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Abstract

Background: Fitness trackers and smart watches are frequently used to collect data in longitudinal medical studies. They allow
continuous recording in real-life settings, potentially revealing previously uncaptured variabilities of biophysiological parameters
and diseases. Adequate device accuracy is a prerequisite for meaningful research.

Objective: This study aims to assess the heart rate recording accuracy in two previously unvalidated devices: Fitbit Charge 4
and Samsung Galaxy Watch Active2.

Methods: Participants performed a study protocol comprising 5 resting and sedentary, 2 low-intensity, and 3 high-intensity
exercise phases, lasting an average of 19 minutes 27 seconds. Participants wore two wearables simultaneously during all activities:
Fitbit Charge 4 and Samsung Galaxy Watch Active2. Reference heart rate data were recorded using a medically certified Holter
electrocardiogram. The data of the reference and evaluated devices were synchronized and compared at 1-second intervals. The
mean, mean absolute error, mean absolute percentage error, Lin concordance correlation coefficient, Pearson correlation coefficient,
and Bland-Altman plots were analyzed.

Results: A total of 23 healthy adults (mean age 24.2, SD 4.6 years) participated in our study. Overall, and across all activities,
the Fitbit Charge 4 slightly underestimated the heart rate, whereas the Samsung Galaxy Watch Active2 overestimated it (−1.66
beats per minute [bpm]/3.84 bpm). The Fitbit Charge 4 achieved a lower mean absolute error during resting and sedentary activities
(seated rest: 7.8 vs 9.4; typing: 8.1 vs 11.6; laying down [left]: 7.2 vs 9.4; laying down [back]: 6.0 vs 8.6; and walking slowly:
6.8 vs 7.7 bpm), whereas the Samsung Galaxy Watch Active2 performed better during and after low- and high-intensity activities
(standing up: 12.3 vs 9.0; walking fast: 6.1 vs 5.8; stairs: 8.8 vs 6.9; squats: 15.7 vs 6.1; resting: 9.6 vs 5.6 bpm).

Conclusions: Device accuracy varied with activity. Overall, both devices achieved a mean absolute percentage error of just
<10%. Thus, they were considered to produce valid results based on the limits established by previous work in the field. Neither
device reached sufficient accuracy during seated rest or keyboard typing. Thus, both devices may be eligible for use in respective
studies; however, researchers should consider their individual study requirements.

(JMIR Form Res 2022;6(3):e33635) doi: 10.2196/33635
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Introduction

Background
Wearables such as smart watches and fitness trackers enable
data recording in real-life settings, where biomedical signals
cannot be easily captured with conventional or clinical devices.
They can provide unobtrusive, economic, high-resolution,
longitudinal recording capabilities for various signals, including
accelerometer and photoplethysmogram (PPG) data [1,2]. This
makes them particularly interesting for use in longitudinal
medical studies and biomedical research. Observational studies
especially benefit from the unobtrusive and longitudinal
recording characteristics of fitness trackers and wearables across
a variety of medical disciplines [3-9]. In addition to clinical
studies, fitness trackers are also usable in other applications.
These include activity feedback, activity promotion, weight
management, disease monitoring, disease diagnostics, stress
and sleep monitoring, and health care surveillance [10-15].

An important prerequisite for the use of wearables in studies
and connected applications is adequate accuracy and, thus, data
quality. Without sufficient validation, the reliability of the
recorded data is unknown, which is the case for many modern
end consumer devices. Thus, stringent upfront validation is not
only a necessity for meaningful research but also prospective
applications.

Related Work
The Fitbit Charge HR series (Fitbit) is one of the most frequently
validated devices. The study by Lee [16] reviewed the first
device generation with 10 college students under free-living
conditions. Each participant was asked to conduct normal day
activities for 8 hours, and the heart rate (HR) was recorded and
evaluated every minute against a Polar HR chest strap monitor.
They concluded that the device was not accurate, with a mean
absolute percentage error (MAPE) of 9.17% (SD 10.9%) when
worn on the nondominant hand. Brazendale et al [17] evaluated
the HR measurements of 39 children. The evaluation was
performed on a per-minute basis, and the MAPE was reported
as 6.9%. Thus, the authors concluded that wearable fitness
trackers provide HR measurements comparable with a criterion
field–based measure.

The data of 50 intensive care unit patients monitored over 24
hours were used for evaluation by Kroll et al [15]. They recorded
HR values every 5 minutes and identified a median difference
of 1 beats per minute (bpm) between the derived HR of the
fitness tracker and the electrocardiogram (ECG)–derived HR.

A higher comparison frequency was chosen by Jo et al [18]. By
measuring and comparing the HR every second, 24 participants
completed a 77-minute protocol comprising several activities,
including cycling, walking, jogging, running, and other sports
exercises. A 12-lead ECG served as the criterion device. The
authors reported a mean bias of −8.8 bpm and concluded that
the device by Fitbit does not satisfy the validity criteria,
particularly during higher exercise intensities.

The second release of the Fitbit Charge HR series was evaluated
by Reddy et al [19], Thomson et al [20], and Benedetto et al
[21], yielding different results on the device accuracy. To the

best of our knowledge, the only validation study for Fitbit
Charge 3 was performed by Muggeridge et al [22], who stated
that the Fitbit Charge 3 performed well only during resting and
walking-like conditions but otherwise assessed the accuracy to
be overall poor.

To the best of our knowledge, no validation studies on the
Samsung Galaxy Watch Active series exist as of today.
However, other Samsung smart watches have been validated in
the past. The measurements of the Samsung Gear S were
investigated by Wallen et al [23], with 22 participants in rest,
walking, running, and cycling. Out of a total of 4 devices,
Samsung Gear S demonstrated the greatest variability in HR
measurements. Shcherbina et al [24] examined the Samsung
Gear S2 among 6 other devices with 60 participants from diverse
backgrounds, performing a range of activities, including sitting,
walking, running, and cycling. Of the validated devices in the
study, Samsung Gear S2 showed the highest overall error,
particularly during sitting. In another study by El-Amrawy and
Nounou [25], the device also showed the lowest accuracy
compared with 17 other devices and a clinical pulse oximeter
as a criterion device.

Objective
The validation study presented here was conducted as an initial
groundwork for a large-scale observational study in obstetrics.
As a pilot study, we aim to assess the performance of the
selected devices in a healthy population to initially determine
eligibility for longitudinal medical studies in general. We were
particularly interested in the performance and accuracy of HR
measurements, which are analyzed in detail in the following
sections. This work is the first to validate the Fitbit Charge 4
and Samsung Galaxy Watch Active2 (Samsung Group).

Methods

Overview
Details on the participants, experimental procedure, used
devices, validation metrics, processing, and evaluation are
outlined in the following sections. Where applicable and
possible, we adhered to several common grounds, guidelines,
and best practices for wearable HR validation, which have been
published in the more recent past [2,12,26].

Ethics Approval
The study was approved by the ethics committee of
Friedrich–Alexander Universität Erlangen-Nürnberg (106_13
B). The participants provided informed consent to participate.

Recruitment
Recruitment was conducted via mailing lists and direct contact.
We were unable to perform a power calculation for sample size
estimation as the selected devices have not been investigated
in the past, and thus, no information on effect sizes or variances
was available. Consequently, we aimed at a sample size of
approximately 20 to 25 participants, which is in line with
previous HR evaluation studies [18,19,22,27,28]. Exclusion
criteria was a major underlying medical condition affecting the
participants’ physical capability or increasing the risk of injury.
Assessment was conducted using the Physical Activity
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Readiness Questionnaire [29]. Ultimately, 23 participants were
recruited.

Devices and Gold Standard
We aimed to investigate the accuracy of Fitbit Charge 4 and
Samsung Galaxy Watch Active2. Fitbit Charge 4 was released
in March 2020. According to the manufacturer, it has a battery
runtime of up to 7 days, which makes it particularly interesting
for longitudinal studies [30].

The Galaxy Watch Active2 is a smart watch using Tizen OS as
the operating system. Its PPG sensor uses 8 photodiodes [31].
The smart watch is available in several sizes and editions; our
study used a 40 mm–sized version without long-term evolution.
Furthermore, the device is able to record the ECGs. It is possible
to derive blood pressure measurements through the PPG sensor;
an upfront validation with a blood pressure cuff is required
beforehand, and it is recommended to repeat this validation
every 4 weeks [32,33]. Tizen OS is extendable, and a
documentation of several available application programming
interfaces (APIs) to create custom applications and interact with
the device is available on the web [34]. This includes functions
for accessing nearly all the built-in sensors. The available
functions are not limited to the reading of HR and RR intervals
but also allow raw data access to nearly all built-in sensors,
particularly the PPG sensor. These features make the device
interesting for medical studies, as their own algorithms for data
processing can be used.

A Mind Media NeXus-10 MKI (Mind Media BV) was used as
the gold standard. The ECG Holter device is a certified medical
device of class 2a (EU). Data are transferred in real time via
Bluetooth to a computer running a manufacturer-supplied
software called Biotrace+ (Mind Media) [35], which displays
and allows the export of HR, heart rate variability, and ECG
data.

Study Procedure
The study was conducted in an indoor laboratory environment
on 7 different days between July 30, 2020, and September 21,
2020. As the data recording was conducted during summer
without air conditioning, ambient temperatures were comparably
high for Northern Bavaria, causing sweaty skin surfaces in some
cases. This can induce additional noise, electrode loss, or affect
the PPG signal measurement of wearable devices.

After receiving information on the study procedure and aims,
participants filled out the activity readiness questionnaire and
respective consent forms. Participants were then supplied with
the 2 wearable devices and were asked to place 1 device on each
arm, ensuring that the sensor was in good contact with the skin
and that the devices were fitted comfortably on the arms. The
study adviser determined which device should be placed onto
which arm, and devices were equally placed on the left or right
arm across all participants. As the Fitbit app has a setting to
determine whether the device is placed on the dominant or
nondominant arm, this setting was configured accordingly by
the study adviser based on the participant information. No such
setting exists for the Galaxy Watch Active2. Subsequently, the
Mind Media NeXus-10 MKI’s electrodes were placed in a lead
two position. To reduce noise, electrodes were placed on the
torso, not the extremities. As the Holter device was equipped
with a handbag-like body strap, it was hung over the shoulder
of participants to increase freedom of movement. This
positioning method was supported by the manufacturer.
Recording started at least 30 seconds after placement of the
electrodes, ensuring sufficient time for adaption for both
wearables and the ECG algorithms.

The participants conducted an experimental protocol covering
10 subsequent tasks. Each task lasted between 1 and 2 minutes.
The protocol anticipated a total length of 15 minutes. The chosen
activities originate from activity recommendations for women
with pregnancies, who are the prospective target group in our
anticipated larger study. Participants were asked to conduct
activities at their own pace to resemble activities as they would
be conducted free living by the target group. With transitions
between the individual study protocol phases, the recordings
had an average duration of 19:03 minutes. We tried to minimize
transition or relaxation phases between activities to ensure that
the respective HR levels were similar between adjunct activities.
If minor slack times (usually <10 seconds) occurred between
activities (eg, because of instructions by the study adviser or a
move of position between activities), these slack times were
not included in the individual activity analysis. Our overall goal
was to initially start with resting and sedentary activities (seated
rest, typing, laying down [left], and laying down [back]), then
continually increase HR using low intensity (standing up and
walking at a slow pace) and high intensity (walking at brisk
pace, climbing stairs, and squat work out) activities. The full
list of activities and tasks is presented in Table 1.
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Table 1. List of conducted activities.

DescriptionDuration (minute)Activities

2Seated rest • Sit comfortably on a chair while breathing normally, without any physical movements
• Considered resting or baseline condition

1.5Keyboard typing • Type a neutral text on a computer keyboard provided by the study advisor
• Aims to assess the effects of hand movement without general body movement

1.5Laying on left side • Lay on the left body side on a flat mattress

1.5Laying on back • Turn and lay down fully on the back

1Standing up • Stand up and maintain an upright position without movement

1Walking at a slow pace • Walk slowly and naturally around the laboratory at one’s own pace

2Walking at a brisk pace • Increase the walking speed to the maximum walking speed without running at one’s own pace

1.5Climbing stairs • Climb stairs up and down at one’s own pace Simulation of a workout for a woman with pregnancy

1.5Squat workout • Conduct squats at one’s own pace
• Simulation of a workout for a woman with pregnancy

1.5Seated rest • Sit down directly after the workout, relax your breathing, and remain without motion.
• Aims to assess drastic changes in heart rate from high activity to rest

Data Recording and Processing

Fitbit Charge 4
To increase the sampling frequency of the Fitbit Charge 4, the
device was set to the training mode before the first study run.
This produced a HR measurement every 1 to 5 seconds, thus
resulting in a sampling frequency between 0.2 and 1 Hz. As the
fitness tracker is linked to a user account in Fitbit’s cloud, the
data were accessed through the Fitbit Web API using
representational state transfer queries and the Postman software.
The API only provides access to HR measurements, and no
PPG raw data or RR intervals are provided.

To compare data on a per-second basis, the HR values required
upsampling. When not provided with a HR measurement every
second, missing values were imputed using the next available
HR value.

Samsung Galaxy Watch Active2
A custom application for Samsung’s Tizen OS was developed.
The Human Activity Monitor API was used to retrieve HR and
RR intervals. All retrieved data were saved in JSON format to
files and downloaded to a computer. The Human Activity
Monitor API provides HR and RR interval data with a sampling
rate of 25 Hz (the provided callback function to the
humanactivitymonitor.start function is called every 40
milliseconds). However, the data are inconclusive: the HR
changes more frequently than physiologically explainable; that
is, the API provides up to 5 HR changes (from 86 to 85 to 86
to 85 to 84) within a time frame as small as 300 milliseconds.
At the same time, the reported RR interval occasionally remains
unchanged over periods >10 seconds. Thus, we decided to
sample the HR and RR interval data at 1 Hz. A minority of the

data was sampled at a higher frequency and manually
downsampled to 1 Hz.

Mind Media NeXus-10 MKI
The criterion device recorded ECG data at a sampling frequency
of 256 Hz. Furthermore, it contained internal peak detection
algorithms, also providing derived HR and RR interval data at
32 Hz. As stated before, data were transferred via Bluetooth
from the Holter device to a computer running Mind Media
Biotrace+. The data were then exported from the Mind Media
Biotrace+ software as a CSV file. Activity sections were
recorded and annotated by the study adviser during the study
execution in software running on a laptop computer.

Owing to the nature of the study protocol, some activities were
prone to noise. Particularly during squats and stair climbing,
ECGs were sometimes noisy, and the manufacturer-supplied
software was apparently unable to correctly identify R peaks,
resulting in erratic and evidently wrong HR and RR interval
data. This was particularly true for squat and stair-climbing
activities.

To cope with this issue, the raw criterion ECG was again
processed in Python, using the ECG function from the BioSPPY
library [36]. Subsequently, the R peaks were manually revised
by a human annotator and corrected. We then used a
self-developed function to extract the HR from the RR intervals.

Finally, the data were downsampled to 1 Hz. If >1 HR value
occurred during 1 second (as the HR was >60 bpm), the
respective values were averaged.

Data Exclusion
Although manual data processing was applied to ensure high
data quality, some recorded criterion ECGs were too noisy and
unusable for comparison. Data were excluded if adequate
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criterion device recordings were unavailable but not if the
measured data of the examined devices were evidently incorrect,
as this situation could also appear in real-life use.

As a result, data of 3 participants (IDs 6, 8, and 23) had to be
completely excluded. In addition, data of 2 participants were

excluded for the squat and walking stairs activity (ID 5 and ID
7). After the squat activity, electrodes of 2 participants (ID 2
and ID 7) detached, and thus, no data were available. As stated
before, a detailed overview of the conducted manual data
correction and excluded activities of individual participants is
provided in Table 2.

Table 2. Data exclusion and annotation.

Seated restSquatsStairsWalking
brisk

Walking
slow

Standing
up

Laying on
back

Laying on
left side

Keyboard
typing

Seated restParticipant

OriginalOriginalOriginalOriginalOriginalAnnotatedOriginalAnnotatedbOriginalOriginala1

ExcludedcOriginalOriginalOriginalOriginalOriginalOriginalOriginalOriginalOriginal2

OriginalOriginalAnnotatedAnnotatedOriginalAnnotatedAnnotatedAnnotatedOriginalOriginal3

OriginalAnnotatedAnnotatedAnnotatedAnnotatedOriginalAnnotatedAnnotatedAnnotatedOriginal4

OriginalExcludedExcludedAnnotatedAnnotatedOriginalOriginalAnnotatedOriginalOriginal5

ExcludedExcludedExcludedExcludedExcludedExcludedExcludedExcludedExcludedExcluded6

ExcludedExcludedExcludedAnnotatedAnnotatedOriginalOriginalOriginalOriginalOriginal7

ExcludedExcludedExcludedExcludedExcludedExcludedExcludedExcludedExcludedExcluded8

OriginalOriginalOriginalOriginalOriginalOriginalOriginalOriginalOriginalOriginal9

OriginalOriginalAnnotatedOriginalOriginalAnnotatedOriginalOriginalOriginalOriginal10

OriginalAnnotatedOriginalOriginalOriginalOriginalAnnotatedOriginalOriginalOriginal11

OriginalOriginalOriginalOriginalOriginalOriginalOriginalOriginalOriginalOriginal12

OriginalOriginalOriginalOriginalOriginalOriginalOriginalOriginalOriginalOriginal13

OriginalAnnotatedOriginalOriginalOriginalOriginalOriginalOriginalOriginalOriginal14

OriginalAnnotatedOriginalOriginalOriginalOriginalOriginalOriginalOriginalOriginal15

OriginalOriginalOriginalOriginalOriginalAnnotatedOriginalOriginalOriginalOriginal16

OriginalOriginalOriginalOriginalOriginalOriginalOriginalOriginalOriginalOriginal17

OriginalOriginalOriginalOriginalOriginalAnnotatedOriginalOriginalOriginalAnnotated18

OriginalAnnotatedOriginalOriginalOriginalOriginalOriginalOriginalOriginalOriginal19

OriginalAnnotatedOriginalOriginalOriginalAnnotatedOriginalOriginalOriginalOriginal20

OriginalOriginalOriginalOriginalOriginalOriginalOriginalOriginalOriginalOriginal21

OriginalOriginalOriginalOriginalOriginalOriginalOriginalOriginalOriginalOriginal22

ExcludedExcludedExcludedExcludedExcludedExcludedExcludedExcludedExcludedExcluded23

aRepresents original data.
bRepresents manually annotated data.
cRepresents excluded activity participant combinations.

Data Synchronization
As the software of the validated fitness trackers is mostly closed
source, their exact time measurement and determination
mechanism are unknown. Furthermore, the on-device signal
processing may cause additional delays. Therefore, we did not
rely on exact time stamps for device synchronization but instead
used another synchronization technique.

Synchronization of the signals was performed on the previously
downsampled signals of all 3 devices (1 Hz, ie, 1 HR value per
second). We conducted the synchronization between the
individual validated devices and our HR reference by
maximizing the Pearson correlation coefficient (PCC). The

measurements were then shifted by the respectively determined
time delays. This provided very similar and, in many cases,
equal results to a shift through cross-correlation but showed
better visual and metric results in a minority of edge cases.

Statistical Analysis
All statistical analyses were conducted in Python (version 3.8.7)
on a Windows 10 machine using Numpy 1.19.5 [37], Scipy
1.6.0 [38], Pandas 1.2.0 [39], and Pingouin 0.3.11 [40]. Raw
data and respective scripts are available from the authors upon
request.

Absolute error analysis was conducted using the mean absolute
error (MAE) and MAPE as key metrics. We defined MAE as
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the average absolute distance between the HR of the validated
device and the criterion device. MAPE is the percentage
difference between the reference and the respective device
values. The limits of agreement and mean error (bias) were
derived from Bland–Altman plots, which also visually aided in
the interpretation of the results. Correlation analysis was
performed using the Lin concordance correlation coefficient
(CCC), as suggested by Sartor et al [12,41,42]. PCC was
additionally reported for completeness but not analyzed.

Results

Participants
In total, 23 healthy individuals participated in the study (n=10,
43% women and n=13, 57% men). The demographics and details
of the participants are shown in Table 3. Most participants were
university students and staff members. Given the location of
the university, Fitzpatrick skin type 2 was overrepresented
(3×type 1, 15×type 2, 2×type 3, 1×type 4, and 2×type 5).

Table 3. Demographics and details of the participants.

Values, mean (SD)Values, maximumValues, minimumCharacteristics

24.2 (4.6)3620Age (years)a

175.7 (10.48)193156Height (cm)

71 (12.75)8850Body weight (kg)b

aOne participant did not provide his or her date of birth.
bOne participant did not provide his or her body weight.

HR Measurement
The key results of this validation study are summarized in Table
4. In total and across the entire experiment duration (ie, all
activities), both devices achieved very similar values for MAE,
MAPE, and PCC. Although the Fitbit Charge 4 slightly
underestimated the HR by −1.66 bpm (bias), the Samsung
Galaxy Watch Active2 overestimated the HR by 3.84 bpm
(bias).

In resting and sedentary activities (seated rest, typing, and laying
down) and slow walking, the Fitbit Charge 4 achieved lower
absolute and absolute percentage error rates. During standing
up and all other physical activities, the Samsung Galaxy Watch
Active2 outperformed the Fitbit Charge 4.

A particularly high bias (ie, mean difference) was observed by
the Fitbit Charge 4 during standing up (−7.95 bpm) and squats
(−12.52 bpm). The Samsung Galaxy Watch Active2’s highest
bias was measured during typing (8.63 bpm) and laying down
on the left side (6.01 bpm).

The level of agreement of the Samsung Galaxy Watch Active2
is particularly broad during activities 1 to 5. The cause was a
non- or excessive recorded HR in participant 20 during these
activities, where the device recorded an average HR of 146,
148, 181, and 176 bpm. This HR trend is displayed in Figure
1. If this participant was excluded from the data analysis, the
metrics drastically improved: MAE and MAPE were consistently
lower than those of the Fitbit device for activities 1 to 5, and
both widths of limits of agreement and bias were reduced
significantly.

CCC was consistently higher in the Samsung Galaxy Watch
Active2. Both devices achieved particularly low scores (<0.250)
during typing and slow walking. The resting phase resulted in
the highest individual activity of CCC in both devices.

Bland–Altman plots for both devices are shown in Figures 2
and 3. A large cluster of points in the top-right section of Figure
3 is particularly noticeable. These data points are a result of the
previously mentioned mismeasurement of the Samsung Galaxy
Watch Active2. If participant 20 is excluded from the data set,
the respective cluster disappears from the plot.
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Table 4. Validation metrics of heart rate measurements across different activities and devices.

Samsung Galaxy Watch Active2Fitbit Charge 4Mind Media NeXus-10 MKIActivity (metrics)

Overall (0)

96.26 (22.55)90.85 (18.75)92.48 (22.34)Values (bpma), mean (SD)

8.138.589N/AcMAEb (bpm)

9.4199.74N/AMAPEd

0.8470.805N/ACCCe

0.850.839N/APCCf

3.84−1.66N/ABias (bpm)

−28.1 to 35.78−26.75 to 23.43N/ALoAg (bpm)

Seated rest (1)

79.89 (9.43)78.75 (3.88)75.65 (7.17)Values (bpm), mean (SD)

9.3817.829N/AMAE (bpm)

12.01311.801N/AMAPE

0.5080.203N/ACCC

0.5560.257N/APCC

4.413.36N/ABias (bpm)

−40.5 to 49.33−18.98 to 25.70N/ALoA (bpm)

Typing (2)

87.32 (5.84)79.44 (3.1)78.53 (6.23)Values (bpm), mean (SD)

11.628.139N/AMAE (bpm)

14.81511.24N/AMAPE

0.2070.057N/ACCC

0.2110.094N/APCC

8.630.79N/ABias (bpm)

−33.18 to 50.43−1.96 to 22.14N/ALoA (bpm)

Laying down (left; 3)

79.74 (8.94)75.25 (4.48)73.57 (9.17)Values (bpm), mean (SD)

9.357.245N/AMAE (bpm)

11.9019.938N/AMAPE

0.6240.382N/ACCC

0.6630.507N/APCC

6.012.13N/ABias (bpm)

−31.6 to 43.62−17.49 to 21.75N/ALoA (bpm)

Laying down (back; 4)

73.52 (5.25)68.51 (3.61)68.49 (7.75)Values (bpm), mean (SD)

8.6226.034N/AMAE (bpm)

11.2429.062N/AMAPE

0.5540.249N/ACCC

0.6090.358N/APCC

4.820.03N/ABias (bpm)

−33.7 to 43.34−16.62 to 16.67N/ALoA (bpm)

Standing up (5)
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Samsung Galaxy Watch Active2Fitbit Charge 4Mind Media NeXus-10 MKIActivity (metrics)

88.68 (9.14)81.03 (6.69)88.83 (11.76)Values (bpm), mean (SD)

8.97612.25N/AMAE (bpm)

9.98813.302N/AMAPE

0.5190.253N/ACCC

0.620.345N/APCC

0.52−7.95N/ABias (bpm)

−30.19 to 31.23−37.83 to 21.93N/ALoA (bpm)

Walking slow (6)

90.99 (3.53)87.3 (3.86)86.24 (6.38)Values (bpm), mean (SD)

7.7426.781N/AMAE (bpm)

9.0468.118N/AMAPE

0.180.15N/ACCC

0.240.188N/APCC

4.941.2N/ABias (bpm)

−15.45 to 25.3417.77 to 20.16N/ALoA (bpm)

Walking fast (7)

102.82 (4.92)99.11 (4.42)100.22 (6.64)Values (bpm), mean (SD)

5.8296.094N/AMAE (bpm)

6.2926.364N/AMAPE

0.4390.348N/ACCC

0.5160.408N/APCC

2.86−0.98N/ABias (bpm)

−16.8 to 22.51−20.68 to 18.73N/ALoA (bpm)

Stairs (8)

121.14 (10.19)115.54 (9.45)119.67 (13.83)Values (bpm), mean (SD)

6.8798.811N/AMAE (bpm)

6.1577.605N/AMAPE

0.6910.634N/ACCC

0.8120.803N/APCC

1.28−3.99N/ABias (bpm)

−19.14 to 21.7−25.61 to 17.63N/ALoA (bpm)

Squats (9)

130.26 (7.28)116.6 (7.72)129.05 (11.87)Values (bpm), mean (SD)

6.16315.737N/AMAE (bpm)

5.5111.976N/AMAPE

0.610.29N/ACCC

0.6680.335N/APCC

1.18−12.52N/ABias (bpm)

−20.55 to 22.92−50.46 to 25.42N/ALoA (bpm)

Resting (10)

105.82 (14.12)102.8 (11.25)106.17 (16.79)Values (bpm), mean (SD)

5.6189.612N/AMAE (bpm)

5.829.749N/AMAPE
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Samsung Galaxy Watch Active2Fitbit Charge 4Mind Media NeXus-10 MKIActivity (metrics)

0.8450.65N/ACCC

0.8720.752N/APCC

−0.38−3.45N/ABias (bpm)

−15.75 to 15.00−28.52 to 21.61N/ALoA (bpm)

abpm: beats per minute.
bMAE: mean absolute error.
cN/A: not applicable.
dMAPE: mean absolute percentage error.
eCCC: Lin concordance correlation coefficient.
fPCC: Pearson correlation coefficient.
gLoA: limits of agreement.

Figure 1. Heart rate measurement of participant 20. Samsung Galaxy Watch Active2 recorded no or excessive heart rate values during the first 5
activities.
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Figure 2. Bland-Altman plot for heart rate difference between Mind Media NeXus-10 MKI and Fitbit Charge 4 across all participants and activities.

Figure 3. Bland-Altman plot for heart rate difference between Mind Media NeXus-10 MKI and Samsung Galaxy Watch Active2 across all participants
and activities.

Discussion

Comparison With Previous Work
Our study aimed to evaluate 2 consumer wearable devices in
healthy participants over a range of activities. The results from
our study indicate that both devices achieved a MAPE <10%.
Although no previous work exists for the Samsung Galaxy
Watch Active2, our results are somewhat in line with previous
validation trials for the Fitbit Charge series.

A previous evaluation of the Fitbit Charge 3 by Muggeridge et
al [22] used a notably different experimental protocol,
emphasizing strenuous activities (with a focus on treadmill
running, sprinting, and cycling). The authors report an overall
MAPE of 7.37 (as compared with 9.74 in our study) and note
that the device underestimates the HR by −7 bpm (here, −1.66
bpm). Overall, the study states that the Fitbit device performs
poorly during high-intensity activities and results in a higher
error in that area. In our study, the Fitbit device’s mean bias

was highest while climbing stairs and squatting, with a bias of
−3.99 bpm and −12.52 bpm, respectively.

Reviewing studies on the Fitbit Charge 2, underestimations of
the HR have been reported by several other studies [19,21,43].
The study by Baek et al [44] only reported this underestimation
in the <100 bpm category and an overestimation of >120 bpm.
With respect to the MAPE, the study by Reddy et al [19]
reported a value of 11.33%, and the study by Nelson et al [43]
reported a value of 5.96% across all activities. Our measured
CCC of 0.805 across all activities is lower than the CCC of
0.906 reported by Nelson et al [43] in a 24-hour period.

Measurement Validity
Different validation definitions exist in the literature. Some
prior studies have used an error rate of +5% to –5% as a limit,
as it “approximates a widely accepted standard for statistical
significance [...]” [24] and is “widely accepted” [19]. A limit
of +10% to –10% is established by various organizations and
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institutions and has been equally used by other validation studies
[43]. The latter value is also proposed by previously mentioned
validation guidelines [12] and thus, used for further reference
in our work.

Similarly, different interpretations of correlation coefficients
have been used in the literature. Owing to the large number of
different definitions, ranging from a weak or poor interpretation
starting between <0.2, <0.50, and <0.9 [23,43,45], we refrain
from the use of an exact definition.

In our study and across all activities, both devices achieved a
MAPE <10% and, per definition, produced valid results. With
respect to individual activities, neither device produced valid
results for seated rest and typing activities. Furthermore, the
Fitbit Charge 4 did not record valid data for the standing up and
squat activities, and the Samsung Galaxy Watch Active2
produced invalid results for laying down in either of the 2
evaluated positions.

Limitations

Participants and Demographic Structure
Our study mainly included healthy young participants aged
between 20 and 36 years. Wearables may provide different
validation results for older participants, particularly with respect
to their skin properties and changes in the PPG curve.
Furthermore, as most of our participants were local university
students in middle Europe, Fitzpatrick skin types 1 to 3 were
overrepresented in our study.

Selected Activities
The overall duration of individual activities was rather short,
mostly because our aim was to set a low burden for study
participation. Although the HR of all participants increased
during the study duration (especially during the second half of
the study), some participants may require a longer activity
duration for optimal HR adaption. A shorter activity duration
makes the collected data less meaningful and results in a lower
number of recorded data points, thus decreasing statistical
expressiveness.

As all activities were conducted consecutively and without
breaks, splits between individual recorded activities always
resulted in minor transitional phases. Some participants may
react faster to the instructions of the study instructor than others.
This leads to additional time slack between individual activities
and may cause a slight metric profusion between the 2
subsequent activity metrics.

Laboratory Conditions and Environmental Factors
Although we aimed to replicate real-life activities as much as
possible, our study was still conducted in a laboratory setting.
Real-life use patterns may differ from those in our study and,
as such, may have an impact on the accuracy of the investigated
devices. Furthermore, our study was mostly conducted during
warm summer days, and our laboratory was not equipped with
air conditioning. Sweat is known to have an influence on ECG

electrode conductance. It may also have an impact on PPG
measurements by the examined wearable devices.

Data Annotation and Exclusion
Owing to various influencing factors—mainly ECG electrode
loss, heat, selected activities, and other unknown skin
factors—less data than anticipated were ultimately included in
our study (20/23, 87% participants). A solid baseline (ground
truth) was of the utmost importance in our study. Our manual
data annotation of the criterion device data underlines this effort.
As the annotation affects only the criterion device, it has no
impact on the data recorded by the evaluated devices and,
therefore, on future studies.

For participants 2, 5, and 7, only a subset of activities was
included in our statistical analysis (Table 2). Although the
respective individual activity metric averages reported in Table
4 do not include data for the respective activities, we did not
exclude these individual participants for the overall metrics.
This may lead to a minor bias toward resting and sedentary
activities, as activities with higher physical activities were more
prone to noise and, thus, data exclusion. Metrics only show
minor changes if the data of these participants are excluded
from the overall metric. The overall Fitbit Charge 4 MAE
changed from 8.589 to 8.614 upon exclusion, and the Samsung
Galaxy Watch Active2 MAE increased from 8.13 to 8.429.

The inclusion of data of participant 20 is controversial. A main
argument for potential exclusion is that the data are clearly
erroneous, and such data would be equally excluded in the study
settings. On the other hand, faulty recordings may also occur
in real-life settings. Excluding the data would lead to a positive
bias in favor of the Samsung Galaxy Watch Active2 and, thus,
to a nonobjective comparison. Therefore, we decided to include
these data.

Conclusions
We evaluated 2 previously unvalidated wearable devices by
conducting a study featuring various activities and 23
participants. Throughout the entire experimental procedure,
both devices achieved results just <10% MAPE and thus,
presented acceptable HR measurement capabilities. The Fitbit
Charge 4 outperformed the Samsung Galaxy Watch Active2
during resting and sedentary activities, and the Samsung device
was more accurate during high-intensity activities. Neither
device reached sufficient accuracy during seated rest and
keyboard typing.

Our study was a prequel to a larger interdisciplinary study in
obstetrics. Researchers should consider the intended use of
wearable devices when reviewing validation studies and
evaluating their respective findings with respect to their full
requirements. This is not only the case for the experimental
design but also for other aspects. Accuracy may not be the only
decisive factor. Features such as raw data access, battery
runtime, or additional sensors may be equally relevant for
individual research.
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Abbreviations
API: application programming interface
bpm: beats per minute
CCC: Lin concordance correlation coefficient
ECG: electrocardiogram
HR: heart rate
MAE: mean absolute error
MAPE: mean absolute percentage error
PCC: Pearson correlation coefficient
PPG: photoplethysmography or photoplethysmogram
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