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Abstract

Exposure of pet dogs and cats to pesticides used in and around homes (e.g., lawns and gardens) is 

a significant health concern. Furthermore, some pesticides are directly used on dogs and cats for 

flea, lice, and tick control. Despite this, little is known regarding the extent of pesticide exposure 

in pets. In this study, we determined the concentrations of 30 biomarkers of pesticide exposure 

in urine collected from dogs and cats in New York State, USA: 6 dialkylphosphate (DAP) 

metabolites of organophosphates (OPs); 14 neonicotinoids (neonics); 3 specific metabolites of 

OPs; 5 pyrethroids (PYRs); and 2 phenoxy acids (PAs). The sum median concentrations of these 

30 pesticide biomarkers (ΣPesticides) in dog and cat urine were 35.2 and 38.1 ng/mL, respectively. 

Neonics were the most prevalent in dogs (accounting for 43% of the total concentrations), 

followed by DAPs (17%), PYRs (16%), OPs (13%), and PAs (~10%). In cat urine, neonics 

alone accounted for 83% of the total concentrations. Elevated concentrations of imidacloprid 

were found in the urine of certain dogs (max: 115 ng/mL) and cats (max: 1090 ng/mL). Some 

pesticides showed gender- and sampling location- related differences in urinary concentrations. 

We calculated daily exposure doses of pesticides from the measured urinary concentrations 

through a reverse dosimetry approach. The estimated daily intakes (DIs) of chlorpyrifos, diazinon, 

and cypermethrin were above the chronic reference doses (cRfDs) in 22, 76, and 5%, respectively, 

of dogs. The DIs of chlorpyrifos, parathion, diazinon, and imidacloprid were above the cRfDs in 

33, 14, 100, and 29%, respectively, of cats. This study thus provides evidence that pet dogs and 

cats are exposed to certain pesticides at levels that warrant immediate attention.
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1. Introduction

Pesticides are used extensively in agriculture and in disease vector control in and around 

homes (Alvavanja, 2009; Md Meftaul et al., 2020; Stanneck et al., 2012). Global annual 

pesticide consumption in 2019 was ~ 4.2 million tons, with the United States accounting 

for ~ 20% of usage (EPA, 2017; FAO, 2019). Neonicotinoids (“neonics”), pyrethroids 

(PYRs), and organophosphates (OPs) account for 24%, 15%, and 8%, respectively, of 

the global pesticide market (Sparks et al., 2020). The phenoxy acid (PA) herbicide 

2,4-dichlorophenoxyacetic acid (2,4-D) has been used for decades on lawns, turfs, and 

agricultural fields (Burns and Swaen, 2012).

There is a growing concern about health effects from chronic exposure to pesticides in 

humans and pet animals. Humans and pet animals can be exposed to pesticides through 

air, water, soil, and diet (Kim et al., 2017), as well as through veterinary medication 

for pets (Wise et al., 2022). Following ingestion, OPs are primarily metabolized to 

common dialkylphosphate (DAP) (~70–75%) metabolites, as well as specific metabolites 

such as 3,5,6-trichloro-2-pyridinol (TCPY, metabolite of chlorpyrifos), 4-nitrophenol (PNP, 

metabolite of parathion), and 2-iso-propyl-6-methyl-4-pyrimidiol (IMPY, metabolite of 

diazinon) (Gari et al., 2018; Ueyama et al., 2015). Several PYRs are generally metabolized 

to compounds such as 3-phenoxybenzoic acid (3-PBA), 4-fluoro-3-phenoxybenoic acid (4-

F-3-PBA), cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropane-1-carboxylic acid 

(cis-/trans-DCCA), and cis-3-(2,2-dibromovinyl)-2,2-dimethyl-cyclopropane-1-carboxylic 

acid (cis-DBCA) (Gari et al., 2018). Neonics and PAs are mostly excreted unchanged in 

urine due to their high water solubility (Aylward et al., 2010; Ueyama et al., 2015). The 

biological half-lives of OPs, PYRs, and neonics in mammals range from a few hours to a 

few days (Harada et al., 2016; Li and Kannan, 2018; Li et al., 2020).

Human biomonitoring studies have reported widespread exposure to pesticides and their 

metabolites in the general population (CDC, 2018; 2021). Toxicological and epidemiological 

studies have reported associations between pesticide exposure and neurological, respiratory, 

dermatological, digestive, carcinogenic, reproductive, and developmental effects (Gonzalez-

Alzaga et al., 2014; Kim et al., 2017; Saillenfait et al., 2015). In addition, neonic 

exposure is implicated in population-level effects on non-target organisms such as bees 

(Rundlof et al., 2015), aquatic invertebrates (Morrissey et al., 2015), and insectivorous birds 

(Hallmann et al., 2014). The International Agency for Research on Cancer (IARC) classified 

malathion and diazinon as probable carcinogens (Group 2A) and parathion, 2,4-D, and 

2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as possible carcinogens (Group 2B) (Guyton et 

al., 2015; IARC, 2015, 1987).

Pet dogs and cats share a common living environment with humans and can serve as 

sentinels of human exposure to environmental contaminants (https://factor.niehs.nih.gov/

2022/1/feature/3-feature-sentinels/index.htm). Exposure of pet dogs and cats to various 
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environmental chemicals has been reported through the analysis of urine, feces, blood, hair, 

and silicone tags (Ali et al., 2013; Brits et al., 2019; Brits et al., 2018; Chinthakindi and 

Kannan, 2022; Gonzalez-Gomez et al., 2018; Karthikraj and Kannan, 2019; Mizukawa et 

al., 2016; Poutasse et al., 2019; Wise et al., 2020; Wise et al., 2022; Zhang et al., 2019). 

Positive correlations were found between exposure levels in humans and dogs from the 

same homes to several classes of environmental chemicals (Wise et al., 2020; Wise et al., 

2022). Dogs and cats develop chronic diseases similar to those of humans but with a shorter 

latency period (Knapp et al., 2013). Pesticide exposure in dogs and cats has been linked 

to mammary cancer (Gautam et al., 2020), lymphoma (Takashima-Uebelhoer et al., 2012), 

bladder cancer (Glickman et al., 2004), and oral squamous cell carcinoma (Bertone et al., 

2003), reflecting effects similar to those reported in human studies (Calaf, 2021; Fritschi et 

al., 2005; Koutros et al., 2016). Nevertheless, studies reporting the occurrence of pesticides 

in dog urine are limited (Forster et al., 2014; Karthikraj and Kannan, 2019; Knapp et al., 

2013; Reynolds et al., 1994; Wise et al., 2022), and no previous studies have determined the 

exposure of cats to OPs, neonics, PYRs, or PAs.

In this study, we determined the concentrations of 30 pesticide biomarkers in dog and 

cat urine collected from New York State, USA, to elucidate profiles, exposure doses, and 

health risks. Six DAPs, 14 neonics, 3 OPs, 5 PYR metabolites, and 2 PAs (Fig. S1-S5, 

Supplementary material) were analyzed.

2. Materials and methods

2.1. Reagents, standards, and sample collection

Reagents and analytical standards used in this study were described previously (Li and 

Kannan, 2018; Li and Kannan, 2020) (Table S1). Dog and cat urine samples were collected 

from a veterinary hospital, an animal shelter, and individual pet owners from the Albany 

area of New York State, USA, during March–July 2017. Majority of the samples were 

collected at the veterinary hospital and the animal shelter, and an aliquot of urine was used 

in this study. Canine urine was collected directly in polypropylene (PP) containers, whereas 

feline urine samples were collected by cystocentesis or directly in PP containers. Details 

of breed, age, gender, and sampling location of pets are given in Table S2 (Karthikraj et 

al., 2018a; Karthikraj and Kannan, 2019). The numbers of urine specimens analyzed were 

39–47 for dogs and 15–28 for cats (Table S3). The number of samples analyzed for each 

class of pesticides varied depending on the available sample volume. The samples were 

stored at −20 °C until analysis.

2.2. Analysis of urinary pesticides

Urinary pesticides were determined using the methods described elsewhere (Li 

and Kannan, 2018; Li and Kannan, 2020). Details of sample preparation 

and instrumental methods are provided in the Supplementary material. 

Briefly, the urinary DAPs (DMP-dimethyl-phosphate, DEP-diethylphosphate, DMTP-

dimethylthiophosphate, DETP-diethylthiophosphate, DMDTP-dimethyldithiophosphate, and 

DEDTP-diethyldithiophosphate) were extracted using a weak anion-exchange cartridge 

(Biotage WAX; Waters Corp, Milford, MA, USA) and determined by high-performance 
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liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) under positive-ion mode 

electro-spray ionization (ESI) (Table S4). Neonics were extracted from urine using a 

nonpolar divinylbenzene-based neutral polymeric cartridge (Bond Elut Plexa; Agilent, 

Santa Clara, CA, USA) and analyzed using HPLC-MS/MS under positive-ion mode 

ESI for nitenpyram (NIT), thiamethoxam (THX), imidacloprid (IMI), acetamiprid (ACE), 

thiacloprid (THI), clothianidin (CLO), dinoteruran (DIN), flonicamid (FLO), N-desmethyl 

thiamethoxam (N-DMT), thiacloprid-amide (TA), imidaclothiz (IMZ), and N-desmethyl 

acetamiprid (N-DMA) and under negative-ion mode ESI for 6-chloronicotinic acid (6-CN) 

and sulfoxaflor (SUF) (Tables S5 & S6). PYRs, PAs and OPs were extracted from urine 

using a hydrophilic-lipophilic balanced cartridge (Oasis HLB; Waters Corp) following 

enzymatic digestion, and determined using HPLC-MS/MS under ESI negative-ion (for PNP, 

TCPY, 2,4-D, 2,4,5-T, 3-PBA, 4-F-3-PBA, trans-DCCA, cis-DCCA, and cis-DBCA) and 

positive-ion (for IMPY) modes (Table S7).

2.3. Quality assurance and quality control

An isotope dilution method was used to quantify target analytes. An 11- to 16-point 

calibration curve was prepared by injecting standard solutions at concentrations ranging 

from 0.01 to 200 ng/mL, along with 10 ng/mL of isotopically labeled internal standards. 

Two procedural blanks (containing HPLC-grade water instead of urine), two matrix blanks 

(synthetic urine from Cerilliant, Round Rock, TX, USA), two matrix spikes (fortified 

synthetic urine with target analytes at 10 ng/mL), and proficiency test (PT) samples from 

the German External Quality Assurance Scheme (G-EQUAS) round 67/2021 (samples 9A, 

9B, 14/15A, and 14/15B) were analyzed with every batch of 25 samples. The limit of 

detection (LOD) was determined as the concentration at a signal-to-noise ratio (S/N) of 3. 

Sample-to-sample carryover of target analytes was monitored by injecting a pure solvent 

after every 10 samples. A mid-point standard solution (10 ng/mL) was injected after every 

20 samples as a check for the stability of the instrumental response to target analytes.

2.4. Method performance

Typical chromatograms of the targeted analytes in both solvent and urine matrix are 

presented in Fig. S6. The correlation coefficient (r) of the calibration curve was > 0.99 

for all analytes. Trace levels of DMP (0.03 ng/mL), DEDTP (0.11 ng/mL), IMZ (0.02 ng/

mL), PNP (1.11 ng/mL), 3-PBA (0.23 ng/mL), 2,4-D (0.005 ng/mL), and cis-DBCA (0.18 

ng/mL) were found in procedural blanks, and these concentrations were subtracted from 

those measured in samples. The LODs of all target analytes were between 0.001 and 0.053 

ng/mL. The recoveries of all target analytes were in the range of 75–121%, with a relative 

standard deviation of 4–24%. The concentrations of target analytes measured in PT samples 

were within the acceptable ranges (Table S8). In this study, OP refers to PNP, IMPY and 

TCPY.

2.5. National health and nutrition examination survey data

Urinary pesticide concentrations measured in dogs and cats were compared with those of the 

U.S. general population reported in the National Health and Nutrition Examination Survey 

(NHANES). The geometric mean (GM) and 95th percentile (P95) values of creatinine-

adjusted concentrations of pesticides with detection frequencies (DFs) ≥ 80% were used 
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for comparison. NHANES data for the survey years 2009/2010 (for TCPY, 2,4,5-T and cis-

DBCA), 2011/2012 (for DMP, DEP, DMTP, DETP, DMDTP, and DEDTP), 2013/2014 (for 

PNP, 2,4-D, trans-DCCA, and IMPY), and 2015/2016 (for IMI, ACE, CLO, and N-DMA) 

were used (CDC, 2018; 2021; Ospina et al., 2019). For comparison of urinary pesticide 

concentrations in pets with the NHANES data, dog ages were rescaled to approximate 

human ages (Hoffman et al., 2018).

2.6. Statistical analyses

Statistical analyses were conducted for pesticides with DFs ≥ 80%. The concentrations 

below the LOD were replaced with LOD divided by the square root of 2. Normality of the 

distribution of pesticide concentrations was tested using a Shapiro-Wilk test. The differences 

in pesticide concentrations between cats and dogs, as well as between gender and sampling 

sites, were tested using a non-parametric test. Spearman’s rank correlation was applied to 

examine the relations among urinary pesticide biomarkers. Statistical significance was set at 

p < 0.05. All statistical analyses were conducted using R (version 4.1.2; R Foundation for 

Statistical Computing).

3. Results and discussion

3.1. Concentrations in dog and cat urine

The median concentrations of ΣPesticides in dog and cat urine were 35.2 ng/mL (31.4 μg/g 

creatinine) and 38.1 ng/mL (17.2 μg/g creatinine), respectively. In dog urine, all DAPs and 

OPs had DFs ≥ 80%, whereas 10 neonics, 2 PRYs and 2 PAs had DFs ≥ 80%. Similarly, in 

cat urine, all DAPs and OPs were found with DFs ≥ 80%, whereas 11 neonics, 3 PYRs, and 

2,4,5-T were found in ≥ 80% samples (Table 1 & Fig. 1). Our results suggest widespread 

exposure to multiple pesticides in pet dogs and cats. The median urinary concentrations 

of 2,4-D (0.80 ng/mL), trans-DCCA (1.09 ng/mL), PNP (2.55 ng/mL), and TCPY (0.92 

ng/mL) in dogs were similar to those reported in a recent study from the U.S. states of North 

Carolina and New Jersey (0.96, 1.47, 2.86, and 1.30 ng/mL for 2,4-D, trans-DCCA, PNP, 

and TCPY in dog urine, respectively) (Wise et al., 2022). Low DFs for ACE, N-DMA, and 

THI were found in dog urine in both our (21.4–50%) and previous (0%) studies (Wise et al., 

2022).

IMI is one of the most widely used insecticides in veterinary medicine (Vo et al., 2010), 

which may explain its high urinary concentrations in dogs and cats in our study (P95: 76.3 

and 1090 ng/mL in dog and cat urine, respectively) and a previous canine study (P95: 126 

and 584 ng/mL for IMI and 5-OH-IMI in dog urine, respectively) (Wise et al., 2022). The 

DFs of IMI (93.8–95.2%) and IMPY (100%) in our study were higher than those reported 

earlier (DFs: 26–42% for IMI and 0% for IMPY) (Forster et al., 2014; Wise et al., 2022). 

The concentrations of DMP (GM: 1.04 and 0.47 μg/g creatinine in dog and cat urine, 

respectively), DEP (1.32 and 1.47 μg/g creatinine, respectively), and DMTP (0.36 and 0.39 

μg/g creatinine, respectively) in dog and cat urine were 2-5-fold lower than those reported 

for the U.S. general population (GM: 2.45, 2.29 and 1.62 μg/g creatinine for DMP, DEP and 

DMTP, respectively) (Fig. 2). The P95 concentrations of DETP and DMDTP in pet dog and 

cat urine were 1.5-3.8-fold lower than those reported for humans. The higher concentrations 
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of DAPs in human urine indicate greater exposure to DAPs or their parent compounds. In 

both dogs and humans, the urinary concentrations of DMP, DEP and DMTP tend to be 

higher in younger age groups (Table S9).

Dog urine contained higher concentrations of neonics than those in humans of all age groups 

(rescaled ages: 3–5 y, 6–11 y, 12–19 y, and > 20 y) (Fig. 2 and Table S9). IMI (GM: 

1.63 μg/g creatinine in dog urine vs < LOD in human urine) and CLO (GM: 0.40 μg/g 

creatinine in dog urine vs < LOD in human urine) were frequently found in dog urine. 

Both ACE and N-DMA had low DFs in dog and human urine. Nevertheless, IMI, ACE, 

CLO, and N-DMA concentrations in cat urine were higher than those in dog and human 

urine (GM: 0.02–23.5 ng/g creatinine; P95: 0.19–1830 ng/g creatinine), probably due to 

the use of neonics for the control of fleas, ticks, flies, and lice in dogs and cats (Vo et al., 

2010). Concentrations in dog and cat urine were similar to those in humans, as reported 

in the NHANES for the U.S. general population, for PNP (GM: 2.03, 2.04, and 0.69 μg/g 

creatinine in dog, cat, and human urine, respectively), TCPY (0.68, 0.73, and 0.81 μg/g 

creatinine, respectively), and 2,4-D (0.56, 0.05, and 0.33 μg/g creatinine, respectively). 

However, the DFs of 2,4,5-T, cis-DBCA, trans-DCCA, and IMPY were higher in pet 

urine (DFs: 46.7–100%) than in human urine (DFs: < 50%) (CDC, 2018; 2021; Ospina 

et al., 2019), which suggested common exposure of dogs to certain PYRs (e.g., permethrin, 

cypermethrin) and OPs (e.g., diazinon) that humans are less likely to encounter. Flea and 

tick control and indoor application of pesticides are known to be sources of exposure in dogs 

and human children (Wise et al., 2020; Wise et al., 2022). In addition, the highest urinary 

IMI and trans-DCCA concentrations were found in younger dogs (rescaled ages 3–5 y); 

however, data for this age group in U.S. populations are not available for comparison (Table 

S9).

Spearman’s rank correlations of pesticide biomarkers measured in dog and cat urine are 

shown in Fig. 3. Several pesticides measured in pet urine were positively correlated, despite 

belonging to five different classes of chemicals. For example, in dog urine, IMZ was 

significantly positively correlated with DMP, DEP, DMTP, DETP, DMDTP, THX, 6-CN, 

PNP, TCPY, 2,4,5-T, and IMPY (rs: 0.33–0.46, p < 0.05). Similarly, the concentrations of 

several pesticides in cat urine were positively correlated: IMZ was significantly correlated 

with DEP, DMTP, DETP, DMDTP, NIT, TA, PNP, TCPY, and IMPY (rs: 0.62–0.78, p < 

0.05). These results suggest co-exposure to multiple pesticides as well as the existence 

of common precursors for some biomarkers measured (e.g., DETP and TCPY are both 

metabolites of chlorpyrifos). Our findings are consistent with those of previous studies, 

which also reported positive correlations among several classes of pesticides measured in 

human urine (Li and Kannan, 2018). These findings warrant attention from the view of 

cumulative and mixture toxicity.

3.2. Profiles in dog and cat urine

In dog urine samples, neonics (accounting for 43% of the total pesticide concentration) 

were the dominant class of pesticides, followed by DAPs (17%), PYRs (16%), OPs (13%), 

and PAs (~10%). In cat urine samples, neonics alone accounted for 83% of the total 

concentrations (Table 1 & Fig. 4). However, human studies have found higher concentrations 
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of DAPs than neonics in urine (Li and Kannan, 2020). This difference in profile might be 

explained by the direct usage of neonics on pet animals for flea and tick control (Vo et al., 

2010).

The profiles of the six DAP metabolites tested in cat and dog urine were similar. DEP 

was the most abundant, accounting for, on average, 42% and 51% of the total DAP 

concentrations in dog and cat urine, respectively (Fig. 4). Among neonics, IMI and IMZ 

were abundant in dog urine, accounting for 54% and 30% of the total concentrations, 

respectively, whereas in cats, IMI alone accounted for 94% of the total concentrations. Pet 

collars containing a combination of 10% IMI (w/w) and 4.5% flumethrin (w/w) are reported 

to be effective in preventing tick and flea infestations and infection by some vector-borne 

pathogens in dogs (Stanneck et al., 2012). While IMI is effective against fleas and lice, 

PYRs such as permethrin and flumethrin are effective against ticks (acaricides). In addition 

to its use in pet products such as collars, soaps, and shampoos, IMI is also applied to 

pets topically as a treatment for fleas and ticks at 10–25 mg/kg body weight (BW), with 

dosing every 4–5 weeks (Gomez and Picado, 2017). Furthermore, application of pesticides 

in lawns and agricultural settings can also contribute to pet exposure. IMI is the most widely 

used neonic in the U.S. accounting for ~ 42% of the market (Jeschke et al., 2011) and has 

been registered in the U.S. for insect control in corn, lettuce, broccoli, apples, and potatoes 

(EPA, 2020). Use of neonics and PYRs in pet products (such as collars, shampoos) can also 

contribute to the exposure of humans in the indoor environment.

In both dog and cat urine samples, IMPY was the most abundant OP metabolite, followed 

by PNP and TCPY. However, parathion/methyl parathion (precursor of PNP) and diazinon 

(precursor of IMPY) are not permitted for use in veterinary medication in the U.S., 

indicating other exposure sources for diazinon. Trans-DCCA (metabolite of permethrin and 

other PYRs) was the predominant PYR found in dog urine, accounting for 81% of the 

total PYR concentrations. This finding is consistent with previous studies, which reported 

frequent detection of trans-DCCA in human and dog urine (DFs: 60–73%), as well as 

frequent detection of permethrin isomers on human wristbands and dog tags (DFs: 100%) 

(Kassotis et al., 2020; Wise et al., 2020; Wise et al., 2022). In cat urine, however, cis-DBCA 

(73%) and trans-DCCA (15%) were the dominant PYR compounds (Fig. 4). The relative 

distribution of 2,4-D and 2,4,5-T in PAs were similar in dogs and cats.

3.3. Differences in concentrations between dogs and cats

Cat urine contained higher concentrations of most pesticides than dog urine (Table 1). The 

concentrations of DETP (mean: 0.68 ng/mL in cat urine vs 0.47 ng/mL in dog urine; p < 

0.05), DEDTP (1.82 vs 0.81 ng/mL; p < 0.01), IMI (211 vs 14.7 ng/mL; p < 0.01), DIN 

(2.37 vs 1.19 ng/mL; p < 0.01), N-DMT (0.41 vs 0.27 ng/mL; p < 0.1), TA (0.50 vs 0.13 

ng/mL; p < 0.01), N-DMA (1.35 vs 0.19 ng/mL; p < 0.01), 6-CN (0.53 vs 0.42 ng/mL; p < 

0.05), ΣNeonics (211 vs 26.2 ng/mL; p < 0.01), and IMPY (24.8 vs 3.44 ng/mL; p < 0.01) 

in cat urine were significantly higher than those in dog urine. In contrast, the concentrations 

of DMP (2.47 ng/mL in dog urine vs 0.92 ng/mL in cat urine; p < 0.05), 2,4-D (3.63 vs 

0.18 ng/mL; p < 0.01), 2,4,5-T (2.48 vs 0.12 ng/mL; p < 0.05), and trans-DCCA (8.05 

vs 0.56 ng/mL; p < 0.01) were significantly higher in dog urine than cat urine. These 

Li et al. Page 7

Environ Int. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



differences remained significant even after the concentrations were adjusted for creatinine, 

except for IMI, 6-CN, ΣNeonics, and trans-DCCA. An earlier study reported a 2-fold higher 

concentration of glyphosate in cat urine than in dog urine (33.8 ± 46.7 ng/mL in cat 

urine vs 16.8 ± 24.4 ng/mL in dog urine) (Karthikraj and Kannan, 2019). Higher urinary 

concentrations of pesticides in cats than in dogs may be attributed to specific exposures 

and metabolic differences (van Beusekom et al., 2014). For instance, cats are sensitive to 

PYR (e.g., permethrin) toxicity due to their low glucuronidation capacity, and thus PYR-

containing flea treatment products are intended only for dogs (Dymond and Swift, 2008; van 

Beusekom et al., 2014). This may explain the 14-fold lower trans-DCCA concentrations in 

cat urine than in dog urine (Table 1). In addition, elevated 2,4-D (herbicide) concentration in 

dog urine than in cat urine suggests frequenting of dogs in gardens and lawns where 2,4-D is 

commonly used.

3.4. Sex-, sampling location- and breed-specific variations

The concentrations of DAPs, OPs, PYRs, and PAs were similar between males and females 

in both dogs (25 males and 22 females) and cats (9 males and 19 females) (p > 0.05) 

(Table S10). However, select neonics exhibited significant sex differences in concentrations 

in dogs. CLO (0.52 ng/mL in males vs 1.36 ng/mL in females; p < 0.05) and N-DMT 

(0.13 vs 0.40 ng/mL; p < 0.05) concentrations were significantly higher in female than in 

male dogs. The differences remained significant even after creatinine adjustment of urinary 

concentrations. NIT (0.12 μg/g creatinine in males vs 0.08 μg/g creatinine in females; p 
< 0.05) concentrations were significantly higher in male than in female dogs. In contrast, 

no sex-related differences in pesticide concentrations were found in cats (either volume- 

or creatinine-based concentrations), probably due to the limited statistical power of this 

analysis. Further studies with larger sample size are needed to confirm these findings. 

Furthermore, some animals in this study were spayed or neutered, which may have a 

significant impact on the metabolism and excretion of pesticides.

Pesticide concentrations were compared among dogs from individual owners (n = 16), 

animal shelter (n = 12) and veterinary hospital (n = 19) (Table S11). The urine of dogs 

from the veterinary hospital contained the highest concentrations of IMI (mean ± SD: 

5.89 ± 15.6, 0.55 ± 0.44, and 25.4 ± 25.9 μg/g in dogs from individual owners, animal 

shelter and veterinary hospital, respectively; p < 0.001), ΣNeonics (mean ± SD: 16.2 ± 

18.3, 8.87 ± 6.14, and 35.6 ± 29.9 μg/g, respectively; p < 0.001), cis-DCCA (mean ± SD: 

1.60 ± 3.92, 0.05 ± 0.03, and 1.76 ± 5.97 μg/g, respectively; p = 0.02), and trans-DCCA 

(mean ± SD: 17.1 ± 40.4, 0.69 ± 0.48, and 19.4 ± 66.0 μg/g, respectively; p = 0.03). 

These findings indicate that dogs in veterinary hospitals have been treated with imidacloprid 

and cypermethrin (precursor compound of cis- and trans-DCCA), likely from veterinary 

medication.

The urinary pesticide concentrations were compared among dogs of different breed sizes 

(Table S12). The unadjusted urinary concentrations of DETP (mean ± SD: 0.61 ± 0.36 and 

0.43 ± 0.78 ng/mL in medium/small and large breed dogs, respectively; p = 0.02) and 6-CN 

(mean ± SD: 0.65 ± 0.71 and 0.28 ± 0.55 ng/mL, respectively; p = 0.03) were significantly 

higher in small and medium breeds than those in large breeds. However, the differences were 
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not significant after creatinine adjustment. The creatinine-adjusted concentrations of CLO, 

IMZ, cis-DCCA, trans-DCCA, 2,4,5-T and ΣPA were higher in the urine of large dogs than 

medium and small dogs, whereas IMI concentrations were higher in the urine of medium 

and small dogs. However, these differences were not significant among unadjusted urinary 

concentrations.

3.5. Exposure assessment

We estimated the daily intakes (DIs) of parent pesticides from the concentrations of 

pesticides or its metabolites measured in urine with the DFs ≥ 80% (Table 2) using the 

following equation (Guo et al., 2011):

DI = C × V
BW × MW 1

MW 2
× 1

Fue
(1)

where DI is the daily intake of pesticides (μg/kg BW/day); C is the measured concentration 

of a pesticide or metabolite in pet urine (ng/mL); BW is the body weight (kg), which was 

estimated according to the breed and age of each pet; V is the 24-h average excretion volume 

of urine (mL/day), which was estimated according to the body size of dogs and age of cats 

(Karthikraj et al., 2018b). The estimated BW and V values are given in Table S2; MW1 and 

MW2 are the molecular weights (g/mol) of the parent pesticide and metabolite, respectively; 

and Fue represents the fraction of the pesticide or its metabolite excreted in urine following 

exposure to parent molecule.

Cis- and trans-DCCA are the metabolites of cyfluthrin, cypermethrin, and permethrin, 

whereas 4-F-3-PBA is the metabolite of cyfluthrin and flumethrin. Due to the low DF of 

4-F-3-PBA in both dog and cat urine samples, we assumed that the measured concentrations 

of cis- and trans-DCCA represent exposure to cypermethrin and permethrin. The DI 

of malathion was estimated from the urinary concentration of DMP, since its specific 

metabolite (malathion dicarboxylic acid) was not measured in this study, although DMP 

could arise from several parent OPs as well (Yusa et al., 2022). The Fue values used in 

this study were based on those obtained from human or animal models (see Table S13 

for details). Because no human or animal pharmacokinetic data were available for IMZ, 

the Fue value of 0.127 was used (similar to that for IMI) (Harada et al., 2016). The 

estimated DI values of pesticides were then used for risk assessment through comparison 

with threshold/reference values. The suggested chronic reference dose (cRfD) values for 

pesticides, reported by the U.S. EPA, were used for comparison, except for NIT and IMZ, 

for which the acceptable daily intake (ADI) values proposed by the Chinese Ministry of 

Agriculture were used (as cRfD values are not available).

The estimated daily exposure doses to pesticides of dogs and cats are shown in Table 

2 and Fig. 5. The DIs of the sum of all pesticides analyzed in dog and cat urine in 

this study were 0.43–87.3 (median: 9.55; GM: 9.14) and 0.13–1090 (median: 9.77; GM: 

12.0) μg/kg BW/day, respectively. The median DIs for all pesticides in dogs were below 

the threshold/reference values by 3- (chlorpyrifos) to 54500-fold (nitenpyram) except for 

diazinon, for which the median intake was 1.9-fold higher than the cRfD. Furthermore, the 

DIs of chlorpyrifos, diazinon, and cypermethrin were above the respective cRfD values in 
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22, 76, and 5% of the dogs tested. The estimated DIs of pesticides in cats were below 

the reference values by 2- (chlorpyrifos) to 28900-fold (nitenpyram) except for diazinon, 

for which the median intake was 25-fold higher than the cRfD. Furthermore, the DIs of 

chlorpyrifos, parathion, diazinon, and imidacloprid were above the respective cRfD values 

in 33, 14, 100, and 29% of the cats tested (Table 2 and Fig. 5). Nevertheless, only 15 cat 

urine samples were included in the calculation of DIs, and therefore our results need to be 

interpreted with caution. Although the median DI values of all pesticides estimated for dogs 

and cats were similar to those reported for humans (DAPs and neonics: 3.72 μg/kg BW/day; 

OPs and PYRs: 0.44 μg/kg BW/day) (Li and Kannan 2018; Li and Kannan 2020), the DIs of 

diazinon in dogs (median: 0.37 μg/kg BW/day) and cats (5.03 μg/kg BW/day) were 22– and 

296-fold higher than those estimated for the U.S. general population (0.017 μg/kg BW/day) 

(Li and Kannan 2018), indicating potential health risk from this OP insecticide.

3.6. Strengths and limitations

This study has several strengths, including: (1) comprehensive evaluation of the occurrence 

of 30 biomarkers of five classes of the most widely used pesticides (DAPs, neonics, 

OPs, PYRs, and PAs) in dog and cat urine and (2) assessment of daily intakes of and 

risks from pesticides, including some that are directly used on dogs and cats. However, 

there are also reasons to interpret our results with some caution. One limitation is that, 

although prior studies have reported the occurrence of 5-hydroxy-imidacloprid (5-OH-IMI) 

and olefin-imidacloprid (Of-IMI) at concentrations higher than IMI (Ospina et al., 2019; 

Song et al., 2020), we did not measure 5-OH-IMI and Of-IMI in this study. Given the 

temporal variabilities in pesticide levels in urine samples (Li et al., 2020), measurement 

from a single spot urine sample may not accurately represent integrated exposure over 

time. Besides, information regarding health and exposure history of the pets and pesticide 

usage in and around homes were not available in this study. Furthermore, the toxico-kinetic 

parameters and threshold values used in assessing exposure and health risks were derived 

from human and rodent models, and have not been validated for dogs and cats. In general, 

the susceptibility of dogs and cats to pesticides is not well understood, and further studies 

are needed in this regard. Finally, the number of samples analyzed in this study is small. 

Nevertheless, our study provides critical baseline information on pesticide exposure and its 

potential health risks in pet dogs and cats.

4. Conclusions

This is a comprehensive survey of the occurrence of, and exposure to, organophosphates, 

pyrethroids, and neonicotinoids in pet dogs and cats. Neonicotinoids were the predominant 

pesticides found in both dog and cat urine samples, followed by organophosphates and 

pyrethroids. The pesticide concentrations measured were generally higher in cat urine than 

in dog urine. Age- and sampling site-related differences in urinary concentrations were 

found for certain pesticides. The daily intakes of chlorpyrifos, cypermethrin, and diazinon in 

dogs and chlorpyrifos, parathion, imidacloprid, and diazinon in cats were above the chronic 

reference doses, suggestive of possible health risks from exposure to those pesticides. 

The use of pesticides in flea and tick control products in pets may contribute to elevated 

exposure, including exposures above the current reference values in certain cases. Although 
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veterinary products are used specifically on pet animals, those applications also lead to 

human exposures in the indoor environment. It should be noted that humans and pet animals 

are also frequently exposed to pesticides through diet, water, air, and dust. Further studies 

are needed to investigate the health effects in pet dogs and cats following long-term exposure 

to such pesticides.
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Fig. 1. 
Frequency distributions of concentrations of pesticides (unadjusted) measured in dog and 

cat urine samples collected from New York State, USA. Pesticide concentrations were log10-

transformed. ΣDAP, sum concentration of dialkylphosphates; ΣNeonics, sum concentration 

of neonicotinoid insecticides; ΣOPs, sum concentration of organophosphate insecticides; 

ΣPYRs, sum concentration of pyrethroid insecticides; ΣPA, sum concentration of phenoxy 

acid herbicides; ΣPesticides, sum concentration of all pesticides analyzed in this study.
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Fig. 2. 
Comparison of urinary pesticide biomarker concentrations measured in pet dogs and cats 

in this study with NHANES data. The geometric mean (GM) and 95th percentile (P95) 

of the creatinine-adjusted concentrations in pet urine with DFs ≥ 80% are shown as bars 

and error bars. The corresponding most recent biomonitoring data (GM and P95) available 

in NHANES for the human general population are given for comparison (green triangles). 

NHANES values < LOD are plotted on the x-axis. NHANES data are from survey years 

2009/2010 for TCPY, 2,4,5-T, and cis-DBCA; 2011/2012 for DMP, DEP, DMTP, DETP, 

DMDTP, and DEDTP; 2013/2014 for PNP, 2,4-D, trans-DCCA, and IMPY; and 2015/2016 

for IMI, ACE, THI, CLO, and N-DMA.
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Fig. 3. 
Heatmap of Spearman’s rank correlation of pesticides measured in dog and cat urine. Only 

pesticides with DFs ≥ 80% were included in the analysis. Measures < LOD were replaced 

with LOD divided by square root of 2.
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Fig. 4. 
Relative distribution of all pesticides, dialkylphosphates (DAPs), neonicotinoids (Neonics), 

organophosphates (OPs), pyrethroids (PYRs), and phenoxy acids (PAs) in dog and cat urine 

collected from New York State, USA.
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Fig. 5. 
Frequency distribution of daily intake dose (μg/kg BW/day) of chlorpyrifos, parathion, 

diazinon, imidacloprid, and cypermethrin in dogs and cats estimated from measured urinary 

concentrations. The vertical lines indicate respective chronic reference dose (cRfD) values. 

The DI values of diazinon and imidacloprid were log10-transformed.
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