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Background: Uveal melanoma (UM) is the most common primary intraocular cancer in

adults. Genomic studies have provided insights into molecular subgroups and oncogenic

drivers of UM that may lead to novel therapeutic strategies.

Methods: Dataset TCGA-UVM, download from TCGA portal, were taken as the training

cohort, and dataset GSE22138, obtained from GEO database, was set as the validation

cohort. In training cohort, Kaplan–Meier analysis and univariate Cox regression model

were applied to preliminary screen prognostic genes. Besides, the Cox regression model

with LASSO was implemented to build a multi-gene signature, which was then validated

in the validation cohorts through Kaplan–Meier, Cox, and ROC analyses. In addition, the

correlation between copy number aberrations and risk score was evaluated by Spearman

test. GSEA and immune infiltrating analyses were conducted for understanding function

annotation and the role of the signature in the tumor microenvironment.

Results: A ten-gene signature was built, and it was examined by Kaplan–Meier analysis

revealing that significantly overall survival, progression-free survival, and metastasis-free

survival difference was seen. The ten-gene signature was further proven to be an

independent risk factor compared to other clinic-pathological parameters via the Cox

regression analysis. Moreover, the receiver operating characteristic curve (ROC) analysis

results demonstrated a better predictive power of the UM prognosis that our signature

owned. The ten-gene signature was significantly correlated with copy numbers of

chromosome 3, 8q, 6q, and 6p. Furthermore, GSEA and immune infiltrating analyses

showed that the signature had close interactions with immune-related pathways and the

tumor environment.

Conclusions: Identifying the ten-gene signature (SIRT3, HMCES, SLC44A3, TCTN1,

STPG1, POMGNT2, RNF208, ANXA2P2, ULBP1, and CA12) could accurately identify

patients’ prognosis and had close interactions with the immunodominant tumor

environment, which may provide UM patients with personalized prognosis prediction and

new treatment insights.
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INTRODUCTION

Uveal melanoma (UM) is the most common primary intraocular
cancer in adults, and the second most common melanoma
subtype after cutaneous melanoma, accounting for 5% of
all melanomas (1–3). Treatment approaches for primary UM
include surgery and radiotherapy, which can often achieve
excellent local tumor control (4). Nevertheless, nearly half of
UM patients still develop tumor metastasis, mainly in the liver
(3). Metastases have a predilection for the liver and once they
have developed, median survival is about 1 year (5). Existing
treatments for UM are not effective against tumor metastases (6),
therefore, most research shifted their efforts on the development
of targeted therapies or immunotherapy methods, such as
immune checkpoint inhibitors, vaccination, or adoptive T cell
therapy (7–11). Identifying potential biomarkers of UM may
provide critical information for early detection of relapse or
treatment (12). At present, although some studies have clarified
some important genes and pathways of UM, the prognosis of it
remains poor (12–14). Therefore, there is an urgent need to reveal
new markers to assess UM prognosis.

During the past few decades, genetic or epigenetic alterations
have been confirmed to be associated with the tumorigenesis
and progression of UM (14). Gene mutations and chromosomal
copy number variations are closely related to UM prognosis.
According to reports, GNAQ andGNA11mutations can promote
cell proliferation and metastasis (15). The loss of one copy of
chromosome 3 (monosomy 3) in UM is associated with an
increased risk of metastasis and poor prognosis (16). In addition,
other chromosomal abnormalities have been shown to correlate
with poor prognosis and these include 6q loss, lack of 6p gain, 1p
loss, and 16q loss (16–20). Therefore, further exploration of gene
mutation and copy number variation in UM can provide incisive
information for prognosis.

Here, we conduct comprehensive mining of the TCGA and
GEO database to determine the minimum number of potentially
robust genes that can be used to predict the prognosis of UM
patients. Importantly, we used the LASSO algorithm, which
can effectively analyze high-dimensional sequencing data (21).
Besides, we assessed the accuracy of this ten-gene signature and
validated it by compared to variants of chromosomes 3 and 8q,
and testing in a validation cohort. Moreover, GSEA and immune
infiltrating analyses were conducted to explore the role of the
signature in the tumor microenvironment.

MATERIALS AND METHODS

Data Mining From the Cancer Genome
Atlas (TCGA) and Gene Expression
Omnibus (GEO) Databases
The gene expression profiles of UM from 80 patients, along
with their clinical and curated survival data were downloaded
from TCGA Xena Hub (https://tcga.xenahubs.net) with cohort
name: TCGA-UVM. Besides, we researched the GEO database
by setting a filter: (1) more than 60 cases; (2) with expression
profiling data; (3) with survival data. Finally, GSE22138 with 63

cases was chosen for this study. In our research, TCGA-UVM
was used as the training cohort, while GSE22138 was taken as
the validation cohort. The research was conducted in accordance
with the Declaration of Helsinki, and was approved by the Ethics
Committee of Zhengzhou University.

Identification and Validation of Prognostic
Gene Signature
To begin with, in the training cohort, Kaplan-Meier analysis was
applied to screen the potential prognostic genes based on overall
survival, disease-specific survival, and progression-free survival,
respectively. Only genes that showed significant in all overall,
disease-specific, and progression-free survival analyses were
considered to pass Kaplan–Meier analysis screening. P < 0.0001
in the log-rank test was considered as significant. Also, univariate
Cox regression analysis was performed on the training cohort
to find potential prognostic genes (p < 0.0001). Same as before,
only genes that showed significant in all overall, disease-specific,
and progression-free survival analyses were considered to pass
univariate Cox regression analysis screening. The intersected
genes of identified in Kaplan–Meier and univariate Cox analyses
were then entered into the LASSOCox regressionmodel analysis,
which was implemented in the training cohort utilizing R
software and the “glmnet” package. 10-fold cross-validation
was applied to detect the best penalty parameter lambda (21–
24). Based on the detected optimal lambda, we could obtain a
list of prognostic genes with correlation coefficients from gene
expression and patient survival data.

The risk score of each patient was calculated by a linear
combination of the expression level of each gene weighted by its
multivariate LASSO regression coefficient. Using the median risk
score as the cut-off point, the patients in the training cohort were
distributed to high-risk or low-risk groups, and Kaplan–Meier
analysis was applied to evaluate the survival difference between
the two groups. Besides, Cox and ROC analyses were conducted
to further assess the prognostic value of the gene signature
in training cohort. Subsequently, we validated the prognostic
value of the gene signature in the validation cohort. The same
formula was conducted to compute risk scores like that in the
training cohort. Kaplan–Meier, Cox, and ROC analyses were
implemented as described earlier.

In UM, chromosomal aberrations and gene mutations have
been shown to be closely related to treatment options and
prognosis. In Robertson’s research, the status of chromosome 3,
8q, 6q, 6p, and 1p of each patient in the TCGA-UVM cohort
has been studied and specifically described (16). The Spearman
rank correlation coefficient was applied to assess the correlation
between copy number aberrations and risk score, further
evaluating the prognostic value of the gene signature identified
in this study. P < 0.05 was considered statistically significant.

Gene Set Enrichment Analysis
The Hallmark (v7.1) and KEGG (v7.1) gene set collections were
obtained from the Molecular Signatures Database v7.1 download
page (https://www.gsea-msigdb.org/gsea/downloads.jsp). GSEA
was performed based on the downloaded gene set collections
using GSEA software (v4.0.3, https://www.gsea-msigdb.org/).
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The training cohort was taken for GSEA to reveal the functions
and pathways in the differentially expressed genes between high-
risk and low-risk groups. According to the GSEA User Guide,
gene sets with | NES |> 1, NOM p < 0.05, and FDR q < 0.25
were considered significant.

Correlation of Risk Score With the
Proportion of 20 Kinds of Tumor-Infiltrating
Immune Cells (TICs)
The CIBERSORT calculation method was used to estimate the 20
kinds of TICs abundance distribution of all tumor samples in the
training cohort. After quality filtering (p < 0.05) was performed
on all the samples of TCGA-UVM, 36 samples were selected for
the next analyses.

Statistical Analysis
All statistical calculations in this study were performed in R
software. Kaplan–Meier analysis was performed to examine the
prognostic differences between the groups, and the p-value was
checked in the log-rank test. Univariate and multivariate Cox
analyses were conducted to illustrate the relationship between the
gene signature risk score and UM prognosis. The ROC curves
were plotted with the “pROC” R package, to assess the sensitivity
and specificity of the risk score for prognosis prediction. The
area under the ROC curve (AUC) was used as an indicator
of prognostic accuracy. The correlation between 20 kinds of
TICs were examined by Pearson coefficient test. Spearman
coefficient test was used for the correlation test between the TICs
proportion and risk score. The Wilcoxon rank-sum test verified
the differentiation of 20 kinds of immune cells between low and
high-risk groups. In addition to noted before, all analyses p <

0.05 was a statistically significant threshold.

RESULTS

Clinical Characteristics
The flowchart of the present research is shown in Figure 1. Eighty
UM cases that came fromTCGA-UVMwere taken as the training
cohort. The dataset GSE22138 with 63 UM patients was used as
the validation cohort. The detailed clinical characteristics of both
cohorts were summarized in Table 1.

Construction of Prognostic Signature From
Training Cohort
Kaplan–Meier and univariate Cox regression analysis were
performed on 80 patients in the training cohort to assess the
prognostic relationship between gene expression profiles and
overall survival, disease-specific survival, and progression-free
survival. Four hundred and twenty-three genes were extracted
from the Kaplan–Meier analysis (Supplementary Table 1), while,
283 genes were identified significant in the Cox regression
analysis (Supplementary Table 2). Taking together, 110 genes
in the intersection of the two results are defined as potential
prognostic genes for next analyses (Supplementary Table 3).
These genes were then subjected to LASSO Cox regression
analysis, and regression coefficients were calculated. The
coefficient of each gene was plotted in Figure 2A. The model

achieved the best performance when it included 10 genes
(Figure 2B). These genes, their corresponding coefficients, and
genomic location were shown in Table 2.

Prognostic Value of the Ten-Gene
Signature in the Training and Validation
Cohorts
According to the gene expression level, and the risk coefficient
of each gene, the risk score of each patient was calculated. The
median risk score was the cut-off value for assigning patients
to high-risk or low-risk groups. The prognostic value of the
risk score was evaluated by comparing the survival differences
between the high-risk group and the low-risk group.

The distribution of risk scores and overall survival status and
the expression profiles of the ten-gene signature of the patients
in the training cohort were plotted in Figure 3A. As shown
in the figure, there are more deceased in high-risk patients,
and the survival time is shorter than that of low-risk patients.
The heat map shows that SIRT3, HMCES, SLC44A3, TCTN1,
STPG1, POMGNT2, and RNF208 were under expressed in
high-risk patients, while, ANXA2P2, ULBP1, and CA12 were
highly expressed in high-risk patients. In addition, we examined
the performance of these ten-gene signature in predicting
progression-free survival in the training cohort. As shown in
Figure 3B, in the high-risk group, more events happened, and
shorter survival time gained. The pattern did consistent with
that in predicting overall survival. Furthermore, we checked the
predictive power of this ten-gene signature for metastasis-free
survival in the validation cohort. It could be seen that there were
more metastasis events occurred in the high-risk group than in
the low-risk group, and the survival time of the high-risk group
was also shorter (Figure 3C).

As plotted in Figure 4A, Kaplan–Meier survival analysis in
the training cohort showed that the overall survival of patients
in the high-risk group was poorer than that in the low-risk
group (p< 0.0001, Figure 4A). Also, an unfavorable progression-
free survival was seen in the training cohort (p < 0.0001,
Figure 4B). To further explore the efficacy of the ten-gene
signature in predicting prognosis (metastasis-free survival) in
UM patients, we tested the ten-gene signature in the validation
cohort. Adopting the same classification method, patients were
divided into high-risk and low-risk groups based on the median
risk score. Consistent with previous results, patients in the high-
risk group showed significantly worse metastasis-free survival
than patients in the low-risk group (p < 0.0001, Figure 4C).

Univariate and multivariate Cox analyses were conducted
in the training cohort based overall survival and progression-
free survival, and validation cohort based on metastasis-free
survival, using the available co-variables including risk score,
age, gender, T classification, tumor stage, tumor thickness, tumor
diameter, tumor side, tumor location, extrascleral extension, or
retinal detachment to detect whether our ten-gene signature had
the prognostic capacity that was independent from the clinic-
pathologic characteristics. In the training cohort, both univariate
and multivariate Cox regression analyses indicated that the ten-
gene signature was a powerful variable associated with overall
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Training cohort 

(TCGA-UVM, 80 cases) 
Validation cohort 

(GSE22138, 63 cases)

Kaplan-Meier analysis

(423 genes)
Univariate Cox analysis

(283 genes)

LASSO Cox regression 

model analysis

Integrated ten-gene 

signature

Survival analysis, Cox analysis, ROC analysis, and correlations with 

the copy number aberrations in UM

Gene Set Enrichment 

Analysis
Correlation with TICs

Identify of total of 110 

prognostic genes

Validation

Risk score

FIGURE 1 | Brief flow chart of this study. The study was performed using TCGA-UVM and GSE22138 cohorts. The training cohort was applied to detect prognostic

genes. LASSO regression model was for establishing a prognostic signature based on the prognostic genes. Then we validated the prognostic signature we

established in the validation cohort. Finally, GSEA and TIC analysis were implemented to explore potential mechanisms further on the prognosis signature we found.

LASSO, the least absolute shrinkage and selection operator Cox regression model; ROC, receiver operating characteristic; TICs, tumor-infiltrating immune cells; UM,

uveal melanoma; GSEA, Gene Set Enrichment Analysis.

survival (HR = 4.893, 95% CI = 2.749–8.710, p < 0.001, and
HR = 5.623, 95% CI = 2.687–11.764, p < 0.001, respectively;
Figure 5A), and progression-free survival (HR = 2.432, 95% CI
= 1.766–3.349, p < 0.001, and HR = 2.558, 95% CI = 1.658–
3.946, p< 0.001, respectively; Figure 5B). Consistent with that in
the training cohort, the ten-gene signature displayed pronounced
capability in the validation cohort in predicting metastasis-free
survival (Figure 5C). These results proved that the ten-gene
signature was to be a strong and independent variable.

Subsequently, we conducted ROC analyses to assess how the
ten-gene signature could behave in predicting prognosis. As
shown in Figure 6A, the area under the ROC curve (AUC) of
the ten-gene risk score model performed on overall survival in
the training cohort was 0.916, which was superior to those of age,
gender, stage, T classification, tumor thickness, tumor diameter,
and extrascleral extension (0.609, 0.611, 0.591, 0.603, 0.579, 0.611,
and 0.556, respectively). Consistently, in the prediction model
of progression-free survival predicted in the training cohort,
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TABLE 1 | Clinical characteristics of patients involved in the study.

Characteristics Training cohort

(TCGA-UVM, n = 80)

Validation cohort

(GSE22138, n = 63)

Age at diagnosis, years

<60 36 (45.00%) 28 (44.44%)

≥60 44 (55.00%) 35 (55.56%)

Unknown 0 (0.00%) 0 (0.00%)

Gender

Female 35 (43.75%) 24 (38.10%)

Male 45 (56.25%) 39 (61.90%)

Unknown 0 (0.00%) 0 (0.00%)

Stage

I 0 (0.00%) NA

II 36 (45.00%) NA

III 40 (50.00%) NA

IV 4 (5.00%) NA

Unknown 0 (0.00%) NA

T classification

T1 0 (0.00%) NA

T2 4 (5.00%) NA

T3 36 (45.00%) NA

T4 38 (47.50%) NA

Unknown 2 (2.50%) NA

N classification

N0 76 (95.00%) NA

N1 0 (0.00%) NA

Unknown 4 (5.00%) NA

M classification

M0 73 (91.25%) 28 (44.44%)

M1 3 (3.75%) 35 (55.56%)

Unknown 4 (5.00%) 0 (0.00%)

Extrascleral extension

No 68 (85.00%) 48 (76.19%)

Yes 7 (8.75%) 5 (7.94%)

Unknown 5 (6.25%) 10 (15.87%)

Tumor basal diameter, mm

<12 6 (7.50%) 11 (17.46%)

≥12 73 (91.25%) 42 (66.67%)

Unknown 1 (1.25%) 10 (15.87%)

Tumor thickness

<8 15 (18.75%) 3 (4.76%)

≥8 65 (81.25%) 60 (95.24%)

Unknown 0 (0.00%) 0 (0.00%)

Tumor side

Right NA 30 (47.62%)

Left NA 33 (52.38%)

Unknown NA 0 (0.00%)

Tumor location

On equator NA 42 (66.67%)

Anterior to equator NA 3 (4.76%)

Posterior to equator NA 9 (14.29%)

Other NA 4 (6.35%)

Unknown NA 5 (7.94%)

Retinal detachment

No NA 22 (34.92%)

Yes NA 36 (57.14%)

Unknown NA 5 (7.94%)

the ten-gene signature risk score also showed a powerful ability
with AUC = 0.739, which was far better than other variates
(Figure 6B). This finding was also confirmed in validation
cohort for metastasis-free survival predication (AUC = 0.785,
Figure 6C).

Furthermore, we performed correlation analyses to assess
the relationship between the ten-gene signature and status
of chromosome copy number aberrations. The status of
chromosome copy number aberrations of each patient in
the TCGA-UVM cohort was downloaded from Robertson’s
publication (Supplementary Table 4) (16). Spearman test was
used to assess the correlation between copy chromosome
numbers and the risk score. The results showed that the ten-
gene signature was significantly correlated with copy numbers of
chromosome 3, 8q, 6q, and 6p (Figure 7). Specifically, the gene
signature displayed negative correlations with the copy number
of chromosome 3 (R = −0.69, p = 1e−12), 6q (R = −0.24, p
= 0.031), and 6p (R = −0.51, p = 1.2e−06) (Figures 7A,C,D),
while, showed positive correlation with chromosome 8q copy
number (R= 0.51, p= 1.3e−06) (Figure 7B).

Gene Set Enrichment Analysis With the
Ten-Gene Signature
In view of the negative correlation between the level of the ten-
gene signature risk score and the prognosis of UM patients,
the GSEA was conducted between the high and the low-risk
groups. As displayed in Figure 8A and Supplementary Table 5,
all significantly enriched gene sets of HALLMARK collection
were seen in the high-risk group in pathways relate to
immune response, inflammatory response, reactive oxygen
species, notch signaling, glycolysis, IL-6/JAK/STAT3 signaling,
and allograft rejection. ForHALLMARK collection defined by the
Molecular Signatures Database, all gene sets were also enriched
in the high-risk score group. These pathways were mostly
associated with p53 signaling, autoimmune disease, proteasome,
natural killer cell, cytosolic DNA-sensing, allograft rejection,
leishmania infection, and glycolipid metabolism (Figure 8B
and Supplementary Table 6). These findings indicated that the
risk score was potentially closely related to the status of
tumor microenvironment.

Correlation of Risk Score With the
Proportion of Tumor-Infiltrating Immune
Cells (TICs)
To further check the correlation between the risk score and
the immune microenvironment, as shown in Figure 9, we used
the CIBERSORT algorithm to analyze the proportion of tumor-
infiltrating immune subpopulations and constructed 20 immune
cell profiles in UM samples. Combining the results of correlation
analysis (Figure 10A, Supplementary Table 7) and difference
analysis (Figure 10B), a total of three TICs were associated with
ten-gene signature risk score (Figure 10C). Among them, T
cells CD4 memory activated was positively correlated with risk
score, while, Monocytes and Mast cells resting were negatively
correlated with risk score.
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A B

FIGURE 2 | Prognostic gene signature was established by LASSO regression analysis. (A) LASSO coefficient profiles of the 110 genes in training cohort. (B) A

coefficient profile plot was generated against the log (lambda) sequence. Selection of the optimal parameter (lambda) in the LASSO model for training cohort. LASSO,

the least absolute shrinkage and selection operator Cox regression model.

TABLE 2 | Genes in the prognostic gene signatures.

Gene symbol Full name Risk coefficient Genomic location (GRCh38/hg38)

STPG1 Sperm Tail PG-Rich Repeat

Containing 1

−0.150605911 chr1:24,356,999–24,416,934

HMCES 5-Hydroxymethylcytosine Binding, ES

Cell Specific

−0.526265796 chr3:129,278,816–129,306,186

ANXA2P2 Annexin A2 Pseudogene 2 0.017480411 chr9:33,624,225–33,625,534

CA12 Carbonic Anhydrase 12 0.414736428 chr15:63,321,378–63,382,110

RNF208 Ring Finger Protein 208 −0.098017226 chr9:137,220,247–137,221,581

SLC44A3 Solute Carrier Family 44 Member 3 −0.175213008 chr1:94,820,342–94,895,247

TCTN1 Tectonic Family Member 1 −0.171507956 chr12:110,614,027–110,649,430

POMGNT2 Protein O-Linked Mannose

N-Acetylglucosaminyltransferase 2

(Beta 1,4–)

−0.106148114 chr3:43,079,229–43,106,083

ULBP1 UL16 Binding Protein 1 0.037591702 chr6:149,963,943–149,973,715

SIRT3 Sirtuin 3 −2.002826257 chr11:215,030–236,931

DISCUSSION

In the present study, we built an UM prognostic signature
by comprehensively analyzing the TCGA and GEO. By
investigating the relationship using Kaplan–Meier, univariate
Cox analyses, and LASSO Cox regression model between
the patients’ prognosis and gene expression in the training
cohort, we obtained a ten-gene signature that was pronounced

related to outcome. By applying this signature in the training

cohort, statistical significance was observed in univariate and
multivariate Cox analysis, ROC analysis, and Kaplan–Meier
curve between high-risk and low-risk groups. The prognostic

ability of the ten-gene signature was also validated in the

validation cohort, showing the broadness and effectiveness of the
ten-gene signature in predicting UM prognosis. In addition, we

found that the risk score was correlated with the copy number of
chromosome 3 negatively, and chromosome 8q positively, which
further indicates the significance of the signature we found. Then
the GSEA and immune infiltration analyses showed that the ten-
gene signature risk score might be immune-related and involved
in the tumor microenvironment in UM patients. For research
in gene-signature of UM, we are the first to apply chromosomal
variation to perform validation of gene-signature reliability. Such
work we have done aimed to guide future research in UM.

After we constructed the ten-gene signature, we firstly
confirmed its capacity to distinguish the prognosis of patients
effectively. As shown in Figure 3A, the high-risk zone not only
counted more deaths, but also the patients in it presented a
shorter survival time than that in the low-risk zone. Moreover,
the heatmap indicated that each of these ten genes had a
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A B C

FIGURE 3 | Characteristics of the ten-gene signature. (Upper and middle) The distribution of ten-gene risk score and patients’ survival time, and events for training

cohort based on overall survival (A), training cohort based on progression-free survival (B), and validation cohort based on metastasis-free survival (C). According to

the median risk score, patients were divided into low-risk and high-risk groups. The left side of the black dotted line is the low-risk group, and the right side is the

high-risk group. (Bottom) Heatmaps were plotted to illustrate the ten-gene expression profiles in the training cohort based on overall survival (A), training cohort based

on progression-free survival (B), and validation cohort based on metastasis-free survival (C).

A
B C

FIGURE 4 | Kaplan–Meier survival analyses based on the ten-gene signature. (A) Training cohort based on overall survival. (B) Training cohort based on

progression-free survival. (C) Validation cohort based on metastasis-free survival. Differences between curves were detected by two-side log-rank test.

differential expression pattern between the low-risk and high-
risk groups. Importantly, this ten-gene signature also owned
pronounced performance in the training cohort for predicting
progression-free survival (Figure 3B), and in the validation
cohort for metastasis-free survival (Figure 3C).

In addition, we examined the prognostic value of the ten-
gene signature by Kaplan–Meier analysis in the training cohort
based on overall survival and progression-free survival, and
in the validation cohort based on metastasis-free survival,

finding its significantly predicting ability in UM patients
(Figure 4). Furthermore, univariate and multivariate analyses
were performed in the three cohorts to confirm that whether our
ten-gene signature can be an independent from other variables
in predicting UM outcome. As plotted in Figure 5, no matter in
training cohort or validation cohort, no matter based on overall
survival, progression-free survival, or metastasis-free survival,
whether it is univariate or multivariate Cox regression analysis,
the variable of risk score was always statistically significant. The
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A B C

FIGURE 5 | Forest plot summary of univariate and multivariate Cox analyses of prognosis. Univariate (upper) and multivariate (bottom) analyses were carried out using

the ten-gene signature and clinical covariates in the training cohort based on overall survival (A), training cohort based on progression-free survival (B), and validation

cohort based on metastasis-free survival (C). Colored solid squares represent HR, and the horizontal line across the HR represents the 95% CI. All p-values were

calculated using the Cox regression hazards analysis. HR, hazard ratio; 95% CI, 95% confidence interval.

A B C

FIGURE 6 | Receiver operating characteristic (ROC) analysis of the ten-gene signature risk score. ROC analysis of the sensitivity and specificity of the prognosis

prediction by the ten-gene risk score, age, gender, T classification, tumor stage, tumor thickness, tumor diameter, tumor side, tumor location, extrascleral extension,

or retinal detachment in training cohort based on overall survival (A), training cohort based on progression-free survival (B), and validation cohort based on

metastasis-free survival (C). AUC, area under the ROC curve.

results, here, verified the predictive ability of the risk score, and
its independence.

To further assess the predictive power of this ten-gene
signature, we performed ROC analysis. AUC can be used to check

the accuracy and predictive ability of biomarkers in diagnostic
tests (25). ROC analysis indicated that the AUC of the ten-gene
signature stayed above 0.7 in these two cohorts, and superior
to other variates (Figure 6). These ROC results again suggested
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FIGURE 7 | The correlations between the ten-gene signature and the copy number aberrations in TCGA-UVM. The correlations between risk score and chromosome

3 (A), 8q (B), 6q (C), 6p (D), and 1p (E) mutations were plotted. The blue line in each plot was fitted linear model indicating the proportion tropism of the copy number

along with risk score. The shade around the blue line represents the 95% confidence interval. The Spearman test was applied for the correlation examination. CN,

copy number.

that our signature might strengthen the predictive accuracy of
prognosis in UM.

Our signature was composed of ten genes, which were SIRT3,
HMCES, SLC44A3, TCTN1, STPG1, POMGNT2, RNF208,
ANXA2P2, ULBP1, and CA12, respectively. In the signature
model, ANXA2P2, ULBP1, CA12 were unfavorably genes for the
outcome, whereas other genes presented protective function on
the prognosis of UM patients. Pseudogenes are nonfunctional
segments of DNA that resemble functional genes (26, 27).
Previous studies have suggested that pseudogenes will only
participate in regulatory roles (28). Recent studies have shown
that most pseudogene breaks follow a certain pattern, and it
is likely that the pseudogenes of this pattern can be repaired
under certain conditions to restore function (27). ANXA2P2 is
one of three pseudogenes of annexin A2 that have recently been
shown to be aberrantly transcribed in hepatocellular carcinoma
(HCC) cells (29). A recent report revealed that the expression of

ANXA2P2 was up-regulated in HCC and promoted HCC to be
an aggressive phenotype (29). ULBP1 is related to MHC class I
molecules, but its gene maps outside the MHC locus (30, 31). It
functions as a stress-induced ligand for NKG2D receptor (31). In
UM, NKG2D expression was detected in primary tumor lesions,
in which a large amount of NKG2D lymphocyte infiltration was
also observed (32). Metastatic UM lesions lost MIC expression
and are absent of NKG2D+ lymphocytes (33). A recent study
demonstrated that soluble NKG2D ligand is a biomarker related
to the clinical outcome of immune checkpoint blockade therapy
in patients with metastatic melanoma (34). CA12 is a membrane-
associated enzyme. CA12 is highly expressed in many human
cancers and often indicates a poor prognosis, so it is a promising
target for cancer treatment (35). Among the genes that we found
to have prognostic protection, SIRT3, the major deacetylase in
mitochondria, plays a crucial role in modulating oxygen reactive
species (ROS) and limiting the oxidative damage in cellular

Frontiers in Oncology | www.frontiersin.org 9 October 2020 | Volume 10 | Article 567512

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Luo et al. Ten-Gene Signature in Uveal Melanoma
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B

FIGURE 8 | Gene set enrichment analysis based on the ten-gene signature. (A) Enriched gene sets annotated by the HALLMARK collection between the high and

low-risk groups in the training cohort. (B) Enriched gene sets annotated by the KEGG collection between the high and low-risk groups in the training cohort. Gene

sets with |NES |> 1, NOM p < 0.05, and FDR q < 0.25 were considered significant.

components (36). In some types of cancer, SIRT3 functions as
a tumoral promoter, since it keeps ROS levels under a certain
threshold compatible with cell viability and proliferation. On the
contrary, other studies describe SIRT3 as a tumoral suppressor,
as SIRT3 could trigger cell death under stress conditions (36).
HMCES is a critical component of the replication stress response,
mainly upon base misincorporation (37). Deregulated APOBEC
activity is the source of a variety of cancer mutagenesis (38).
HMCES can respond to APOBEC-induced abasic sites, maintain

genome stability, and promote replication extension; otherwise,
replication will be slowed down by the participation of TLS
polymerase (38). Therefore, HMCES plays a vital role in this
tumorigenesis process (38). A lately study showed that SLC44A3
is different expressed between normal and UM (39), in addition,
Li et al. (40) found it was found SLC44A3 were associated
with better survival in UM and indicated their protective roles.
Recent studies revealed that TCTN1 is widely up-regulated in
various types of human cancer (41–44), and acts as an oncogene
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FIGURE 9 | TIC profile and correlation analysis. (A) The bar graph showed the proportion of 20 TICs in UM tumor samples in the training cohort. Each column

indicates one sample. (B) Heatmap showing the correlation between 20 kinds of TICs. The numeric and shade of each small color box indicate the coefficient

between two kinds of cells. X shape covered coefficient is no statistically significant. The Pearson coefficient was used for the significance tests. P < 0.05 is the cutoff.

TIC, tumor-infiltrating immune cell; UM, uveal melanoma.

via promoting proliferation, migration, or inhibiting apoptosis.
However, in a study conducted by Xue et al. (12), TCTN1
was found to be low expressed in high-risk patients with UM
and has a protective effect on the prognosis of UM, which has
been consistent with our study. STPG1 is found with few traces

from existing studies, but shows to be a prognostic marker in
endometrial cancer (favorable) and renal cancer (favorable) from
The Human Protein Atlas portal (45). The high expression levels
of human POMGNT2 in the brain, muscle, heart, and kidney
in fetal as well as adult tissues suggest the importance of this
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A

B C

FIGURE 10 | Correlation of TICs proportion with ten-gene signature risk score in the training cohort. (A) Only significantly correlated TICs was plotted. The blue line in

each plot was fitted linear model indicating the proportion tropism of the immune cell along with risk score. The shade around the blue line represents the 95%

confidence interval. The Spearman coefficient was used for the correlation test. (B) The violin plot showed the ratio differentiation of 20 kinds of immune cells between

UM tumor samples with low and high-risk groups and was tested by Wilcoxon rank-sum. (C) The Venn plot displayed three kinds of TICs correlated with risk score

co-determined by difference and correlation tests shown in violin and scatter plots, respectively. P < 0.05 is the cutoff. TIC, tumor-infiltrating immune cell; UM, uveal

melanoma.

gene during development (46). However, whether POMGNT2
plays a vital role in tumor progress remained unclear and
needs more efforts in further research. RNF208 decreases the
stability of soluble Vimentin protein through a polyubiquitin-
mediated proteasomal degradation pathway, thereby suppressing
metastasis of triple-negative breast cancer (TNBC) cells (47). In a
comprehensive bioinformatics study, RNF208 was found to have
decreased expression in UM and was associated with a better
prognosis (12). There are relatively fewer studies related to these
genes and UM. However, the ten-genes signature has a significant
role in predicting and diagnosing UM in our research. The ten-
gene signature or each of them may be the potential specific
directions for future research on UM.

Studies showed that chromosome aberrations and gene
mutations in UM are closely related to clinical results. The loss
of a chromosome 3 in UM is associated with an increased risk
of metastasis and poor prognosis (16). Recently, researchers also
found that Monosomy 3 is associated with poor survival after
UM treatment (19). Previous studies have shown that besides

chromosome 3, the increase in chromosome 8q is also related to
poor survival prognosis (48–51). In addition, other chromosomal
abnormalities have been shown to correlate with poor prognosis
and these include 6q loss, lack of 6p gain, 1p loss, and 16q loss
(16–20). Among the ten gene signatures found in this study, five
were located in the above-mentioned chromosomes (Table 2).
Further on, we performed Spearman test to assess the correlation
between the copy numbers of chromosome 3, 8q, 6q, 6p, and 1p
and risk score, finding that the ten-gene signature risk score was
significantly correlated with copy numbers of chromosome 3, 6q,
and 6p negatively, and 8q positively (Figure 7), which further
confirmed the crucial of the ten-gene signature in predicting
prognosis of UM.

The GSEA found that gene sets enriched in pathways
concerned with immune response, inflammatory response, p53
signaling, reactive oxygen species, Notch signaling, proteasome,
natural killer cell, cytosolic DNA-sensing, and glycolipid
metabolism. These findings demonstrated that ten-gene
signature might potentially participate in the immune-dominant
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tumor microenvironment. The proportion of TICs analysis
based on CIBERSORT algorithm found that activated T cells
CD4 memory were positively correlated with risk score, while,
Monocytes and Mast cells resting were negatively correlated with
risk score, further supporting that the signature interacted closely
with the tumor environment. Strategies targeting the tumor
microenvironment of UM have the potential to improve the
efficacy of standard and genome-based molecular therapeutics,
and, as well, to help resolve many of the challenges associated
with developing new drugs and running clinical trials (52).
In our GSEA, KEGG collection indicated that NK cells were
associated with the ten-gene risk score. This finding is consistent
with previous research (53). Durante et al. (53) recent work
identified LAG3 as a potential candidate for immune checkpoint
blockade in patients with high risk UM, and demonstrated that
LAG3 was expressed on NK cells, CD8+ T cells, and regulatory T
cells, highlighting the vital of NK cells in UM. However, through
immune cell and V(D)J immune repertoire analysis, Durante
et al. (53) group found NK cells were few present, and they were
distributed equally across tumor samples. This finding explains
why NK cells stood out in GSEA but were not prominent in our
CIBERSORT result. We thought the main reason was that the
small amount of NK cells was “ignored” by the CIBERSORT
algorithm, which led to the discrepancy of data analysis results.
In Durante et al.’s (53) research, T cells were found present in
all tumor samples and collaborated with LAG3 operating UM
development. This conclusion was similar to our finding that the
infiltration of CD4T cells was correlated with the ten-gene risk
score. Moreover, NK cells can recognize and directly kill early
activated T cells, which can determine the quality and intensity
of T cell responses, thereby affecting the immune process (54).
As described above, although NK cells were “ignored” by the
CIBERSORT algorithm, their ability in UM progress were not
hidden, but be potentially “stolen” by T cells that are strictly
related to it, further explained why NK cells appeared in our
GSEA results but disappeared in the CIBERSORT conclusions.

The immune system uses multiple antigens to distinguish
tumor cells from healthy cells (55). In many cancers,
immune infiltration within the tumor is usually associated
with a better prognosis and a favorable immunotherapy
response (56). However, in primary UM, market-specific
immunohistochemistry has demonstrated that dense infiltrate
of leukocytes or macrophages is associated with monosomy 3
and a poor prognosis (57–59). UM cells express tumor-specific
antigens, including the Melanoma Antigen Gene (MAGE) family
proteins, premelanosome protein gp100, and tyrosinase (60, 61).
But, both the innate and adaptive effector immune responses
can be circumvented by UM cells (55), and previous studies
have shown that UM cells have established a specific immune
escape mechanism, leading to its progressive process and poor
prognosis (55, 60–63). Contrary to other cancers, the increase
in HLA class I expression is related to the poor prognosis of
UM and is considered to be a mechanism by which natural
killer cell-mediated cytotoxicity in the blood escapes tumors
(64, 65). A recent study demonstrated that immune infiltration
in UM is highly correlated with the upregulation of stimuli
and targets (such as HLA and IFNG) that are fundamental
for T cell-mediated immunotherapy (16). More recent reports

suggest that disseminated conjunctival melanoma may be
responsive to targeted molecular therapies, such as BRAF and
MEK inhibitors in BRAF-mutant tumors (66), and checkpoint
inhibitor immunotherapeutic agents, such as pembrolizumab
(67). A better understanding of UM immunology can help select
patients who may benefit from immunotherapy. However, the
current knowledge of UM immunology is still in its infancy,
and further research is needed to clarify the mechanism of
UM inhibition and identify new targets to enhance anti-tumor
immune reactivity.

DecisionDx-UM is a prognostic test that determines the
metastatic risk associated with UM (68). Specifically, the assay
determines the activity or “expression” of 15 genes which
indicate a patient’s individual risk, or class. The test classifies
tumors as: Class 1 (low metastatic risk); Class 2 (high metastatic
risk) (68). According to the report of the Collaborative Eye
Oncology Group (COOG), the DecisionDx-UM GEP test is
an accurate prospectively validated molecular classifier whose
results are highly correlated with metastatic potential (69,
70). In a prospective multicenter study, Plasseraud et al. (71)
demonstrated that the DecisionDecxD-UM could accurately
predict the risk of metastasis in patients with UM. Compared
with the seminal work of DecisionDx-UM, the present study
obtained robust ten-gene signature by applying various statistical
methods and validation in an independent cohort. Fewer gene
numbers can save costs and improve efficiency in clinical
practice. However, the results of the predecessors have been
applied in commerce and have been widely reported and verified.
In this regard, our research has great potential while still a long
way to go.

Our research also has some limitations. Although TCGA-
UVM is a cohort that is currently recognized by most
scholars, the data in it are from large uveal melanoma treated
with enucleation. Similarly, the GSE22138 cohort, which was
published online on the GEO database platform, and its academic
recognition is also undoubted. Still, most of the data in it
came from large eye tumors. Such sample distribution in
these two cohorts may not be consistent with the clinical
population. Therefore, our research may have a selection bias
for database selection. Our ten-gene signature came from
retrospective data, and more prospective data were needed for
proving the clinical utility of it. In addition, due to the limited
clinical characteristics of patients included in TCGA cohort, we
could not perform certain clinical subgroup analyses. Besides,
there is currently no wet experimental data explaining the
relationship between these ten-genes and their mechanism in
UM samples. Therefore, between the ten-gene signature and
the prognosis of UM, more effort is needed to clarify the
potential relationship.

CONCLUSION

In conclusion, our research defined a robust ten-gene signature
in UM. It is a comprehensive analysis of the TCGA and the
GEO database. This signature was related to the prognosis
of UM and can accurately identify the prognostic risk of
patients. Notably, we evaluated the reliability and accuracy of
the signature by compared to variants of chromosomes 3 and
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8q, and examining in a validation cohort. What is more, the
functions and immune infiltrating analyses revealed that the
signature had close interactions with the immunodominant
tumor environment, whichmay advance the development of new
therapies for UM treatment.
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