained one. There are 144 itera-
tions in total, and due to the great amount of reads, we quarter
the strip of diagram as shown in Figure 3. In the beginning of
the leftmost columns of the four subdiagrams, all reads are
put on the lattice in a random order, leading to the mixed
colors. At the 6th iteration, the leftmost subdiagram shows
two distinct blocks, while the number of blocks becomes
four at the end of this subdiagram. From the rightmost
subdiagram in Figure 3, we can see that the reads located
here are hard to be stable and thus the color distribution is
in a state of utter chaos. Moreover, the rightmost bars of the
four subdiagrams in Figure 3 are the clustering result of our

binning method, in which it fails to identify the clear black
block in the leftmost subdiagram.

In addition, we run MCluster on the same dataset and
compare its performance with our method. MCluster is
developed as the unsupervised method for binning metage-
nomic sequences, and it has been shown to be better than sev-
eral works in the overall performance [13]. We run MCluster
ten times as it is identical to ours and compute the average of
these simulated results. To evaluate the experimental results,
we consider two performance metrics, precision and FP rate.
Assume that there are𝑁

𝑠
species in the dataset and a binning

algorithm identifies 𝐾 clusters 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝐾
. Let 𝑅

𝑖𝑗
be the

number of reads in 𝐶
𝑖
that are from species 𝑗, and the cluster

𝐶
𝑖
is identified as species 𝑠 if arg

𝑗
max(𝑅

𝑖𝑗
) = 𝑠. The precision

can then be defined as follows [12, 13]:

precision =
∑
𝐾

𝑖=1
max
𝑗
(𝑅
𝑖𝑗
)

∑
𝐾

𝑖=1
∑
𝑁
𝑠

𝑗=1
𝑅
𝑖𝑗

. (1)

Since there is no “unclassified reads” in our binning
method, two metrics sensitivity and F-measure are identical
to the precision as in [13]; thus, it is excluded here. Moreover,
the other metric FP rate is to measure the number of reads
assigned to incorrect species. Let C

𝑠
be the index set of

clusters recognized as species 𝑠. As a result, the FP rate of a
species 𝑠, denoted as FP

𝑟
(𝑠), is defined by

FP
𝑟 (𝑠)

=

∑
𝑖∈C
𝑠

∑
𝑗
{𝑅
𝑖𝑗
| 𝑗 = 1, 2, . . . , 𝑠 − 1, 𝑠 + 1, . . . , 𝑁

𝑠
}

∑
𝑖∈C
𝑠

∑
𝑗
{𝑅
𝑖𝑗
| 𝑗 = 1, 2, . . . , 𝑁

𝑠
}

.

(2)
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Table 1: Performance comparison.

1D-CA MCluster [13]
Precision 0.754 0.842
𝑠 I II III I II III
FP
𝑟
(𝑠) 0.262 0.317 0.004 0.031 0.356 0.006

Given the species 𝑠, FP
𝑟
(𝑠) measures the false positive

condition to all clusters identified as 𝑠 by the binning
method. Table 1 summarizes the average performances of the
simulated result for MCluster and ours. From this table, the
1D-CA precision is significantly lower than the MCluster
precision; even so, 1D-CA has something to recommend it.
To evaluate the FP rate, we denote the species of dataset as
I, II, and III and sort them in descending order according
to their abundance ratios; that is, the most abundant species
corresponds to the symbol I. Table 1 shows that FP

𝑟
(𝐼) of 1D-

CA is far worse than that ofMCluster, implying that 1D-CA is
not good at identifying abundant specsies, which is contrary
tomost works [10–12].Thismay be caused by the insensitivity
of 1D-CA to detect the cluster boundaries, and hence many
reads are inaccurately recognized to the cluster of species
I. However, 1D-CA has the best performance in identifying
species of lower abundances as shown in Table 1, which helps
in extracting rare species from samples and progressing the
assembly work with ease.

4. Conclusions

Recent technologies on high-throughput NGS grow rapidly
such that it is easy and cheap to sequence all individuals
of a microbial community from environmental samples.
Metagenomic analysis parses the vast amount of sequence
data to mining valuable insights, where the binning process
is a crucial step to group sequence reads from similar species
or taxonomic classes. Due to the read noises and planet-size
data, the binning step is challenging in metagenomic studies.
In this paper, we propose a new binning method based on
the one-dimensional cellular automaton (1D-CA), where 1D-
CA has been used for solving synchronization problems,
data clustering, language recognition, and so forth. Since 1D-
CA requires only linear space when running, our method
moderates the tremendous amount ofmemory usage resulted
fromNGS reads. Moreover, experiments on synthetic dataset
show that our method is helpful to identify species of lower
abundance compared to the proposed tool, which facilitates
the recognition of rare species from environmental samples.
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