
nutrients

Review

Narrative Review of New Methods for Assessing
Food and Energy Intake

M. Carolina Archundia Herrera 1 ID and Catherine B. Chan 1,2,* ID

1 Department of Agriculture, Food and Nutritional Science, Alberta Diabetes Institute, University of Alberta,
6-002 Li Ka Shing Centre for Health Innovation Research, Edmonton, AB T6G 2E1, Canada;
archundi@ualberta.ca

2 Department of Physiology, Alberta Diabetes Institute, University of Alberta, 6-002 Li Ka Shing Centre for
Health Innovation Research, Edmonton, AB T6G 2E1, Canada

* Correspondence: cbchan@ualberta.ca; Tel.: +1-780-492-9939

Received: 15 June 2018; Accepted: 6 August 2018; Published: 10 August 2018
����������
�������

Abstract: Dietary self-report instruments are essential to nutritional analysis in dietetics practice and
their use in research settings has facilitated numerous important discoveries related to nutrition,
health and chronic diseases. An important example is obesity, for which measuring changes in
energy intake is critical for assessing efficacy of dietary interventions. However, current methods,
including counting calories, estimating portion size and using food labels to estimate human energy
intake have considerable constraints; consequently, research on new methodologies/technologies
has been encouraged to mitigate the present weaknesses. The use of technologies has prompted
innovation in dietary analysis. In this review, the strengths and limitations of new approaches have
been analyzed based on ease of use, practical limitations, and statistical evaluation of reliability and
validity. Their utility is discussed through the lens of the 4Ms of Obesity Assessment and Management,
which has been used to evaluate root causes of obesity and help select treatment options.
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1. Introduction

On a global scale, life expectancy has increased steadily for the past 35 years; however, in
association with the global rise of obesity, the number of deaths from most non-communicable causes
like diabetes mellitus rose by 32.1%, increasing the burden on health systems [1]. During the past
two decades, different Intensive Lifestyle Intervention programs have consistently shown that modest
but clinically significant weight loss of 5% in individuals with overweight, obesity or diabetes can
yield a variety of health, disease prevention and treatment benefits [2]. Prescription of a hypocaloric
diet (500–750 calories less than baseline), increased physical activity (90–175 min/week) and long term
behavior change, are common techniques use in Intensive Lifestyle Intervention [3–6], which also have
been described previously as individual techniques for weight control [7–9].

Assessment of dietary and/or energy intake (EI) is crucial to understand the impact of clinical
trials on the management of obesity and its comorbidities [2,10]. To date, food records (FR), food
frequency questionnaires (FFQ), and 24-h recalls (24HR) are the most common methods used to assess
dietary and EI during treatment and follow-up [11]. These self-reported data methodologies have
provided valuable information to use as a base to develop public health policy, comprehend and
identify consumption of different food groups, understand relationship with diseases and determine
eating patterns associated with weight loss, information that until recently could not be obtained in
any other way [10].

Nutrients 2018, 10, 1064; doi:10.3390/nu10081064 www.mdpi.com/journal/nutrients

http://www.mdpi.com/journal/nutrients
http://www.mdpi.com
https://orcid.org/0000-0002-5270-6764
https://orcid.org/0000-0003-3882-0592
http://www.mdpi.com/2072-6643/10/8/1064?type=check_update&version=1
http://dx.doi.org/10.3390/nu10081064
http://www.mdpi.com/journal/nutrients


Nutrients 2018, 10, 1064 2 of 19

However, a major challenge of these methods is that they rely on self-reported data. Human
memory is not 100% accurate in recalling past behavior, consequently these measurements do not
directly or objectively measure dietary intake or EI and do not comply with the standards of scientific
methodology [12,13]. One issue is that the actual process of doing food records can lead individuals to
change their food behavior patterns and therefore, misreport information resulting in an inaccurate
report of foods, nutrients and energy consumed [14]. Using data from The National Health and
Nutrition Examination Survey (NHANES) 2003–2012, researchers analyzed the prevalence of under
and over-reporting of EI, finding that in the US adult population (≥20 years) 25.1% misreported EI [15],
results consistent with European countries where prevalence of under-reporting ranges from 20% to a
high of 45% [16–19] with a predominance of obese populations under-reporting. Part of the limitation
of behavior modification presented in food records can be overcome though the use of 24HR, since
they can be unannounced so that the diet is not changed; however, estimation of the usual diet is
weakened by recall bias (food omission or forgetfulness, erroneous estimation of portion size) [20].
In addition to recall bias, these methods impart a substantial researcher/individual burden and high
cost of administration [21]. These methodologies used for dietary assessment have been severely
criticized to the point of calling the resultant data “pseudoscientific and inadmissible in scientific
research”, and what “constitutes the single greatest impediment to actual scientific progress in the
fields of obesity and nutrition research” [12].

Thus, the accuracy of dietary assessments or modifications in dietary or EI is full of challenges and
the development of new technologies to try to overcome current limitations has been encouraged [21].
The objective of this review is to present the strengths and weaknesses of innovative new
tools or methodologies that could replace, improve or complement current self-report dietary
assessment instruments.

2. Materials and Methods

2.1. Search for Innovative Food and EI Assessment Tools and Methodologies

Medline, CINAHL and PsychINFO were searched for English-language articles, using the
following keywords separately or in combination: diet, diet records, dietary intake, energy intake,
innovate *, meals, measurement, metabolism, method, models, new, nutrition assessment, optimiz *,
recent, self-report, technolog *, test reliability, test validity, trend, validation studies. The search
resulted in 337 articles (Figure 1). The output was then narrowed by imposing search criteria of
“2012–October 2016” and “Adults”. This search resulted in 73 articles. These article titles and abstracts
were screened by one author (MCAH) to determine if they fulfilled the eligibility criteria. The articles
included had to describe or validate a new method, or use new technology tools that could capture
food or EI. The methodologies or tools were assessed to determine their benefits and limitations as well
as their reliability or validity. Studies using text messaging or mobile phone applications that required
manual introduction of information were not considered because using this type of technology imposes
the same limitations as the current methods, requiring a self-reported measurement with a burdensome
and impractical framework for the subject.

Of the 73 articles uncovered with this search, 17 were considered potentially eligible. These articles
were cross-listed in PubMed for articles related to the topic, which identified 8 other articles. Reference
lists of relevant articles were also hand-searched but no other relevant articles were found. For these
25 articles, review of the full text was used to identify those meeting the criteria (n = 11).
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Figure 1. Flow diagram of the articles selection process and exclusion reasons.

2.2. Evaluation

A relative evaluation of the innovative technology tools and methodologies was carried out.
They were assessed to ensure that the main weaknesses of present methodologies: recall biases,
measurement discrepancies, lack of scientific rigor, were being acknowledged.

When developing tools to collect dietary information, specific statistical methods must be used
to evaluate their reliability and validity in order to test the accuracy of the method and avoid
bias [22]. Thus, utilization of these recommended statistical methods to assess the different tools
and methodologies was noted when drafting this manuscript. Reliability refers to “the consistency of a
measuring instrument” [22], in different situations; inter-rater, test-retest, inter-method and internal
consistency. Validity refers to “how close the tool can measure the actual (true) value”; in this case, a
measure of true EI when compared to the gold standard [22].

Benefits and limitations: When describing benefits and limitations of each tool/methodology,
the focus was on the following criteria: Easy to administer—Referring to reducing participant burden.
Current methods rely on information reported by the subjects recalling what they ate for the past
week/month/year, or keeping a diary for various days. This decreases the quality of the reports,
and the process itself can make subjects change their eating habits [23]. Easy to score—Observed and
weighed-food records [24], doubly labelled water (DLW) [25], and FFQ [11], are some of the methods
currently used to determine/estimate EI and/or eating behavior. These methods are expensive
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and time-consuming, making them less feasible to use and hard to score. New methodologies
should minimize practitioners’ or researchers’ burden and expense. Capture change over more
than one day—Because assessment of day-to-day variability in food intake is an important limitation
of current methodologies. New methodology should overcome these limitations and be able to capture
fluctuations in habitual energy and nutrient intake on free-living subjects.

3. Results

Table 1 summarizes the studies that were included in the review. Five described different types
of monitors and sensors; five described camera-scan-sensor-based technologies; and one described
a mathematical method. Details of the statistical methods used to assess validity and reliability are
noted in Table 2.

3.1. Food/Energy Intake Monitoring Devices and Tools

Use of body sensors as a direct measurement of human eating behavior is quite recent. Body
monitors and sensors have been developed with the hope of improving and facilitating measurement
of daily food and EI [26,27].

3.1.1. Automated Wrist Motion Tracking

The Automated Wrist Motion Tracking, also called a “bite counter” is worn like a watch and
automatically tracks wrist motion for monitoring eating in humans [28]. Reliability was tested in
both controlled meal and semi-controlled settings. The sensitivity was >85% in both settings. Bites
measured by the device were >80% detected compared with bites counted by direct observation.
The equations used to measure sensitivity and performance are reported in Table 2 [28]. A third
experiment in free-living situations was performed to examine the correlation between bites detected
and EI, with r = 0.6. This experiment was only exploratory and was done to seek any possible
relationships between these factors for further research [28].

Use of this device resulted in improved accuracy of measuring EI in free-living situations
compared with 24HR and FFQ, which typically under-report EI in men by 16–20% and 31–36%,
and in women by 16–20% and 34–38% respectively [29]. Participant burden was minimal because the
user only needed to turn it on and off before eating, and thereafter, bites were registered automatically
by the device; thus, researcher and administrative costs are ameliorated since no food weight or
labour-intensive laboratory techniques are needed [28,30,31]. Forgetting to use the device, accuracy
in different social settings and loss of data when both hands are used to eat are present limitations
that the bite counter tool needs to address. Importantly this device’s main benefit is its use as a
food intake-monitoring and ingestive behavior tracking system in a real-world setting to improve
users, researches and HCP understanding of food intake behaviors. Furthermore, lessen the burden
of manual measurements; however, no input regarding the type or quality of the food consumed
is tracked.

3.1.2. The Bite-Based Model of Kilocalorie Intake

The bite-counter described above was used for the development of a kilocalorie per bite equation
(using bite counts, individual demographic and physical characteristics) that allowed EI to be
estimated. The relationship obtained was estimated as kilocalories per bite = −0.128 age + 6.167 sex
(female = 0) + 0.034 height + 0.035 weight − 12.012 WHR + 22.294; where WHR = waist-to-hip ratio [30].
The feasibility of using the formula was then systematically evaluated. Two trials were run using a
train and test paradigm, in which the training group was used to develop the model and the test group
was used to determine reliability of the regression model.
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Table 1. Summary of New Methods for Assessing Food and Energy Intake.

Reference Objective Brief Description Key Findings

[28] Evaluate a new method of automated
dietary intake monitoring.

The “Bite Counter” device was worn like a watch. Before eating,
the user pressed a button to turn it on (and off afterwards).

While operating, the device used a micro-electro-mechanical
gyroscope to track wrist motion, automatically detecting when

the user had taken a bite.

The method worked across a reasonably large
number of subjects, and variety of foods,

and there was modest correlation with EI on a
per-meal level.

[30]

Evaluate accuracy of an individualized
bite-based equation of kilocalorie intake

compared to participant estimates of
kilocalorie intake.

Subjects’ real kilocalorie intake was compared to predicted
kilocalories estimated by: (a) the bite-based equation of kilocalorie
intake, (b) participants’ kilocalorie estimate when provided with

kilocalorie information of the foods eaten, (c) participants’ kilocalorie
estimate without kilocalorie information.

The bite-based equation measure of kilocalorie
intake outperformed human estimates with and

without menu kilocalorie information.

[31]
Evaluate the: Automatic Ingestion Monitor
(AIM) for objective detection of food intake

in free-living individuals.

The AIM integrated three sensor modalities and a pattern
recognition method for subject-independent food intake recognition.

The AIM can detected food intake with an average
accuracy of 89.8% suggesting that it can be used to
monitor eating behavior in free-living individuals.

AIM could be used as a behavioral
modification tool.

[32]
Estimate EI using individualized models

based on Counts of Chews and
Swallows (CCS).

EI was estimated by the CCS mathematical model and compared to
the weighed food records, diet diaries and photographic food

records methods.

Mathematical models based on the CCS could be
potentially used to estimate EI.

[33]
Present an intelligent food-intake

monitoring system that can automatically
detect eating activities

The multi-sensor monitor detected chewing activity via its
integrated ear-microphone, consequently the camera was activated,

snapshots for food detection were taken.

The high correlation rates reported (r not shown)
suggested the usefulness of the proposed method

to provide with an overall understanding of
eating behavior characteristics (speed, type and

amount of food consumed).

[34]

To compare mean EI of overweight and
obese young adults assessed by a Digital
Photography + Recall method (DP + R),

to the mean total daily energy expenditure
assessed by TDEEDLW.

Two digital still photographs (90◦ and 45◦ angle) were taken by a
digital camera approximately 30 inches above the tray. Notes were

placed on the tray to identify types of beverages and standard
measures were included to guide the assessment of portion size. The
type and amounts of food and beverages consumed and results from
recalls were entered into the Nutrition Data System for Research to
quantification for EI. TDEEDLW was assessed in all participants to

compare mean daily EI.

The mean EI estimated by DP + R and TDEEDLW
was not significantly different (p = 0.42).

On average, DP + R overestimated EI compared to
TDEEDLW by 6.8 ± 28%.
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Table 1. Cont.

Reference Objective Brief Description Key Findings

[35] To validate the Remote Food Photography
Method (RFPM)

Developed for automating dietary assessment. Participants include a
reference card placed next to the food plate as well as labels of not

easily recognizable foods for the portion size estimation to take place.
A barcode reader phone app and a voice message option are

innovations included to facilitate identification of foods. Participant
received feedback about their food intake behavior and

recommendations to achieve weight goals. To maximize and
promote usage of RFPM in free-living conditions, ecological

momentary assessment (EMA) methods were adopted, which
involves sending small reminders or prompts to the user via email or

text message. EMA was tested by comparing two groups; the
standard prompts (2 or 3 prompts a day send to their smartphones
around meal time) versus customized prompts (3 to 4 personalized

prompts, send at participants’ specific meal time).

The RFPM and DLW did not differ significantly at
estimating free-living EI (−152 ± 694 kcal/day,

p = 0.16) nor did it differ when estimating energy
and macronutrient intake.

[36]
To evaluate a mobile food recognition

system which estimates calorie and
nutritional components of food intake.

(1) User pointed the smartphone camera to the food (2) Drew
bounding boxes to delimit food regions (3) Food item recognition
started within the indicated bounding boxes. To recognize them
more accurately each food item region is segmented by GrubCut.
The recognition process results in a display of the top 5 food item

candidates. The user selects the most accurate candidate and
indicates the relative approximate volume of the food.

A 79.2% classification rate was achieved.
The recognition processing time was only 0.065 s.

[37] To present Snap-n-Eat, a mobile food
recognition system.

The user took a photo of the plate. The system detects the salient
regions corresponding to the food items. Hierarchical segmentation

was performed to segment the images into regions. The system
estimated the portion size of the food and uses it to determine the EI

and nutritional content.

The Snap-n-Eat application achieved
a 85% accuracy when detecting 15 different

categories of food items. Snap-n-eat recognized
foods presented on a plate and estimated their
caloric EI and nutrition content automatically

without any user intervention.
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Table 1. Cont.

Reference Objective Brief Description Key Findings

[38]

To assess the accuracy of the GoCARB
prototype when used by individuals with
type 1 diabetes and to compare it to their

own performance in carbohydrate counting.

The user placed a reference card next to the dish and took
two images using a mobile phone. A series of computer vision
modules detected the plate and automatically segmented and
recognized the different food items, while their 3D shape was

reconstructed. The carbohydrate content was calculated by
combining the volume of each food item with the nutritional

information provided by the USDA Food and Nutrient Database.

GoCARB was more accurate at estimating
carbohydrates content than individuals with type

1 diabetes. The mean absolute estimation error
while using GoCARB was reduced by more than

50% than without using GoCARB.

[39] To validate a mathematical method to
measure long-term changes in free-living EI

DLW was used to assess Energy Expenditure (EE) at months 6, 12, 18,
and 24. DXA and body weight measurements were taken twice at

baseline, twice at month 6, and once at months 12, 18, and 24. Body
weight measurements were taken at months 1, 3, 6, 9, 12, 18, and 24

in the CALERIE study. Then, they compared the ∆EI values
calculated by using DLW/DXA with those obtained by using the

mathematical model

The mean (95% CI) ∆EI values calculated by the
model were within 40 kcal/day of the DLW/DXA

method and were not significantly different
throughout the 4 times segment (p = 0.14, p = 0.34,
p = 0.32, p = 0.11). Most of the model-calculated

∆EI values were within 132 kcal/day of the
DLW/DXA method.
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Table 2. Summary of the Reliability and Validity of New Methods for Assessing Food and Energy Intake.

Reference Name of Tool What Is
Measured

Reliability Validity

Statistical Method Used Result Statistical Method Used Result

[28] Automated Wrist
Motion Tracking EI

Sensitivity (true detection rate) =
(total true detection)/(total true

detection + total undetected bites);
Positive Predicted Value (PPV) =
(total true detection)/(total true
detection + total false detection);

compared recorded bites with
direct observation.

Control setting:
Sensitivity = 94%

PPV = 80%
Semi-controlled setting:

Sensitivity = 86%
PPV = 81%

Pearson correlation of EI
estimated by device vs.
direct observation (r)

R = 0.6

[30] The bite-based model
of kilocalorie intake EI

Pearson’s correlation of device
compared with direct observation;

shrinkage value

R = 0.374 Shrinkage value
(difference in R2) = 0.014

Independent t test Paired
sample t test

Mean estimation error kilocalorie
information group: −185 ± 501 kcal;
Mean estimation error no kilocalorie
information group: −349 ± 748 kcal

(p < 0.05); Best human-based estimation
(kilocalorie information group) mean

estimation error: −257 ± 790 kcal;
Bite-based method (predicted formula)
mean estimation error: 71 ± 562 kcal;

(p < 0.001).

[31] Automatic Ingestion
Monitor (AIM) EI N/A N/A

Accuracy = average
between precision (P) and

recall (R).

Accuracy of food ingestion = 89.9%,
range from 75.82–97.7%.

[32] Counts of Chews and
Swallows Model EI

A 3-fold cross validation technique,
one sided Wilcoxon-Mann-Witney,

Bland-Altman analysis and
t-Test analysis.

Reporting error for the CCS
model was lower than that of

the diet diary (p < 0.01).
The model underestimated EI.
Energy intake estimation had

the lowest bias.

A 3-fold cross validation
technique, one-sided

Wilcoxon-Mann-Witney,
Bland-Altman analysis

and t-Test analysis.

No statistical differences were found
between the CCS model and either diet

diary or photographic records.

[33] Intelligent
food-intake monitor Food intake

Correlation: Proportion of food
consumed from sound (auditory

based) and image sequence (vision
based) compared to the ground

truth: proportion of food consumed.

Data not shown N/A N/A
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Table 2. Cont.

Reference Name of Tool What Is
Measured

Reliability Validity

Statistical Method Used Result Statistical Method Used Result

[34] DP + R EI Inter-rater reliability coefficients Error rate ≤5%,
Recall assessments ≥0.95

Dependent t-test
comparing device to

DLW method;
Bland-Altman plots;
Limits of agreement

Differences between methods in the total
sample was not significantly different

(DP + R = 2912 ± 661 kcal/day;
TDEEDLW = 2849 ± 748 kcal/day,

p = 0.42); DP + R was found to
overestimate EI compared to TDEEDLW
by 63 ± 750 kcal/day (6.8 ± 28%; limits

of agreement: −1437, 1564 kcal/day).
The Bland-Altman plot indicated no

proportional bias variation as a function
of the level of EI in the total sample

(R = −0.13, p = 0.21).

[35] RFPM EI Bland & Altman analysis

Significant difference:
p < 0.0001 between the RFPM

and DLW in the standard
prompt group. No significant
difference in the customized
group: p = 0.22. The level of
bias in both groups was not

influenced by the amount of EI
(Adj. R2= −0.03, p = 0.55;
Adj. R2 = −0.08, p = 0.78)

Independent sample
t-test for error between
methods = EI estimated

with the RFPM-EI
measured with DLW

Significant smaller underestimation in
the customized group

(270 ± 748 kcal/day or 8.8 ± 29.8%)
when compared to the standard prompt

group (895 ± 770 kcal/day or
34.3 ± 28.2%), t (33) = −2.35, p < 0.05

with RFPM.

[36] Real-time Food
Recognition System EI Test-retest reliability 79.2% classification rate N/A N/A

[37] Snap-n-Eat Energy/dietary
intake Test-retest reliability

Classification accuracy (% of
correctly classified images

categories) = 85%
N/A N/A
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Table 2. Cont.

Reference Name of Tool What Is
Measured

Reliability Validity

Statistical Method Used Result Statistical Method Used Result

[38] GoCARB Carb EI Comparison to actual
foods/database

Automatic segmentation
(portion size) = 75.4% (86/114);

Food item recognition =
85.1% (291/342)

Mean absolute error;
Relative error

Mean absolute error = 27.89 (SD 38.20)
and 12.28 (SD 9.56) grams of

carbohydrates; Mean relative error =
54.8% (SD 72.3%) and 26.2% (SD 18.7%).
A significant error between estimations

was found (p = 0.001). In general,
60.5% (69/114) of the participants

underestimated carbohydrate content.

[39] Mathematical method Change in EI Test-retest reliability;
Mean difference

40 kcal/day of mean difference
between the gold standard and

the mathematical model; No
significant difference between
the methods for any of the time

segments was found (weeks
0–26: p = 0.14; weeks 26–52:

p = 0.34; weeks 52–78: p = 0.32;
weeks 78–104: p = 0.11).

Paired, 2-sided t test;
Pearson correlation (r)

Spearman’s corrected (rs)

Change in EI values calculated by the
mathematical method or the gold

standard DLW/DXA weren’t
significantly different; The mathematical

model had an accuracy within
132kcal/day for predicting changes in
EI; The magnitude of correlation of the

change in EI values between models
were correlated (weeks 0–26: r = 0.57
(95% confidence interval 0.45, 0.68);

p =≤ 0.0001; weeks 78–104:
r = 0.19 (0, 0.36); p = 0.05).

1 N/A = Not applicable.
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When comparing the reliability of the formula-predicted EI values to the staff-observed values
within the test group the Pearson correlation was r = 0.374. For the reliability of the model between
training and test groups, the difference in r2 (which is called the shrinkage value) was 1.4% [30].
To assess validity, researchers assessed participants’ estimation error of EI compared with the
equation. The bite-based equation method was more effective at estimating EI than the best human
estimation [30].

The bite counter along with the bite-based method formula can provide individuals with a EI
estimation that is more accurate than an individual’s estimation even when EI information is available,
which potentially could help improve their adherence to recommended dietary changes. The bite
counter also has the benefit of being a non-invasive device, which allows tracking of free-living
situations for research and also has the potential to improve the understanding of food ingestion
patterns including snacking, night eating, and weekend overeating, as pointed out by Fontana 2014 [31]
as one of the benefits of food intake monitoring devices and tools. However, reliability was relatively
low and internal and external validity of the method needs to be further elucidated. This tool is for
monitoring EI purposes only and does not provide information or feedback on diet quality.

3.1.3. The Automatic Ingestion Monitor (AIM)

The Automatic Ingestion Monitor (AIM) integrated hand gestures, jaw motions and accelerometer
sensors to detect food intake in free-living individuals [31]. It was designed for objective 24-h
monitoring of food intake in free-living conditions without depending on any input from the subjects.
The monitor was 90% accurate in its ability to detect specific food intake epochs in free-living
individuals compared with self-reported signal (push-button) indicating food intake events, and
self-reported food journals [31].

When developing and validating this device, the data were obtained from monitoring free-living
situations that included a wide variety of foods and activities, increasing its feasibility for everyday
use and research purposes. Its use could provide insight into overall eating behavior patterns where
participants burden is minimal. Nonetheless, the use of self-report as the gold-standard method,
rather than direct observation, prompts caution regarding reliability. Furthermore, subject compliance
with and acceptability of wearing the AIM needs to be established [31]. Insight obtain from this and
previous studies [40] encourage further research to build mathematical models to obtain estimated EI
using individualized models on counts of chews and swallows (CCS) [32].

3.1.4. Intelligent Food-Intake Monitor

The intelligent food-intake monitor integrates multi-sensor monitors to track chewing speed,
and images of the type and amount of food consumed, giving an overall understanding of eating
behavior characteristics [33]. The tool was tested for its ability to correctly detect the proportion of
food consumed in real life scenarios but results were not reported [33].

The development of the device took into consideration the general process and pattern of
food-intake activities to directly target their process (food ingestion, chewing and swallowing).
The experiments were conducted in a real-world setting to increase the feasibility of being used
in such settings. Valuable information involving eating behavior can be obtained from the use of this
device because it doesn´t assume that the food on the plate is consumed, thus providing a more reliable
measure than capturing images of food alone to assess food consumption, thanks to the integration
of chewing and swallowing detection in the process. Further research needs to be conducted to
increase participants’ comfort levels when using the device to ensure compliance with its use for longer
periods. Even though a high level of correlation is reported between ground truth and auditory and
vision predictors, no r-values were given and no strong statistical bases were presented. Participant
characteristics were not supplied [33], leaving to speculation the age range that could benefit from
using this monitor, and whether it would be feasibility to use in older adults, youth and children.
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3.2. Camera-Scan-Sensor Based Technologies or Food/Energy Intake Assessment Tools

Sixty-four percent of the American population own a smartphone, a 35% increase since 2011 [41].
Since the use of smartphones is steadily increasing in daily life, mobile phone camera-scan-sensors are
being proposed to contribute novel approaches to the measurement of food and EI.

3.2.1. DP + R

Ptomey et al. [34] developed and evaluated a pre-post meal photographic method for assessing EI
in overweight and obese individuals in a cafeteria setting. Foods consumed outside this setting were
assessed by recall methods.

Nutrition research staff underwent rigorous training for estimating portion size and EI from
pre- and post-meal digital photographs and dietary recalls, with inter-rater reliability >95%. DP + R
procedure includes taking notes and delineating standard measurements as guidelines for the portion
size assessment [34]. The DP + R during ad libitum eating in a cafeteria was compared to measurement
of total daily energy expenditure assessed by doubly labelled water (TDEEDLW) method [34] with no
significant differences found; thus, the method was considered valid.

DP + R method is a reliable and validated method for estimating EI in overweight or obese
participants in a cafeteria setting. The main advantage over a food record/recall alone is verification of
the written record by the photograph. This method was judged to provide an acceptable level of burden
for both participant and research team when compared to previous procedures but a considerable
burden is still present for the researcher because of the need to enter nutritional information into a
database to quantitate EI [34]. The capacity of DP + R to capture change over time is limited since the
procedures are done in cafeteria settings, therefore when the subjects stop attending, the change will
not be captured. However, the authors point out the possibility of modifying the DP + R method to
use in conjunction with smartphone photos to make the method portable [34].

3.2.2. Remote Food Photography Method (RFPM)

Participants send images taken on their smartphone wirelessly [35] to a Food Photography
Application© [42], which is linked to the Food and Nutrient Database for Dietary Studies 3.0 [43].
Trained raters use the application to oversee the semi-automated process of food and nutrient intake
estimation [35]. In this trial, some participants received prompts to use the Application customized to
their specific meal times, or generic prompts in the morning, at noon and in the late afternoon.

Analyses were run to evaluate any significant differences between the RFPM and DLW estimation
of EI, and if they were influenced by the EI consumed; no significant differences were found when
participants received customized reminder messages but device reliability was decreased when
participants received generic prompts [35]. The RFPM and DLW were used to measure EI in free-living
individuals during a 6-day period. The error between methods (EI estimated with the RFPM minus
EI measured with DLW) was calculated and was smaller in the participants receiving customized
prompts [35].

The underestimation of EI by RFPM improves drastically compared to self-report methods,
particularly when accompanied by customized prompts, allowing monitoring of habitual EI in
free-living individuals. The method also offers the opportunity to detect missing data (due to technical
problems or no compliance) promptly, and take pertinent action (contact participant) to improve
data quality and compliance, thereby reducing recall bias [44]. The ability of RFPM to provide users
feedback about their behavior is another benefit worth mentioning. In general, the user burden is keep
to a minimal and 82% of users rated overall satisfaction 5 or higher (based on a six-point scale) [35].
However, since the method is only semi-automated, it remains expensive to analyze. The RFPM has
also been used to estimate EI in children in both research and free-living settings [35,42,44].
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3.2.3. Real-Time Food Recognition System

The user points the smartphone camera at the food plate for the food recognition process.
After selection of the food from a database and indication of its approximate volume, the calorie and
nutrition values are displayed [36]. The real-time recognition of foods was approximately 80% correct.

This system utilizes a real-time image recognition system, and the processing time only takes
0.065 s once the user enters the input. A fully automated interface with a food database completes its
system. Evaluation of its usability was carried out, where adjustment of the bounding boxes on the
different food items wasn’t as positively rated (2.4 out of 5) as for the item recognition itself, which
was done automatically without additional user input, obtaining an average score of 4.2 out of 5 [36].
However, this tool hasn’t been validated and has a limited number of food categories and it does not
specify the database used for the nutrition information.

3.2.4. “Snap-n-Eat”

A “snap-shot” (photograph) of participants’ plate is captured. The analytical system is based
on predefined EI and nutritional density for each food category. Depth images are used to estimate
the portion size of the food and the EI and nutritional content are displayed on the user’s screen
in ~4 s [37]. A classification accuracy (the percentage of the test images of each category correctly
classified) of 85% was obtained for 15 different food categories.

Snap-n-Eat presents a food recognition system for which users only need to take a snapshot of
their food in order for the system to estimate its EI and nutritional content allowing participants to
track their daily food intakes helping to understand their eating habits in a cost and time effective
manner. However, in order to be a feasible tool, a scale-up to hundreds of food items and a validation
process is needed [37].

3.2.5. GoCARB

The user photographs their food from at least two angles. The food items are segmented and
recognised and their carbohydrate content is estimated based on the nutritional information of the
USDA Nutrient Database for Standard Reference [38]. GoCARB’s portion sizing and individual food
item recognition accuracy ratings were 75% and 85%, respectively [38]. To validate the device, adult
participants with type 1 diabetes were asked to calculate the carbohydrate content of the meals by
themselves and subsequently with the help of the GoCARB. The error using GoCARB error was
approximately half of that without any aid [38].

The application is overall better than participants at estimating carbohydrate content of meals.
In the GoCARB app the carbohydrate content estimation is done automatically so the burden on
researchers and participants is minimal; thus, 90% (17/19) qualify the tool as easy to use and would
like to use the application on a regular basis. These measurements were done in a clinical setting
that may not represent real-life situations where the meals may have more complex composition than
the test meals. The overall nutrient content of the meal is not analyzed, and for individuals with
diabetes it is important to consider the influence of the overall meal in determining their postprandial
glycemia [38].

3.3. Mathematical Algorithm

A totally different, novel approach to assess EI is through mathematical algorithms.

Mathematical Method

Sanghvi’s group [39] validated a mathematical formula originating from the National Institute
of Diabetes and Digestive and Kidney Diseases (NIDDK) [45], to measure long-term changes in
free-living EI of humans by using repeated DLW/DXA measurements collected over 2 years in
140 free-living subjects from the Comprehensive Assessment of Long-term Effects of Reducing Intake
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of Energy (CALERIE) study [46]. The formula inputs were baseline demographic (age, sex, height)
and repeated body weight data, which was used to obtain the change in body weight over time and
the rolling average.

Measured body weight and EI changes for the participants were documented over 2 years at
4 different time intervals. During the course of the study, the test-retest reliability was obtained
by comparing the gold standard with the mathematical model, differing by only 40 kcal/day [39].
The change in EI values calculated by the mathematical method was compared (paired, 2-sided t-test)
to the gold standards DLW/DXA and found to be similar [39].

In order for the formula to measure long-term changes in free-living EI, easily acquired initial
information regarding age, sex, height and physical activity are required. However, baseline DLW
measurements are also needed to establish energy requirements if one wishes to know absolute
EI as well as changes in EI over time, limiting its use to researchers with the ability to obtain this
parameter [39]. If all the mathematical parameters are available, the formula is an easy-to-score tool
that captures changes over more than one day; however, the model might require adjustments for
use in children or older adults. In addition, specific nutrient/food intake information is not known,
therefore without co-administration of a diet record or FFQ it would not be possible to obtain this
information [39]. Important limitations must be considered. The study was conducted on normal
weight individuals and validation in individuals with obesity was not demonstrated even though the
authors were confident the model could be used on this population because the model was built to
measure changes in metabolism and body composition.

4. Discussion

From a research perspective, the first and foremost goal of evaluating food and EI is to be able
to increase our understanding of diet-disease associations. Validated and reliable measures of food
and EI are crucial to understand their relationship with health, especially with the overwhelming
increase in obesity prevalence [1]. Individuals with obesity present different problems ranging from
the physiological to the psychological aspects, which represent barriers to their treatment. The 4Ms
of Obesity Assessment and Management (Mental, Mechanical, Metabolic and Monetary) has been
proposed as a framework to help identify the root cause and help obesity treatment [47].

The methodologies/tools presented in this review have the potential to aid in the understanding
and treatment of obesity within this framework. This review identified 3 main new modalities
for estimating food and EI. These include devices that monitor intake through sensors that detect
movement of the arm and/or jaw, counts of chews and swallows, smartphone-based photographic
methods linked to food databases and a mathematical formula.

In order to come to a consensus of which methodology/technology would be the most highly
recommended it is important not to lose sight of why EI is being assessed or monitored. The overall
objective should guide opting for one or the other.

In the context of the 4Ms of Obesity Assessment and Management, if the individual being treated
is believed to have psychological (Mental) issues influencing their eating behavior, then the main
objective is to understand their eating behaviors or food intake patterns in order to detect and/or
modify eating habits. Food intake-monitoring devices and tools (Bite Counter, AIM, Intelligent
food-intake monitor) would be recommended in this context because they could provide useful insight
regarding food intake behaviors (e.g., timing and size of meals). In general, food intake-monitoring
devices and tools can count the number of bites an individual takes, track the approximate EI and
monitor episodes of food intake. Several benefits to the understanding of food intake behaviors
may accrue from these methods. These devices could fill a gap in providing timely monitoring and
feedback to individuals wishing to change eating habits, similar to the way the use of pedometers
and/or accelerometers has been validated to promote and assess physical activity [48], by establishing
and monitoring personal goals achievement, a behavior that according to Social Cognitive Theory,
is an effective behavior change strategy [49] aiding behavioral change. Therefore, these tools could
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be used for monitoring, controlling and correcting eating behaviors and portion size in obese or
overweight individuals as well as for chronic disease management. However, their effectiveness in
eliciting behavior change has yet to be documented. Future work includes the possible addition of a
vibrotactile alarm, similar to the technology used on intelligent watches or pedometers so that subjects
can self-adjust their eating behavior based on the estimated EI per bite [28]. Moreover, the commercial
cost of these devices has not been established since they are still on the development phase and have
not gone further to establish a market cost. Further, wearing some devices may be more acceptable to
participants than others.

On the other hand, if the aspect of obesity treatment is within the Metabolic category of the
4Ms, as in the case of individuals with T2D or hypertension, then the intent would shift the focus
to understanding specific macro/micronutrient intakes (sugars, salt, fats). Similarly, within the
Mechanical category (such as osteoarthritis), weight loss could be desired to reduce pain. For both
approaches, camera-scan-sensor (Snap-n-Eat, GoCARB) could be useful. RFPM could be applied in
a hospital setting where monitoring individuals’ nutrition intake is essential but difficult to do on a
routine basis. Registered dietitians and nurses could use this tool to oversee adequate food intake
essential for hospitalized individuals’ wellbeing. If the overall objective is a focus on measures of
long-term changes in EI in free-living individuals undergoing a research or lifestyle intervention,
the mathematical method would highly be recommended since its accuracy lies within 40 kcal/day of
mean difference with the gold standard, as long as the initial DLW measurement is possible to obtain,
which could be a potential limitation.

Overall, the studies included in this review presented new devices designed to improve how EI is
measured, analyzed and registered. However, the devices and methods have usually undergone pilot
testing in small numbers of participants and various limitations elicit caution. Food intake-monitoring
tools have limited ability to assess day-to-day variability in food intake [28,30,31]. They do not take
into account the type of food consumed, its EI density nor its consistency; therefore, no information
about the macro/micronutrient is obtained, resulting in a inability to capture change in type of food or
nutritional intake over time. As mentioned previously, a current limitation with present methodologies
used to assess food intake or EI is individual reactivity causing changes in food behavior patterns,
thereby resulting in inaccurate reporting. None of the present studies addressed these issues, therefore
the question arises: could bias play a role in the use of these devices? That is, would peoples’
consumption of food intake be modified by simply wearing these tools? And if so, what would be
the differences compared with current methodologies? Certainly, more accurate data of consumption
patterns seems possible, but to date none of the devices has gone beyond pilot testing nor addressing
potential bias. To our knowledge, the application of these methodologies to clinical settings or outside
of the original developers’ laboratories has not been reported.

Regarding smartphone-based apps, additional limitations applying to one or more include
participants forgetting to take the photographs, or not having the smartphone with them [35].
In general, two major limitations need to be addressed with camera-scan-sensor methods. First,
they cannot quantify all food ingredients or beverages. These tools only work with the food items
in the database of each individual tool, and their validity is also dependent on the food nutrient
value on which the databases are built. However, with current food record/recall databases, there
are acknowledged differences between what a person consumes and what the database contains [38];
even the Canadian Nutrient File or the USDA database cannot keep up with constantly evolving food
possibilities. The use of these technologies is not advanced enough to correctly and accurately estimate
100% of food intake since the best achieved accuracy was 85% based on a small number of foods [37].
Second, they cannot judge quality since a photograph doesn’t convey information about ingredients
that are hidden or blended [35]. Nevertheless, these methods show improvement in estimating,
on average, the nutrient content of meals more accurately, easier and faster than individuals’ self-report
measures (24HR, FFQ, etc.) but caution must be taken when using and analyzing these methods.
Bearing in mind the strong link between food intake and health, continuing to document the improved
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validity and reliability of the food item recognition and nutritional information provided by these
tools would undoubtedly lead to better outcome measurement in the fields of obesity and nutrition.
However, the feasibility creating comprehensive databases for food recognition is problematic in an
environment of incessantly increasing food possibilities. On the other hand, the ubiquity of smartphone
ownership means that affordability and acceptability are of less concern with the main investment
being the data processing.

5. Conclusions

In conclusion, these innovative dietary assessment tools are able to record food/energy intake
more accurately than participants’ estimates and are an improvement on important weaknesses of
conventional methods (paper-based records/recalls), particularly regarding the burden of recording
by participants and collecting/administering and evaluating/scoring the information by researchers.
However, caution is needed when using them since they are still being refined. Future work should
look at combining body monitor sensors and camera-scan-sensors to work together in order to counter
their strengths and weaknesses. This work should eventually progress outside of research settings
and promote the collaboration of dietitians with engineers to co-develop the design, development,
evaluation and implementation of these new tools, since this would likely increase their effectiveness,
acceptability and validity. Lastly, this research field should take into consideration changing formats
of national nutrition recommendations, such as the 2014 Brazilian dietary guidelines, 2015 Dietary
Guidelines for Americans and the American Heart Association, which are shifting the focus from single
nutrients or kilocalorie counting into healthy eating patterns [50–52]. Therefore, future development
should aim at being able to detect overall eating patterns.
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