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Primary immune thrombocytopenia (ITP) is an autoimmune disease. However, the molecular mechanisms underlying ITP
remained to be further investigated. In the present study, we analyzed a series of public datasets (including GSE43177 and
GSE43178) and identified 468 upregulated mRNAs, 272 downregulated mRNAs, 134 upregulated lncRNAs, 23 downregulated
lncRNAs, 29 upregulated miRNAs, and 39 downregulated miRNAs in ITP patients. Then, we constructed protein-protein
interaction networks, miRNA-mRNA and lncRNA coexpression networks in ITP. Bioinformatics analysis showed these genes
regulated multiple biological processes in ITP, such as mRNA nonsense-mediated decay, translation, cell-cell adhesion,
proteasome-mediated ubiquitin, and mRNA splicing. We thought the present study could broaden our insights into the
mechanism underlying the progression of ITP and provide a potential biomarker for the prognosis of ITP.

1. Introduction

Primary immune thrombocytopenia (ITP) is an autoimmune
disease characterized by a decrease in platelets due to platelet
destruction and insufficient platelet production [1, 2]. Previ-
ous studies had showed the increasing antiplatelet antibodies
produced by B cells, and the aberrant functions of T lym-
phocytes were involved in regulating the progression of
ITP [3]. However, the mechanisms regulating ITP progres-
sion remained to be further investigated.

In the past decades, increasing evidence showed more
than 90% human genome could not be translated to proteins.
Noncoding RNAs, such as miRNAs and lncRNAs, played
important roles in the progression of human diseases [4].
miRNAs were a type of ncRNAs with 19-25 bps in length
and regulated gene expression and protein translation by tar-
geting 3-UTR of mRNAs. Previous studies showed miRNAs
were dysregulated and associated with the regulation of

ITP. For example, miR-99a expression was overexpressed in
CD4+ cells [5], while expression of miR-182-5p and miR-
183-5p was overexpressed in ITP. MIR130A was downregu-
lated and suppressed TGFB1 and IL18 in ITP [6]. Meanwhile,
MIR409-3p was also reported to be reduced in ITP samples
[7]. Long noncoding RNAs (lncRNAs) are a class of ncRNAs
longer than 200 nucleotides with no protein-coding poten-
tial. The roles of lncRNAs in autoimmune diseases were
also implicated. Wang et al. found that lncRNA TMEVPG1
expression was lower than that in healthy control samples
[8]. Liu et al. identified a total of 1177 and 632 lncRNAs
were significantly upregulated or downregulated in ITP
patients compared to normal samples [9].

In the present study, we screened differently expressed
mRNAs, miRNAs, and lncRNAs in ITP compared to normal
samples using two public datasets, GSE43177 and GSE43178.
Then, bioinformatics analysis was employed to predict the
potential functions of differently expressed mRNAs, miR-
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NAs, and lncRNAs in ITP. This study could provide useful
information for exploring therapeutic candidate targets and
new molecular biomarkers for ITP.

2. Material and Methods

2.1. Microarray Data and Data Preprocessing. Gene expres-
sion datasets were obtained from the NCBI Gene Expression
Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo) with
accession numbers GSE43177 [10] and GSE43178 [10]. The
10 normal and 9 ITP samples were included in the
GSE43177 dataset. Meanwhile, the 9 normal and 9 ITP
samples were included in GSE43178 dataset.

2.2. lncRNA Classification Pipeline. In order to evaluate the
expression of lncRNAs in microarray data, a pipeline was
employed to identify the probe sets uniquely mapped to
lncRNAs from the Affymetrix array. A total of 2448 anno-

tated lncRNA transcripts with corresponding Affymetrix
probe IDs were obtained. The cutoff values used for selecting
differentially expressed lncRNAs were fold change ≥ 2 and
P < 0:05.

2.3. Prediction of the Targets of miRNAs. To obtain valuable
insights into the potential mechanisms of miRNAs, a bio-
informatics analysis was performed to identify the target
genes of miRNAs using starBase. starBase is a database
that combines data from six prediction programs: Tar-
getScan, PicTar (http://www.pictar.org/), miRanda (http://
www.microrna.org/microrna/home.do), PITA (http://www
.genie.weizmann.ac.il/index.html), RNA22 (http://www.cm
.jefferson.edu/rna22/), and CLIP-Seq (http://www.starbase
.sysu.edu.cn/).

2.4. Functional Group Analysis.GO analysis and KEGG anal-
ysis were employed to determine the biological functions of
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Figure 1: Heat map of differently expressed mRNAs, lncRNAs, and miRNAs in immune thrombocytopenia. Heat map depicts different
expression of (a) mRNAs, (b) lncRNAs, and (c) miRNAs in immune thrombocytopenia. Shades of yellow and deongaree represent log2
gene expression values.
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the identified differentially expressed mRNAs, based on
the freely available online MAS 3.0 system from CapitalBio
Corporation (http://bioinfo.capitalbio.com/mas3/; Beijing,
China). The P value (hypergeometric P value) denotes the
significance of the pathway associated with the conditions.
P < 0:05 was considered to indicate a statistically significant
difference.

2.5. Protein-Protein Interaction Network Mapping. We
followed the methods of Chen et al. [11]. The Search Tool
for the Retrieval of Interacting Genes/Proteins (STRING)
[12] online software (https://string-db.org) was utilized to
assess the potential interactions. The interactions of the pro-
teins encoded by the differently expressed genes were
searched using STRING online software, and the combined
score of >0.4 was used as the cutoff criterion. Cytoscape soft-
ware (http://www.cytoscape.org) was used for the visualiza-
tion of the PPI network.

2.6. Construction of the Coexpression Network between
Differentially Expressed mRNAs and lncRNAs. The Pearson
correlation coefficient of DEG-lncRNA pairs was calculated

according to their expression values. The coexpressed DEG-
lncRNA pairs with an absolute value of the Pearson correla-
tion coefficient of ≥0.8 were selected, and the coexpression
network was visualized by using Cytoscape software.

3. Result

3.1. Identification of Differently Expressed mRNAs, lncRNAs,
and miRNAs in Immune Thrombocytopenia. First, we ana-
lyzed a public dataset GSE43177 to identify differently
expressed mRNAs in ITP samples compared to healthy
control samples. Subsequently, differential expression anal-
ysis was conducted by using GEO2R (∣log 2FC ∣ >1 and
adj. P value < 0.05). A total 740 genes were identified as
DEGs in ITP, including 468 upregulated genes and 272
downregulated genes. These upregulated and downregu-
lated significant DEGs were present using hierarchical clus-
tering (Figure 1(a)).

By reannotating the gene probes in GSE43177, we found
that 1561 lncRNA probes were included in this dataset.
Among them, 157 lncRNAs were found to be dysregulated
in ITP. 134 lncRNAs were overexpressed and 23 lncRNAs
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Figure 2: PPI network of differently expressed mRNAs in ITP. The PPI network consists of 404 mRNAs. The red subnetwork included 24
nodes and 132 edges. The green subnetwork included 11 nodes and 55 edges. And the purple subnetwork included 8 nodes and 28 edges.
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were downregulated in ITP samples compared to healthy
control samples (Figure 1(b)).

Then, we analyzed a public dataset GSE43178 to identify
differently expressed miRNAs in ITP. 68 miRNAs were
observed to be differentially expressed, including 29 upregu-
lated miRNAs and 39 downregulated miRNAs. The heat map
of DEGs in the ITP and control stromal cells is shown in
Figure 1(c).

3.2. Construction of the PPI Network Mediated by DEGs in
ITP. Subsequently, the PPI network analyses were conducted
to reveal the relationships among DEGs. As shown in
Figure 2, a total of 404 nodes and 1391 interactions were
identified in this PPI network. Interestingly, three sub-PPI
networks (red network, green network, and purple network)
were identified. The red network included 24 nodes and 132
edges. The green network included 11 nodes and 55 edges.
And the purple network included 8 nodes and 28 edges.
Seven DEGs played a more important regulatory role in this
network by connecting with more than 10 different DEGs,
including MMP9, LCN2, DYNLL2, CKAP4, FOLR3,
FBXO32, and PLD1.

3.3. Construction of miRNA-DEG Networks in ITP. Further-
more, we used TargetScan and starBase [13] to predict the

downstream targets of differently expressed miRNAs in
ITP. Then, a miRNA-DEG network was constructed using
Cytoscape software (Figure 3). A total of 26 miRNAs and
279 mRNAs were included in this network. Interestingly,
we found that hsa-miR-30a, hsa-let-7b, hsa-miR-30e, hsa-
miR-200a, hsa-miR-520e, hsa-miR-494, hsa-miR-543, hsa-
miR-302d, hsa-miR-377, hsa-miR-363, and hsa-miR-200b
played crucial roles in ITP.

3.4. Construction of lncRNA-mRNA Coexpression Networks
in ITP. In order to reveal the potential functions of lncRNAs
in ITP, we first conducted lncRNA coexpression analysis
based on their expression levels in ITP samples. Then,
the lncRNA-mRNA pairs with the value of the absolute
Pearson correlation coefficient ≥ 0:75 were selected for net-
work construction. The lncRNA coexpression networks in
ITP were constructed using Cytoscape 3.0 [14] (http://
www.cytoscape.org/).

As presented in Figure 4, 136 lncRNAs, 430 mRNAs,
and 1415 edges were contained in this coexpression net-
work. Based on the coexpression network analysis, 8
lncRNAs (LOC101927237, LINC00515, LOC101927066,
LOC440028, RP11-161D15.1, LOC101929312, AX747630,
and LOC100506406) were identified as key regulators in
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target mRNAs. The lilac dot represents mRNA; the green dot represents miRNA.
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Figure 4: Coexpression networks of lncRNAs in ITP. The coexpression network consists of 136 lncRNAs and correlated 430 mRNAs. The
blue dot represents mRNA; the green dot represents lncRNA.
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ITP and regulated more than 55 dysregulated mRNAs in
ITP (Figure 3).

3.5. Bioinformatics Analysis of mRNAs, miRNAs, and
lncRNAs in ITP. In Figure 5, bioinformatics analysis showed
DEGs in ITP were associated with the mRNA nonsense-
mediated decay, translation, cell-cell adhesion, proteasome-
mediated ubiquitin, and mRNA splicing, via spliceosome,

protein polyubiquitination, viral process, autophagy, rRNA
processing, and macroautophagy. ITP-related miRNAs
were involved in regulating the cytoskeleton-dependent
intracellular transport, negative regulation of epithelial cell
proliferation, protein localization, proteasome, nuclear DNA
replication, nucleotide excision repair, branched-chain amino
acid catabolic process, regulation of mitophagy, cellular
response to cAMP, and negative regulation of transcription.
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Figure 5: GO analysis and KEGG analysis of mRNAs, miRNAs, and lncRNAs in ITP. (a) Biological process analysis of the related mRNAs.
(b) KEGG pathway analysis of the related mRNAs. (c) Biological process analysis of the related miRNAs. (d) KEGG pathway analysis of the
related miRNAs. (e) Biological process analysis of the related lncRNAs. (f) KEGG pathway analysis of the related lncRNAs.
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ITP-related lncRNAs were involved in regulating the positive
regulation of inflammatory response, cellular response to
cGMP, ephrin receptor signaling pathway, chronic inflam-
matory response, forelimb morphogenesis, stem cell popula-
tion maintenance, cell junction assembly, positive regulation
of cell growth, chemical synaptic transmission, and inflam-
matory response.

Bioinformatics analysis showed DEGs in ITP were asso-
ciated with the oxytocin signaling pathway, glutamatergic
synapse, choline metabolism in cancer, dopaminergic syn-
apse, FoxO signaling pathway, hypertrophic cardiomyopa-
thy (HCM), ovarian steroidogenesis, thyroid hormone
synthesis, serotonergic synapse, and metabolic pathways.
ITP-related miRNAs were associated with endocytosis,
pyrimidine metabolism, prostate cancer, drug metabolism-
other enzymes, FoxO signaling pathway, glioma, choline
metabolism in cancer, thyroid hormone synthesis, hepatitis
B, and metabolic pathways. ITP-related lncRNAs were asso-
ciated with glutamatergic synapse, endocytosis, serotonergic
synapse, dopaminergic synapse, arrhythmogenic right ven-
tricular cardiomyopathy, platelet activation, estrogen signal-
ing pathway, thyroid hormone synthesis, FoxO signaling
pathway, and focal adhesion.

4. Discussion

ITP is an autoimmune disorder. The increasing antiplatelet
antibodies produced by B cells, and the aberrant functions
of T lymphocytes were involved in regulating the ITP. Previ-
ous studies revealed that the dysregulation of multiple genes,
such as miRNAs and lncRNAs, contributed to the progres-
sion of ITP. For example, MIR130A, MIR409-3p, and
lncRNA TMEVPG1 were downregulated in ITP. Moreover,
Qian et al. identified a total of 1809 lncRNAs were signifi-
cantly dysregulated in ITP patients compared to normal
samples. Better understanding of the regulation of ITP is very
crucial for the discovery of therapeutic targets for the treat-
ment of this disease.

The present study screened differently expressed
mRNAs, lncRNAs, and miRNAs in ITP. A total 740 genes
were identified as DEGs in ITP, including 468 upregulated
genes and 272 downregulated genes. Subsequently, a PPI
network, including 404 nodes and 1391 interaction, was
constructed to identify hub regulators in ITP. Seven DEGs
played a more important regulatory role in this network by
connecting with more than 10 different DEGs, including
MMP9, LCN2, DYNLL2, CKAP4, FOLR3, FBXO32, and
PLD1. This is the first time their regulatory roles in ITP were
revealed. Notably, PLD1 had been demonstrated to play an
important role in autoimmune diseases. PLD1 mediated
lymphocyte adhesion and migration in autoimmune
encephalomyelitis [15]. PLD1 regulated the expression of
proinflammatory genes in rheumatoid arthritis synovial
fibroblasts [16]. Bioinformatics analysis showed DEGs in
ITP were associated with the mRNA nonsense-mediated
decay, translation, cell-cell adhesion, proteasome-mediated
ubiquitin, and mRNA splicing, via spliceosome, protein
polyubiquitination, viral process, autophagy, rRNA process-
ing, and macroautophagy.

Increasing evidence indicated that miRNAs and lncRNAs
are essential in regulating gene expression, cell proliferation,
apoptosis, and migration. However, the detail functions and
special expression pattern of miRNAs and lncRNAs in ITP
remained largely unclear. Meanwhile, we identified 134
upregulated lncRNAs, 23 downregulated lncRNAs, 29 upreg-
ulated miRNAs, and 39 downregulated miRNAs in ITP
patients. Furthermore, we constructed the miRNA-DEG net-
work and lncRNA coexpression network to explore their
functions in ITP. Interestingly, 8 lncRNAs (LOC101927237,
LINC00515, LOC101927066, LOC440028, RP11-161D15.1,
LOC101929312, AX747630, and LOC100506406) were
identified as key regulators in ITP. Among them, LINC00515
was reported to promote multiple myeloma autophagy and
chemoresistance though the miR-140-5p/ATG14 axis [17].
However, the functions of most lncRNAs were unknown
in human diseases. Bioinformatics analysis showed ITP-
related lncRNAs were involved in regulating the positive
regulation of inflammatory response, cellular response to
cGMP, ephrin receptor signaling pathway, chronic inflam-
matory response, forelimb morphogenesis, stem cell popula-
tion maintenance, cell junction assembly, positive regulation
of cell growth, chemical synaptic transmission, and inflam-
matory response.

Several limitations should be noted in this study. First,
this study was mainly based on bioinformatics analysis.
Therefore, the functional validation should be conducted in
the near future. Second, the sample size in this study was
small. We should collect more clinical samples to detect the
expression of the key mRNAs, miRNAs, and lncRNAs in
the progression of ITP.

In conclusion, our integrative analysis identified key
mRNAs, miRNAs, and lncRNAs in the progression of ITP.
Bioinformatics analysis showed these genes regulated multi-
ple biological processes in ITP, such as mRNA nonsense-
mediated decay, translation, cell-cell adhesion, proteasome-
mediated ubiquitin, and mRNA splicing. We thought the
present study could broaden our insights into the mechanism
underlying the progression of ITP and provide a potential
biomarker for the prognosis of ITP.
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