
This review focuses on recent brain imaging and behav-
ioral studies of sensory gating functions, which assess
similarities between the effects of classic hallucinogens
(eg, psilocybin), dissociative anesthetics (eg, ketamine),
and entactogens (eg, 3,4-methylenedioxymethamphet-
amine [MDMA]) in humans. Serotonergic hallucinogens
and psychotomimetic anesthetics produce overlapping
psychotic syndromes associated with a marked activa-
tion of the prefrontal cortex (hyperfrontality) and other
overlapping changes in temporoparietal, striatal, and
thalamic regions, suggesting that both classes of drugs
act upon a common final pathway. Together with the
observation that both hallucinogens and N-methyl-D-
aspartate (NMDA) antagonists disrupt sensory gating in
rats by acting on 5-hydroxytryptamine (serotonin) 5-HT2
receptors located in cortico-striato-thalamic circuitry,
these findings suggest that disruption of cortico-subcor-
tical processing leading to sensory overload of the cortex
is a communality of these psychoses. In contrast to hal-
lucinogens, the entactogen MDMA produces an emo-
tional state of positive mood, concomitant with an acti-
vation of prefrontolimbic/paralimbic structures and a
deactivation of amygdala and thalamus. 

allucinogens are a group of chemically hetero-
geneous compounds, all with the ability to induce altered
states of consciousness (ASC) characterized by pro-
found alterations in mood, thought processes, percep-
tion, and experience of the self and environment other-
wise rarely experienced except in dreams, contemplative
and religious exaltation, and acute psychoses. The term
hallucinogen seems to be somewhat inappropriate, since
not all these drugs reliably produce visual and auditory
hallucinations.1,2 Therefore hallucinogens have been also
called psychotomimetic (psychosis-mimicking), psy-
cholytic (psyche-loosening), or psychedelic (mind-man-
ifesting), reflecting the widely different attitudes and
intentions with which these substances have been
approached.
As plant drugs, psychedelic hallucinogens have a long
and colorful history. Because of their ability to produce
a visionary and ecstatic state, they were often ascribed
magical or mystical properties. For centuries, they were
used restrictedly as sacraments in religious rites and peo-
ple in the Western world were hardly aware of their exis-
tence. Examples of the use of naturally occurring hallu-
cinogens in various cultures include psilocybin derived
from the Aztec sacred magic mushroom teonanacatl,
mescaline derived from the peyote cactus taken by
Native Americans, or N,N-dimethyltryptamine (DMT),
the active ingredient of ayahuasca, a hallucinogenic
plant extract employed by Amazonian Indians.3 How-
ever, with the discovery of the hallucinogenic proper-
ties of the semisynthetic ergoline d-lysergic acid diethyl-
amide (LSD) by the Swiss chemist Albert Hofmann in
1943, hallucinogens and related compounds have
become the focus of modern scientific research. The
LSD-induced psychosis-like syndrome and the struc-
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tural similarity between LSD and serotonin (5-hydroxy-
tryptamine [5-HT]) prompted the hypothesis that 5-HT
is involved in the pathophysiology of schizophrenia.
Since then a number of newly discovered hallucinogens
or psychotomimetic agents, such as phencyclidine (PCP)
and ketamine, have been used as models to study the
neuronal basis of drug-induced ASC and its relation to
naturally occurring psychoses.4-6

Psychedelic hallucinogens can be classified by either
chemical structure or their primary mode of action.
The so-called serotonergic hallucinogens include
indolamines, such as psilocybin and LSD, and phenylethyl-
amines, such as mescaline and 2,5-dimethoxy-4-iodoam-
phetamine (DOI) (Figure 1). Serotonergic hallucinogens
act primarily upon 5-HT1, 5-HT2, 5-HT6, and 5-HT7
receptors and partly upon the dopamine (DA) receptors
D1 and D2 and the adrenergic α2 receptors. A second
class of drugs with hallucinogenic properties often
referred to as psychedelic or dissociative anesthetics
includes arylcyclohexylamines, whose most important rep-
resentatives are PCP and ketamine. These agents pri-
marily act as antagonists of the N-methyl-D-aspartate
(NMDA) subtype of the glutamate receptor. Finally, a
third class of drugs, the so-called “entactogens,” produce
psychedelic-like effects, but virtually no hallucinations.
They are closely related structurally to hallucinogenic
phenylethylamines and stimulant amphetamines and

include phenylisopropylamines, such as 3,4-methylene-
dioxymethamphetamine (MDMA), 3,4-methylenedioxy-
ethylamphetamine (MDE), and related compounds.
This review summarizes recent experiments to elucidate
the neurobiological basis of the psychological effects of
psilocybin, ketamine, and MDMA, each representing
one of the three classes of psychedelics. Functional brain
imaging with positron emission tomography (PET) was
used to identify the brain regions or functional interac-
tions among the neurotransmitter systems involved in
the action of these drugs. Furthermore, receptor mecha-
nisms of hallucinogenic and related drugs have been
investigated by exploring the effects of specific receptor
antagonists on drug-induced psychological alterations
and information-processing functions, such as sensori-
motor gating as indexed by prepulse inhibition (PPI) of
the startle reflex.
The premise of the present review is that many of the
shared psychedelic effects of serotonergic hallucinogens
and NMDA antagonists can be understood as an effect
downstream of a common neurotransmitter system or
final pathway. First, both serotonergic hallucinogens and
NMDA antagonists produce sufficient overlapping psy-
chologial alterations despite different primary modes of
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Selected abbreviations and acronyms
AED anxious ego-dissolution
ASC altered states of consciousness
CMRglu cerebral metabolic rate of glucose
CSPT cortico-striato-pallido-thalamic
CSTC cortico-striato-thalamo-cortical
DA dopamine
DMT N,N-dimethyltryptamine
DOI 2,5-dimethoxy-4-iodoamphetamine
18FDG 18F-fluorodeoxyglucose 
5-HT 5-hydroxytryptamine
LSD d-lysergic acid diethylamide
MDE 3,4-methylenedioxyethamphetamine
MDMA 3,4-methylenedioxymethamphetamine
NMDA N-methyl-D-aspartate
OB oceanic boundlessness
PCP phencyclidine
PPI prepulse inhibition
VR visionary restructuralization
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Figure 1. Chemical structures of some important representatives of hallu-
cinogens. Classic serotonergic hallucinogens include indolamines,
such as the semisynthetic lysergic acid diethylamide (LSD) and
psilocybin/psilocin (the active principle of the sacred Aztec magic
mushrooms), and phenylethylamines, such as mescaline (the
active principle of peyote cactus). Indolamines and phenylethyl-
amines share close structural features with the neurotransmitter
serotonin (5-hydroxytryptamine [5-HT]). Dissociative or psyche-
delic anesthetics include phencyclidine (PCP) and related drugs,
such as ketamine. Entactogens, such as 3,4-methylene-
dioxymethamphetamine (MDMA), which produce psychedelic-
like symptoms but virtually no hallucinations, are structurally
closely related to both serotonergic hallucinogens (mescaline) and
classic stimulants (amphetamines).
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action. Second, there is converging evidence from brain
imaging, behavioral, and electrophysiological studies
that both serotonergic hallucinogens and NMDA antag-
onists disrupt information processing within cortico-
striato-thalamic pathways implicated in the pathogene-
sis of psychotic disorders. Since entactogens such as
MDMA are expected to produce only mild psychedelic
symptoms, it will be of interest to know to what extent
MDMA-induced neurobiological alterations differ from
those seen in the states induced by hallucinogens and
NMDA antagonists.

Serotonergic hallucinogens and 
NMDA antagonists

Psychological effects

Among the key psychological functions that are altered
by hallucinogens or NMDA antagonists are: (i) psychotic-
like symptoms; (ii) changes in mood; and (iii) changes in
perception of time, self, and environment, including both
threatening or pleasant experiences of derealization and
depersonalization phenomena.These psychological func-
tions share many aspects of prominent psychiatric symp-
toms of disorders such as schizophrenia or delusional dis-
order, and can be assessed via standard psychiatric or
psychological rating scales.1

According to the work of Dittrich,7 the common nucleus
of drug-induced ASC can be described by three dimen-
sions (factors) of the APZ questionnaire, which is an ASC
rating scale.2,8 These dimensions are: (i) oceanic bound-
lessness (OB), referring to dissolution of ego boundaries
associated with positive emotions ranging from height-
ened mood to sublime happiness and serenity or
grandiosity; (ii) anxious ego-dissolution (AED), including
thought disorder and loss of autonomy and self-control
variously associated with arousal, anxiety, and paranoid
ideations; and (iii) visionary restructuralization (VR) refer-
ring to auditory and visional illusions, hallucinations, and
altered meaning of perception.2,8 As seen in Figure 2, both
psilocybin and ketamine produce either loss of ego
boundaries associated with positive emotions or negative
ego-disintegration associated with thought disorder and
loss of autonomy and self-control.9-12

The ego-disintegration and the loss of self-control over
thought process and intentionality, and the uncertainty or
lack in differentiating between ego and nonego spheres
observed in psilocybin- and ketamine-induced psychoses
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Figure 2. Subscale scores of the altered states of consciousness (APZ) ques-
tionnaire for S-ketamine (n=68; 0.012 mg/kg/min IV), psilocybin
(n=99; 0.26 mg/kg PO), and 3,4-methylenedioxymethamphet-
amine (MDMA) (n=74; 1.5-1.7 mg/kg PO) in healthy volunteers.
With the exception of complex hallucinations after MDMA, S-ket-
amine-, psilocybin-, and MDMA-induced scores are all significant
compared with placebo. Values are means±SE, all P<0.05 or less.
A. The oceanic boundlessness (OB) scale measures derealization
and depersonalization associated with a positive basic mood rang-
ing from heightened feelings to exaltation and alterations in the
sense of time. B. The anxious ego-dissolution (AED) scale mea-
sures ego-disintegration and loss of autonomy and self-control
associated with arousal and anxiety. C. The visionary restructural-
ization (VR) scale measures alterations in perception and meaning. 
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are highly reminiscent of acute schizophrenic decom-
pensation.13-17 Also, the finding of heightened awareness
associated with euphoria in psilocybin- and ketamine-
treated subjects is consistent with the view that the ear-
liest affective changes in schizophrenic patients are often
pleasurable or exhilarating.18-21 Furthermore, prospec-
tive22 and comparative studies indicate that perceptual
disturbances including the heightened sensitivity, audi-
tory and visual illusions, and hallucinations reported by
ketamine- and psilocybin-treated subjects are promi-
nent features of prodromal, early, and acute schizo-
phrenic patients.21,23-25 Similar findings were reported in
comparable studies in healthy volunteers receiving psilo-
cybin or the phenylethyamine hallucinogen mescaline.26,27

Thus, the present evidence suggests that hallucinogen-
induced ASC share many common phenomenological
features with the early acute stages of the schizophrenic
disorders and may provide useful models to elucidate
the neuronal basis of productive symptoms of schizo-
phrenic pathophysiology. However, despite the number
of similarities between the psilocybin and ketamine
models of psychoses, substantial differences have also
become apparent in the limited human studies.
Specifically, it appears that both S-ketamine and racemic
ketamine produced more pronounced anxiety, thought
disturbances, and ego-disintegration than psilocybin.
Moreover, in contrast to psilocybin, both S-ketamine and
racemic ketamine produced transient apathy, emotional
withdrawal, and feelings of indifference, which resem-
bled the negative symptoms of schizophrenia in many
ways. This finding is consistent with the view that keta-
mine and PCP induce thought disturbances and cognitive
impairments in healthy subjects, which mimic those seen
in schizophrenia, including deficits in working memory,
attention, abstract reasoning, decision making, and plan-
ning.28-31 Thus, it has frequently been argued that the state
produced by NMDA antagonists may more closely
mimic naturally occurring schizophrenias (Table I).10-12,28-41

Cortico-striato-thalamic loops: a common pathway?

Theories regarding the neuronal basis of the sympto-
matology of schizophrenic psychoses have often sug-
gested that deficits in early information processing may
underlie the diversity of psychotic symptoms and cogni-
tive disturbances observed in the group of schizophre-
nias.42-44 Such theories posit that a fundamental feature of
information processing dysfunction in psychosis is the

inability of these patients to screen out, inhibit, filter, or
gate extraneous stimuli and to attend selectively to
salient features of the environment. Gating deficits may
cause these subjects to become overloaded with exces-
sive exteroceptive and interoceptive stimuli, which, in
turn, could lead to a breakdown of cognitive integrity
and difficulty in distinguishing self from nonself.44,45

In recent years, this theoretical construct has been suc-
cessfully operationalized by measuring the behavioral
plasticity of acoustic startle responses, such as PPI and
habituation.46 Symptomatic schizophrenia patients
exhibit deficits in both PPI and habituation. Extensive
lesion and drug studies in rodents have demonstrated
that sensorimotor gating functions, such as PPI, are
subject to considerable forebrain modulation from
cortical, limbic, striatal, pallidal, and thalamic struc-
tures, including cortico-striato-pallido-thalamic
(CSPT) circuitry.46,47 Moreover, animal studies indicate
that hallucinogens, amphetamines including MDMA,
and NMDA antagonists disrupt sensorimotor gating
in rats by interacting with different components of the
CSPT loop. These findings are consistent with the
“thalamic filter hypothesis of psychosis,” advanced by
Carlsson and Carlsson.48 This theory proposes that cor-
ticostriatal pathways exert a modulatory influence on
the thalamic gating of sensory information to the cere-
bral cortex (Figure 3).49 Theoretically, an impairment
of thalamic filtering should result in sensory overload
of the cortex, leading to a breakdown of integrative
cortical functions, and subsequently to positive symp-
toms such as delusions, hallucinations, thought distur-
bances, persecution, and loss of a coherent ego expe-
rience. In addition, various negative symptoms, such
as emotional and social withdrawal, could result
from—and be understood as—efforts to protect from
input overload.
On the basis of these findings and the thalamic filter
model, ACSs induced by hallucinogens and NMDA
antagonists in humans can be conceptualized as com-
plex disturbances that arise from more elementary
deficits of sensory information processing in cortico-
striato-thalamo-cortical (CSTC) feedback loops.6,50 The
model proposes that NMDA antagonists may disrupt
thalamic filter functions and produce sensory overload
of cortical areas, particularly of the prefrontal cortex,
by blocking NMDA receptors located on corticostriatal
pathways, while serotonergic hallucinogens may alter
thalamocortical transmission by stimulation of 5-HT2
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receptors located in several components of the CSTC
loop, including the prefrontal cortex, striatum, nucleus
accumbens, and thalamus (for details, see reference 49).

Brain imaging studies 

Until recently, many neural circuit models were based on
animal studies, and implications for the effects of hallu-
cinogenic drugs or disease models in humans were based
on inferences from these studies. However, functional
neuroimaging studies enable one to examine these
neural circuit models directly and test specific hypothe-
ses about the role of specific neural systems in the
expression of ASC.

PET with the radiotracer 18F-fluorodeoxyglucose (18FDG)
was used to assess drug-induced changes in the regional
cerebral metabolic rate of glucose (CMRglu), as an index
of cerebral activity.We found that a hallucinogenic dose
of racemic ketamine increased neuronal activity in the
prefrontal cortex (hyperfrontality) and associated limbic
regions, as well as in striatal and thalamic structures in
healthy volunteers, giving the first evidence that func-
tional alterations in CSTC loops may underlie the symp-
tomatology of drug-induced ASC.50 This hyperfrontal-
ity finding was corroborated and extended in subsequent
studies in healthy volunteers in which the effects of hal-
lucinogens and NMDA antagonists including psilocy-
bin, racemic ketamine, and S-ketamine were compared.

Table I. Comparison of effects of psilocybin (0.2-0.24 mg/kg PO), S-ketamine (0.01-0.02 mg/kg/min), and 3,4-methylenedioxymethamphetamine
(MDMA) (1.5-1.7 mg/kg PO), and symptoms in schizophrenias (summarized from references 10-12, 28-31, and 33-41). 5-HT, 5 hydroxytrypt-
amine; GABA, γ-aminobutyric acid; NMDA, N-methyl-D-aspartate; mGluR, metabotropic glutamate receptor; D1, D2, dopamine receptors; H1,
histamine receptor; α2, α2 adrenergic receptor. *MDMA has highest affinity for the 5-HT transporter (Ki=0.61 µM) and lesser for α2 (Ki=3.6 µM)
and 5-HT2 receptors (Ki=5.1 µM) in rat brain. **Chronic administration of NMDA antagonists in rats decreases frontal cortical activity.

Psilocybin Ketamine MDMA Schizophrenias

Receptor level

Primary locus of action 5-HT2A, 5-HT1A NMDA 5-HT transporter,* Unknown

5-HT2A, 5-HT1A, 
α2, H1

Downstream effects on GABA, D1, 5-HT2A, D1, D2

D2, mGluR GABA, D1, D2, 
mGluR

Psychopathology

Positive symptoms

• Hallucinations/illusions ++ + - ++
• Delusions + + - ++
• Thought disorder + ++ + ++

Negative symptoms

• Blunted affect 0 - + + - ++ - ++
• Withdrawal + + - ++ - ++

Depersonalization + - ++ ++ + ++
Derealization + ++ + ++

Neuropsychology

• Attention disturbance + - ++ + + ++
• Distractibility + ++ - ++

• Working memory + ++ ? ++

• Associative deficits + + - ++ ? ++
• Planning/mental flexibility ++ ? ? ++

Cortical activity

• Frontal (PET) ++ (acute) ++ (acute) (+) ++ (acute)
-- (chronic)** -- (chronic)



In particular, we found that, despite different primary
mechanisms of action, the two classes of drugs produced
strikingly similar brain activation patterns as indexed
by normalized CMRglu. Both psilocybin and ketamine
markedly increased brain activity bilaterally in the fron-
tomedial and frontolateral cortex, including the ante-
rior cingulate. Lesser increases were found in the tem-
poromedial, superior, and inferior parietal cortices,
striatum, and thalamus. Decreases were found in the left
caudate nucleus, bilaterally in the ventral striatum,
occipital lobe, and visual pathway.9-11 A correlational
analysis revealed that the metabolic hyperfrontality in
ketamine and psilocybin subjects was associated with a
depersonalization/derealization syndrome, thought dis-
turbances, and mania-like symptoms.9-11 The hyper-
frontality finding in ASC was further supported by evi-
dence from brain imaging studies with ketamine and
psilocybin in healthy volunteers27,51 and was also found in
subjects treated with the classic phenylethylamine hal-
lucinogen mescaline.52

Correlations between cerebral activity 
and psychological alterations

The correlation of changes in cerebral activation with
changes in self-assessment enables one to further cor-
roborate the role of specific neural substrates in these
psychological functions. Correlational analysis between
normalized metabolic activity and psychological scores
of the APZ questionnaire revealed that the severity of
OB correlated positively with CMRglu bilaterally in
frontomedial superior, frontolateral, and left inferolateral
prefrontal cortex, anterior cingulate, as well as bilaterally
in inferior parietal and occipitomedial cortex.6 There
were negative correlations between OB and CMRglu
bilaterally in the hippocampus and caudate nucleus, and
left amygdala and ventral striatum (Figure 4A).
The OB dimension, which relates to the altered percep-
tion of time and space as well as the pleasurable expe-
rience of dissolution of ego-boundaries and which can
culminate in transcendental or “mystical” states, sub-
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Figure 3. The limbic cortico-striato-thalamic-cortical (CSTC) feedback loops are involved in memory, learning, and self–nonself discrimination by linkage of
cortically categorized exteroceptive perception with internal stimuli of the value system. The filter function of the thalamus, which is under the
control of the CSTC feedback/reentry loops, is postulated to protect the cortex from exteroceptive sensory information overload, as well as from
internal overarousal. The model predicts that sensory overload of the cortex and psychosis may result from thalamic gating deficits, which may
be caused by ketamine by blockade of N-methyl-D-aspartate (NMDA)–mediated glutamatergic (Glu) corticostriatal and/or by increasing mesolim-
bic dopaminergic (DA) neurotransmission. Excessive stimulation of serotonin 5-HT2 receptors (for example, by psilocybin) may lead to a similar
neurotransmitter imbalance in the CSTC loops, which again results in an opening of the thalamic filter, sensory overload of the cortex, and psy-
chosis. VTA, ventral tegmental area; SNc, substantia nigra pars compacta; GABA, γ-aminobutyric acid; �, NMDA receptor.
Modified from reference 49: Vollenweider FX, Greyer MA. A systems model of altered consciousness: integrating natural and drug-induced psychoses. Brain Res Bull. 2001;56:495-
507. Copyright © 2001, Elsevier Science.
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Figure 4. Correlations between the three dimensions of the APZ questionnaire for altered states of consciousness (oceanic boundlessness [OB], anx-
ious ego-dissolution [AED], and visionary restructuralization [VR]) and regional brain activity (cerebral metabolic rate of glucose [CMRglu]) in
healthy volunteers under psilocybin (0.26 mg/kg PO) or S-ketamine (0.012 mg/kg/min IV) challenge (n=52, P<0.0001). A. The OB dimension.
The activation of a prefrontal-parietal network in parallel with the deactivation of a striato-limbic-amygdala-centered network correlated with
the OB dimesion measuring derealization and depersonalization associated with positive emotions ranging from enhanced mood to feelings
of happiness and serenity, or grandiosity. B. The AED dimension. Thalamic hyperactivity in conjunction with decreased activity in orbitofrontal
and ventral anterior cingulate cortex and left putamen correlated with the AED dimension measuring thought disorder and ego-disintegra-
tion, and loss of self-control variously associated with anxiety, panic, and paranoid ideations. C. The VR dimension. Activation of the dorso-
lateral prefrontal cortex (DLPC) and of components of the dorsal (inferioparietal cortex [IPC], angular gyrus [GA], supramarginal gyrus [GS])
and ventral stream (inferiotemporal cortex [ITC]) of higher order visual processing (ITC) in parallel with deactivation of strital and limbic regions
correlated with VR comprising visual hallucinations, synesthesias and changed meaning of percepts.
Positive correlations are indicated by circles and negative correlations by rectangles. FMG, frontomedial gyrus; FSG, frontosuperior gyrus; IPL,
inferiorparietal lobe; OCM, occipitomedial cortex; CAU, caudate nucleus; NAC, nucleus accumbens; AMY, amygdala; HIPP, hippocampus; OF,
orbitofrontal cortex; AC, anterior cingulate; PUT, putamen; TMG, temporomedial gyrus; THAL, thalamus; GL, lingual gyrus; GF, fusiform gyrus;
GPE, globus pallidus; ParaHipp, parahippocampus. 
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stantially relates to functional alterations in an extended
frontolimbic-parieto-striatal network including the
amygdala. Indeed, according to current views, in con-
junction with parietal and limbic areas, the frontal cortex
is critical for the construction and maintenance of a
coherent self. In its executive faculty, the frontal cortex,
including the anterior cingulate, has an active role in
structuring time, directing attention to relevant extero-
ceptive or interoceptive stimuli, and initiating and
expressing appropriate behaviors.53-55 The parietal cor-
tex is important for determining the relationship of the
self to extrapersonal space, based on visuospatial input
from the dorsal stream of visual information process-
ing.56 Together with motor and somatosensory cortical
areas, the frontolimbic-parietal network is sometimes
called “central neural authority”57 to express the idea
that it constitutes a functional system crucially involved
in ego-structuring processes and the formation and rep-
resentation of a coherent self that is defined in time and
space. On the basis of these theoretical concepts, it
appears plausible that overstimulation of the central
neural authority may lead to profound alterations of
self-experience and space/time perception, as reflected
by the increased OB scores in hallucinogen-induced
ASC. Finally, the concomitant decrease in amygdala
activity may account for the more pleasurable experi-
ences associated with the OB dimension.
The severity of anxious ego-dissolution (AED) was pos-
itively correlated with CMRglu in the thalamus and left
temporomedial gyrus, and negatively correlated with
CMRglu bilaterally in orbitofrontal cortex and adjacent
anterior cingulate. Thus, it appears that AED and the
associated thought disorder depend mainly on thalamic
overactivity and orbitofrontal underactivity (Figure 4B).
This finding may indicate enhanced thalamic transmis-
sion and support the view that deficient thalamic gat-
ing leads to sensory overload of the cortex and psy-
chosis. In fact, thalamic (and anterior cingulate-parietal)
overactivity was associated with disorganization in schiz-
ophrenic patients.58 Malfunction of the orbitofrontal cor-
tex may account for the continuing intrusion of irrele-
vant stimuli into the stream of mental activity and lead
to the perseverations, thought blocking, and difficulty
concentrating that are typically associated with AED.59

The severity of VR (including hallucinations) was posi-
tively correlated with CMRglu in the left dorsolateral
prefrontal and inferior temporal cortex, bilaterally in
temporo-parietal association cortex. Negative correla-

tions were found in left globus pallidus and parahip-
pocampus, and bilaterally in visual pathways (gyrus
fusiformis and lingualis).Thus, it appears that visual hal-
lucinations are associated with abnormal prefrontal acti-
vation in conjunction with activation of sensory modal-
ity-specific cerebral structures involved in normal
perception, which is similar to the situation reported in
patients with auditory hallucinations (Figure 4C).60

Hyperfrontality as an index of acute psychoses

The hyperfrontality finding and its association with pos-
itive psychotic symptoms seen in drug-induced ASC is of
particular interest because it appears to parallel similar
findings in some studies in acutely ill schizophrenic and
nonschizophrenic psychotic patients.36,38,61,62 Interestingly,
one of these studies reported that hyperperfusion in the
frontal, anterior cingulate, parietal, and temporal cor-
tices, which correlates with positive symptoms includ-
ing formal thought disorder and grandiosity in drug-
naive schizophrenic patients, was normalized after
neuroleptic treatment, and that persisting negative
symptoms correlated with frontal, cingulate, basal, and
thalamic hypoperfusion.38 An activation of prefrontal
and cingulate cortex with transient exacerbation of pos-
itive psychotic symptoms was also reported in chronic
schizophrenics during ketamine challenge.63 These find-
ings suggest that metabolic hyperfrontality (rather than
hypofrontality, as seen in chronic schizophrenia) is a
pathophysiological manifestation of certain acute psy-
chotic symptoms in drug-induced and naturally occur-
ring psychoses. This view is further supported by the
finding that pretreatment with the atypical antipsychotic
clozapine reduced S-ketamine-induced hyperfrontality
and thalamic activation associated with psychotic symp-
toms in normal volunteers.64 In the light of such evi-
dence, it would be expected that drugs that reduce or
prevent excessive prefrontal activation might be useful
for treating positive and cognitive symptoms of schizo-
phrenia.

Convergence on neurotransmitter systems

The hyperfrontality common to the psilocybin and ket-
amine models of psychoses also supports the idea that
psychedelic hallucinogens and psychotomimetic NMDA
antagonists may mediate some of their effects through a
common final pathway or neurotransmitter system,
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downstream of their primary locus of action. In particu-
lar, the similarity of the effects of psilocybin and keta-
mine on ego functions, cognition, and perception under-
score recent animal and human findings suggesting a
convergence in their behavioral effects, despite the dif-
ferences in their primary mechanisms of action.
Of particular relevance to sensory overload theories of
drug-induced ASC are behavioral measures of sensori-
motor gating functions, such as PPI of the startle
response.65 The cross-species study of homologue gating
functions such as PPI in animal and human models of
psychosis offers a unique possibility for the exploration
of neurobiological substrates relevant to schizophrenia.
Symptomatic schizophrenics and never-medicated first-
episode schizophrenia patients exhibit deficits in PPI,
which have been suggested to be central to the psychotic
symptomatology of the illness.42,66 Indeed, the most strik-
ing correlate of deficient PPI in schizophrenia is a mea-
sure of thought disorder derived from the Rorschach
test.67 Similarly, in rats, both serotonergic hallucinogens
and NMDA antagonists produce deficits in PPI.68 Exten-
sive pharmacological studies in animals demonstrate
that PPI is modulated by multiple interacting neuro-
transmitters, including the dopaminergic, serotonergic,
cholinergic, GABAergic, and glutamatergic systems
within CSPT pathways.46

Role of dopamine

In keeping with the DA hyperactivity hypothesis of
schizophrenia, we hypothesized that increased striatal
DA activity could also contribute to the S-ketamine-
and psilocybin-induced symptomatology in humans,
although S-ketamine and psilocybin have no affinity for
D2 receptors.69,70 This hypothesis has been tested using
PET and [11C]raclopride. Reduction in [11C]raclopride
binding potential (BP) has been well established as an
indirect measure of the change in synaptic DA concen-
tration in animal and human studies.71,72 Indeed, both S-
ketamine and psilocybin significantly reduced [11C]raclo-
pride BP in ventral striatum consistent with an increase
in striatal DA concentration.73,74 Moreover, these changes
in [11C]raclopride BP significantly correlated with deper-
sonalization, supporting the view that excessive DA
transmission at D2 receptors contributes to the genera-
tion of positive psychotic symptoms in ketamine- and
psilocybin-treated subjects. However, the DA-mediated
change in [11C]raclopride BP at D2 receptors explained

only about 36% of the variance of positive symptoms,
indicating that other neurotransmitter systems con-
tribute to the pathogenesis of ketamine- and psilocybin-
induced symptomatology. In support of this view, we
found that the D2 antagonist haloperidol has virtually no
effect on psilocybin-induced cognitive impairments and
reduced psychotic symptoms by only about 30% in
psilocybin-treated subjects.12 Similarly, recent results in
healthy subjects demonstrate that ketamine psychosis
is not ameliorated by haloperidol pretreatment.41 Com-
parably, haloperidol had also virtually no effect on the
PPI-disruptive effect of the hallucinogenic 5-HT2 agonist
DOI and the NMDA antagonist PCP in animal models
of psychosis.65,75 Given these findings, it appears that
increased DA activity may play a minor role in both
psilocybin- and ketamine-induced ASC.

Role of serotonin

During the last decade, accumulating evidence from
binding, electrophysiological, and behavioral studies in
animals suggested that indoleamine and phenylethyl-
amine hallucinogens may produce their psychological
effects via the 5-HT2A receptors in the brain (for details,
see references 76 and 77). However, although the pre-
ponderance of evidence suggested that hallucinogens
are agonists at 5-HT2A receptors, this issue was clouded
by studies that demonstrated LSD to be a partial ago-
nist78 or even an antagonist79 at 5-HT2A receptors. More-
over, since LSD, 5-methoxy-DMT, DMT, and psilocin
have been shown to display high affinity for, and to act
as agonists at, 5-HT1A receptors, the role of 5-HT1A and
5-HT2A receptors in the generation of hallucinosis in
man remains elusive.
The important question as to whether serotonergic hal-
lucinogens are agonists or antagonists at 5-HT2A and 
5-HT2C receptors has recently been answered. Consis-
tent with animal studies, we have demonstrated that the
psychological effects of psilocybin in humans can be com-
pletely blocked by the preferential 5-HT2A antagonist
ketanserin.12 In addition, preliminary data demonstrate
that the metabolic hyperfrontality and PPI disruptive
effects of psilocybin in humans can be reversed by
ketanserin.80,81 Since ketanserin has no affinity for 5-HT1A
receptors, this finding suggests that serotonergic hallu-
cinogens produce their central effects through a com-
mon action upon 5-HT2 receptors. The fact that
ketanserin has about 100-fold greater antagonistic
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potency at 5-HT2A than at 5-HT2C receptors indicates
that the psychological effects of psilocybin are mediated
by 5-HT2A rather than 5-HT2C receptor activation.
This interpretation is corroborated by the finding that
the highly selective 5-HT2A receptor antagonist 
M100,907, but not 5-HT2C antagonists, blocks the dis-
ruption of PPI in rats produced by serotonergic hallu-
cinogens.82,83 Moreover, the effects of serotonergic hallu-
cinogens (LSD and DOI) on sensorimotor gating in rats
are mediated, at least in part, through 5-HT2A receptors
located within the ventral pallidum,83,84 a component of
the CSPT loop.85 These findings suggest that both
indolamine and phenylethylamine hallucinogens may
alter thalamic filter functions through 5-HT2A receptors
associated with pallidostriatal input to the thalamus.They
also support the view that antagonist actions at the 5-
HT2A receptors may have an important contribution to
the unique clinical efficacy of atypical antipsychotics such
as clozapine in the treatment of the schizophrenias.86

Although psychotomimetic NMDA antagonists (eg, ket-
amine) act primarily through a noncompetitive NMDA
blockade of the NMDA subtype of the glutamate recep-
tor, there is converging evidence implicating 5-HT mech-
anisms, particularly those involving 5-HT2A receptors, in
the action of NMDA antagonists. For example, it has
been shown that the psychological effects of ketamine
are ameliorated by the mixed 5-HT2/D2 and atypical
antipsychotic clozapine, but are virtually insensitive to
typical antipsychotics that have preferential actions at
D2 receptors, such as haloperidol.87 Moreover, prelimi-
nary data from our laboratory show that clozapine
reduces S-ketamine-induced metabolic hyperfrontality
and associated psychotic symptoms in healthy human
volunteers.64,80 These findings parallel observations in ani-
mal studies demonstrating that the PPI-disruptive effects
of NMDA antagonists in rats are blocked by the atypical
antipsychotics (eg, clozapine or olanzapine),88,89 but are
generally insensitive to typical antipsychotics (eg,
haloperidol).90 Moreover, the fact that the highly selective
5-HT2A receptor antagonist M100,907 is also effective in
blocking the PPI-disruptive effects of NMDA antago-
nists in rats91 strongly suggests that the psychotomimetic
effects of NMDA antagonists in humans involve 5-HT2
receptor activation. Finally, studies in rats have indicated
that the NMDA antagonists produce these gating deficits
by actions within particular parts of the CSPT circuitry,
including the frontal cortex and hippocampus.92 Interest-
ingly, NMDA antagonists, like serotonergic hallucino-

gens,85 appear to be ineffective when administered
directly into the DA-rich nucleus accumbens.92

Role of glutamate

Recent electrophysiological studies have produced new
evidence that both psychedelic hallucinogens and
NMDA antagonists activate the serotonergic system and
enhance glutamatergic transmission via non-NMDA
receptors in the frontal cortex.93,94 Whether this common
mechanism contributes to the higher-level cognitive, per-
ceptual, and affective effects of serotonergic hallucinogen
and NMDA antagonists warrants further investigation.40

Taken together, serotonergic hallucinogens and psy-
chotomimetic NMDA antagonists produce schizophre-
nia-like deficits in behavioral measures of sensory gating
such as PPI, and do so by actions localized to different
parts of the CSPT circuitry. Despite their different pri-
mary mechanisms and sites of action, however, a com-
mon denominator of the effects of these drug classes 
is that they alter the dynamics of the integrated CSPT
circuitry such that normal information processing is 
distorted by deficits in fundamental forms of sensori-
motor gating.

Serotonergic amphetamines: MDMA

Psychological effects

In contrast to serotonergic hallucinogens and NMDA
antagonists, a typical recreational and nontoxic dose of
MDMA (1.5-7 mg/kg PO) produces an affective state
of enhanced mood, profound well-being, happiness,
increased extroversion and sociability, slight derealiza-
tion and depersonalization, little anxiety, and moderate
thought disturbances, but no hallucinations in normal
volunteers.95 Depersonalization phenomena are mild
and, in contrast to hallucinogens (eg, psilocybin), not
experienced as problematic or psychotic fusion, but
experienced as a pleasurable state of loosened ego
boundaries as measured by the APZ questionnaire (Fig-
ure 2). Similar findings were reported with MDMA and
its congener MDE in healthy volunteers.96-100

Brain imaging studies

To identify the functional neuroanatomy involved in
the action of MDMA in humans, the effect of MDMA
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(1.7 mg/kg) versus placebo on regional cerebral blood
flow (CBF) was investigated in MDMA-naive human
subjects using PET and [H2

15O]-PET.101 MDMA mod-
erately increased brain activity as indexed by CBF bilat-
erally in the ventromedial prefrontal cortex, the ventral
anterior cingulate, the inferior temporal lobe, and the
medial occipital cortex and in the cerebellum. Decreases
in CBF were found bilaterally in the motor and
somatosensory cortex, the superior temporal lobe, the
dorsal cingulate cortex, the insula, and the thalamus.
Unilateral decreases were found in the left amygdala
and the right parahippocampus. This activation pattern
and associated affective state, which was characterized
by heightened mood, increased extroversion, slight dere-
alization, and intensification of vision, substantially dif-
fer from those seen in ketamine- and psilocybin-induced
psychosis-like syndromes.
The activation of prefrontal and related limbic/paralim-
bic structures in conjunction with deactivation of the
amygdala may underlie the emotional effects of MDMA.
This view is consistent with findings implicating the
amygdala,102,103 orbitofrontal cortex,103 ventral anterior cin-
gulate cortex,103,104 prefrontal cortex, temporal lobe, and
thalamus104 in the regulation of mood and emotion. In
this network, the amygdala appears to play a pivotal role
in the mediation of both positive and negative emo-
tions.102,103,105 Acute administration of MDMA also facili-
tated social communication, as measured by a significant
increase in the “extroversion” subscale of the Adjective
Mood Rating Scale.This increase correlated with CBF in
the temporal cortex, amygdala, and orbitofrontal cortex.
These brain regions are richly interconnected and
together form the basolateral circuit, which, according
to current theories, is involved in the mediation of social
communication.106,107 Lesions or disturbances of this cir-
cuit can lead to decreased social interaction, inadequate
social behavior, or even the inability to decode social
cues.108-110 The marked modulation of activity in the baso-
lateral circuit produced by MDMA and its association
with increased extroversion provide further support for a
critical role of the basolateral circuit in the processing
of socially relevant information.
The present findings suggest that an amygdala-centered
network including ventral-frontal and temporal cortices
underlies the cooccurrence of pleasurable emotion and
enhanced social communication, providing a rationale
for the interrelatedness of emotional and social
processes.Thus, further research into the neurochemical

mechanisms of MDMA could advance our understand-
ing of the neuroanatomical regulation of mood and
social interaction.

Neurotransmitter systems involved in 
the effects of MDMA

On the basis of mechanistic studies in animals, it has
been widely assumed that the psychological effects of
MDMA in humans might be mediated through its
potent ability to release serotonin, and to a lesser extent
DA.111 In addition, MDMA has moderate affinity for the
serotonergic 5-HT2 and adrenergic α2 receptors.76 To elu-
cidate the contribution of neurotransmitter and receptor
systems in the action of MDMA, the blocking effects of
specific receptor antagonists on MDMA-induced psy-
chological and behavioral alterations were investigated.
In these studies, we found that pretreatment with the
selective serotonin-reuptake inhibitor (SSRI) citalopram
markedly reduced all of the psychological effects of
MDMA in healthy volunteers, indicating that the effects
of MDMA in humans are largely due to 5-HT trans-
porter–mediated enhanced 5-HT release.112 The 5-HT2
antagonist ketanserin only moderately attenuated the
MDMA experience, but significantly abolished the per-
ceptual effects.113 This suggests that stimulation of 5-HT2
receptors mediates the mild hallucinogen-like action of
MDMA in humans, such as intensification of colors.
Finally, the D2 antagonist haloperidol only partly
reduced the euphoric effects of MDMA suggesting that
DA contributes little to the psychological effects of
MDMA at the dose tested.114,115

Surprisingly, MDMA dose-dependently reduced sensori-
motor gating, as indexed by the PPI of startle in rats,
but increased PPI in healthy human subjects under com-
parable conditions.116 This disparity between the effects
of MDMA in rats and humans may reflect a species-
specific difference in the mechanism of action of
MDMA or in the behavioral expression of a similar
pharmacological effect, or both. In accordance with ani-
mal studies, we recently demonstrated that this PPI-
enhancing effect of MDMA in normals is markedly
reduced by the SSRI citalopram, but is not affected by
the D2 antagonist haloperidol or the 5-HT2A/C antago-
nist ketanserin.117 Thus, it appears that the effect of
MDMA on PPI in humans is—like in animals—due to
MDMA-induced release of serotonin. However, it is also
obvious that some of the functional consequences of the



released serotonin differ between rats and humans, since
MDMA has opposite effects on PPI. In fact, there is
more recent evidence that species-specific differences
may contribute to the opposite effects of MDMA on
PPI in rats and humans. Specifically, it was found that 
5-HT1A agonists disrupt PPI in rats, but increase PPI in
mice.118,119 Thus, the role of 5-HT1A receptors in mediat-
ing effects of MDMA on PPI in humans remains to be
elucidated. Furthermore, whether the indirect agonistic
effects of MDMA on 5-HT1A receptors ameliorate psy-
chotic symptom formation needs to be clarified. The
present data also demonstrate the compelling need for
comparison studies in animals and humans to increase
our understanding of the role of the serotonergic sys-
tems involved in the regulation of information process-
ing in health and disease.

Conclusions

The present review discussed evidence that similar
neural systems are altered by serotonergic hallucino-
gens and psychotomimetic NMDA antagonists, despite
the differences in the primary sites of action of these
drug classes. Furthermore, these same systems appear to

exhibit abnormalities in incipient stages of naturally
occurring psychoses. Thus, the elucidation of common
mechanisms downstream from 5-HT2A or NMDA recep-
tors can provide new targets for investigating the patho-
physiology of naturally occurring psychoses such as
schizophrenia. Present evidence suggests that the effects
of a typical recreational dose of MDMA on regional
brain activity and sensory gating functions can be delin-
eated from those seen with psychedelic hallucinogens.
The data also indicate that excessive serotonergic acti-
vation is not sufficient to produce psychosis. ❑
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Mecanismos cerebrales de los alucinógenos
y los entactógenos

Esta revisión se centra en recientes estudios con-
ductuales y de imágenes cerebrales de las fun-
ciones de regulación sensorial, los cuales evalú-
an semejanzas entre los efectos de los
alucinógenos clásicos (por ej. psilocibina), los
anestésicos disociadores (por ej. ketamina) y los
entactógenos (por ej. 3,4-metilendioximetanfe-
tamina [MDMA]) en humanos. Los alucinógenos
serotoninérgicos y los anestésicos psicotomimé-
ticos producen un síndrome psicótico sobrepues-
to, el cual se asocia con una marcada activación
de la corteza prefrontal (hiperfrontalidad) y
otros cambios sobrepuestos en las regiones tém-
poro–parietales, estriatales y talámicas, lo que
sugiere que ambos grupos de drogas actúan en
una vía final común. Junto con la observación
que ambos alucinógenos y que los antagonistas
del N-metil-D-aspartato (NMDA) desorganizan la
regulación sensorial en ratas, al actuar a nivel de
los receptores 5-HT2 de 5-hidroxitriptamina
(serotonina) localizados en los circuitos córtico-
estriado–talámicos, estos hallazgos sugieren que
una desorganización del procesamiento córtico
– subcortical que lleve a una sobrecarga de la
corteza es común en estas psicosis. En contraste
con los alucinógenos, el entactógeno MDMA
provoca un estado emocional de ánimo positivo,
concomitante con una activación de estructuras
prefrontolímbicas / paralímbicas y una desacti-
vación de la amígdala y del tálamo.

Mécanismes cérébraux des hallucinogènes
et des entactogènes

Cet article passe en revue les études récentes por-
tant sur l'imagerie cérébrale et les aspects compor-
tementaux relatifs aux fonctions de filtrage des
voies sensorielles, ayant pour but d'évaluer les simi-
litudes entre les effets des hallucinogènes classiques
(par ex. la psilocybine), des anesthésiques dissociatifs
(par ex. la kétamine) et les entactogènes (par ex. la
3,4-méthylènedioxyméthamphétamine [MDMA])
chez l’homme. Les hallucinogènes sérotoniner-
giques et les anesthésiques psychosomimétiques
induisent des syndromes psychotiques largement
comparables en rapport avec une activation mar-
quée du cortex préfrontal (hyperfrontalité) et
d’autres modifications affectant les régions tempo-
ropariétales, striatales et thalamiques, suggérant
que les deux classes médicamenteuses agissent sur
la même voie finale. Ces résultats, si on les rap-
proche de la perturbation de la fonction de filtrage
des voies sensorielles provoquée chez le rat par les
antagonistes du N-méthyl-D-aspartate (NMDA) et
les hallucinogènes via leur action sur les récepteurs
5-HT2 [5-hydroxytryptamine (sérotonine)] du circuit
cortico-striato-thalamique, suggèrent que la per-
turbation opérationnelle cortico-sous-corticale res-
ponsable de la surcharge sensorielle du cortex est
un point commun à ces psychoses. Contrairement
aux hallucinogènes, l’entactogène MDMA pro-
voque un état émotionnel d’humeur positive paral-
lèlement à une activation des structures préfronto-
limbiques et paralimbiques et à une désactivation
des amygdales et du thalamus.
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