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The new Coronavirus Disease 19, officially known as COVID-19, originated in China in 2019 and has since spread worldwide. We
presented an age-structured Susceptible-Latent-Mild-Critical-Removed (SLMCR) compartmental model of COVID-19 disease
transmission with nonlinear incidence during the pandemic period. We provided the model calibration to estimate parameters
with day-wise COVID-19 data, i.e., reported cases by worldometer from 15th February to 30th March 2020 in six high-burden
countries, including Australia, Italy, Spain, the USA, the UK, and Canada. We estimate transmission rates for each country and
found that the country with the highest transmission rate is Spain, which may increase the new cases and deaths than the other
countries. We found that saturation infection negatively impacted the dynamics of COVID-19 cases in all the six high-burden
countries. The study used a sensitivity analysis to identify the most critical parameters through the partial rank correlation
coefficient method. We found that the transmission rate of COVID-19 had the most significant influence on prevalence. The
prediction of new cases in COVID-19 until 30th April 2020 using the developed model was also provided with
recommendations to control strategies of COVID-19. We also found that adults are more susceptible to infection than both
children and older people in all six countries. However, in Italy, Spain, the UK, and Canada, older people show more
susceptibility to infection than children, opposite to the case in Australia and the USA. The information generated from this
study would be helpful to the decision-makers of various organisations across the world, including the Ministry of Health in
Australia, Italy, Spain, the USA, the UK, and Canada, to control COVID-19.

1. Introduction

Following the outbreak of the novel Severe Acute Respiratory
Syndrome Coronavirus-2 (SARS-CoV-2), COVID-19 consti-
tutes a persistent and significant public health problem
worldwide. As of 30th March 2020, the ongoing global pan-
demic outbreak of COVID-19 has spread to at least 180
countries and territories, including Australia, Italy, Spain,
the USA, the UK, and Canada, and resulted in approximately
946,876 cases of COVID-19 and 48,137 deaths [1]. In Austra-
lia, Italy, Spain, the USA, the UK, and Canada, COVID-19
infections and deaths reached 4460, 101739, 87956, 163788,
22141, and 7448, as well as 30, 11591, 7716, 3143, 1408,

and 89, with mortality ratios of nearly 0.67%, 11.39%,
8.77%, 1.9%, 6.4%, and 1.2%, respectively [1]. Figure 1 shows
the cumulative number of confirmed cases and deaths of
COVID-19 in six selected countries from 15th February to
30th March 2020.

The highest burden of COVID-19 is reliant on the health
system and depends on a quick and timely response to the
pandemic. For example, in Italy, the first confirmed
COVID-19 cases were on February 15, and then, after a few
days, thousands of people were infected by COVID-19. The
problem is not that the Italian government did not respond
to the COVID-19. The problem is that it always responded
slightly too slow and with slightly too much moderation.

Hindawi
BioMed Research International
Volume 2021, Article ID 5089184, 17 pages
https://doi.org/10.1155/2021/5089184

https://orcid.org/0000-0002-7670-5192
https://orcid.org/0000-0003-1569-9523
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5089184


What has resulted in China reveals that quarantine, social dis-
tancing, and isolation of infected populations can contain the
pandemic. This impact of the COVID-19 response in China is
being advocated in many countries where COVID-19 is start-
ing to spread. However, it is unclear whether other countries
can implement the stringent measures China eventually
adopted. Singapore and Hong Kong, both of which had severe

acute respiratory syndrome (SARS) epidemics in 2002–2003,
present concern and many lessons to other countries. In both
places, COVID-19 has been maintained well to date, notwith-
standing early cases, by early government progress and
through social distancing patterns used by individuals.

A series of critical factors can lead to the outbreak of the
COVID-19 pandemic. However, some of those factors seem
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Figure 1: Graphs of six selected countries using a log scale: (a) cumulative number of COVID-19 cases and (b) cumulative number of
COVID-19 deaths.
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to be poorly understood. Mathematical modelling is a power-
ful tool for infectious disease control that helps to accurately
predict behaviour and understand infectious disease dynam-
ics [2–4]. Many researchers have implemented mathematical
modelling frameworks to gain insights into different infec-
tious diseases [5–9]. Although models can range from very
simple to highly complex, one of the most typical practices
to improve understanding of infectious disease dynamics is
the compartmental mathematical model [10].

In mathematical models, the incidence rate plays a vital
role in the transmission of infectious diseases. The number
of individuals who become infected per unit time is called
the incidence rate in the epidemiology perspective [11]. Here,
we consider the nonlinear incidence rate because the number
of effective contacts between infective and susceptible indi-
viduals may saturate at high levels through the crowding of
infective individuals [12]. This model is also used to calibrate
and predict the number of COVID-19 case data in six coun-
tries, including Australia, Italy, Spain, the USA, the UK, and
Canada, to estimate the model parameters. We assessed the
impact of age structure on the dynamics of COVID-19 cases
in all six burden countries. The study performed a sensitivity
analysis to identify the essential model parameters that could
support policymakers in controlling the COVID-19 outbreak
in the selected countries. The model findings can be also
helpful to many other countries which are dealing with the
critical outbreak of COVID-19.

The rest of the paper is structured as follows: Section 2
presents model descriptions. Sections 3, 4, and 5, respec-
tively, performed the model calibration and impact of satura-
tion infection, the impact of age structure, and sensitivity
analysis. Section 6 finalizes the paper with a brief discussion
and concluding remarks.

2. Model Description and Analysis

We considered an SLMCR compartmental model with
three age classes: children (0-14 years), adults (15-64
years), and older (over 64 years) of COVID-19 transmis-
sion with a nonlinear incidence between the following
mutually exclusive compartments: SðtÞ: susceptible individ-
uals; LðtÞ: latent individuals, representing those who are
infected and have not yet developed active COVID-19;
MðtÞ: mild individuals who are both infected and infec-
tious and have mild respiratory illness symptoms such as
nasal congestion, runny nose, and a sore throat; CðtÞ: crit-
ical individuals who are both infected and infectious and
have severe symptoms including shortness of breath, chest
discomfort, and bluish face; and RðtÞ: recovered individ-
uals who are previously infected but successfully recovered.
Figure 2 depicts a typical SLMCR model.

Let the susceptible individuals be recruited at a constant
rate Λ, and they may be infected at a time-dependent rate β
ðM + CÞ/ð1 + αðM + CÞÞ. Here, βðM + CÞ/ð1 + αðM + CÞÞ
represents the saturated incidence rate, which tends to a sat-
urated level when ðM + CÞ gets large. βðM + CÞmeasures the
force of infection when the disease is entering a fully suscep-
tible population, and 1/ð1 + αðM + CÞÞ measures the inhibi-
tion effect from the behaviour change of susceptible

individuals when their number increases or from the effect
of risk factors including a crowded environment of the infec-
tive individuals with α which determines the level at which
the force of infection saturates. Individuals in different com-
partments suffer from natural death at the same constant rate
μ. All infected individuals move to the latently infected com-
partment, LðtÞ. Those with latent infection progress to mild
and critical infections (the M and C compartments) due to
reactivation of the latent infection at rate ω1 and ω2, respec-
tively. However, somemild populations also move to the crit-
ical compartment due to the comorbidities with other
diseases, including hypertension, diabetes, cardiovascular
disease, and respiratory system disease [13]. A proportion
of the mild and critical individuals recover through treatment
and natural recovery rates γ1 and γ2, respectively, and move
into the recovered compartment RðtÞ: In this case, we can
express the model by the following five differential equations
with an age-structured contact matrix, P:

dSi
dt =Λ −

βSi
1 + α Mi + Cið Þ 〠j

Pij Mj + Cj

� �
− μSi, ð1Þ

dLi
dt = βSi

1 + α Mi + Cið Þ 〠j
Pij Mj + Cj

� �
− ω1 + ω2 + μð ÞLi,

ð2Þ
dMi

dt = ω1Li − ϕ + γ1 + μð ÞMi, ð3Þ

dCi

dt = ω2Li + ϕMi − γ2 + μð ÞCi, ð4Þ

dRi

dt = γ1Mi + γ2Ci − μRi, ð5Þ

where i and j are the indices of the age classes and P repre-
sents the contact matrix. The matrix P has satisfied
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Figure 2: Flow chart of the SLMCR mathematical model showing
the five states and the transitions in and out of each state. S:
susceptible population; L: latent population (not yet symptomatic);
M: mild population (moderate symptom); C: critical population
(severe symptom); R: removal population; Λ: recruited rate; μ:
death rate; β: transmission rate; α: force of saturation infection;
ω1: progression rate from latent to a mild compartment; ω2:
progression rate from the latent critical compartment; γ1: recovery
rate from mild to removal compartment; γ2: recovery rate from
critical to removal compartment; ϕ: progression rate from mild to
critical compartment due to the comorbidities with other diseases.
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Figure 3: Continued.
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Figure 3: Continued.
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reciprocity, meaning that within the population, the total
time spent by the children with adults and older people, the
adults with children and older people, and the older people
with children and adults must be equal to the time spent by
the adults and older people with children, the children and
older people with adults, and the adults and children with
older people.

Given the nonnegative initial conditions for the system
above, it is straightforward to show that each of the state var-
iables remains nonnegative for all t > 0:Moreover, summing

equations (1)–(5), we find that the size of the total popula-
tion, NiðtÞ, satisfies

dNi tð Þ
dt ≤Λ − μNi: ð6Þ

Integrating the above inequality equation, we find

Ni tð Þ ≤
Λ

μ
+Ni 0ð Þe−μt: ð7Þ
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Figure 3: Measured and predicted number of cumulative COVID-19 cases from 15th February to 30th March 2020 (red dot) in six different
high-burden countries, (a) Australia, (b) Italy, (c) Spain, (d) the USA, (e) the UK, and (f) Canada, and the corresponding model (the blue-
solid curve) with the 95% confidence interval (CI) measure in the rose-shaded limits.
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Table 1: Depiction and estimation of the model parameters for six countries.

Countries Parameters Description Estimated values References

Australia

N Population in 2020 25,499,884 [15]

μ Death rate
1
70 yr−1 [16]

β Transmission rate 4:6214 × 10−8 Fitted

ω1 Progression rate from L to M 0:001 Assumed

ω2 Progression rate from L to C 0:001 Assumed

γ1 Recovery rate from M to R 0:1 Assumed

γ2 Recovery rate from C to R 0:1 Assumed

α Infection saturation rate 0:00001 Assumed

ϕ Comorbidity rate 0.3 Assumed

Λ Recruitment rate 1

Italy

N Population in 2020 60,461,826 [17]

μ Death rate
1
70 yr−1 [16]

β Transmission rate 1:2292 × 10−8 Fitted

ω1 Progression rate from L to M 0:009 Assumed

ω2 Progression rate from L to C 0:009 Assumed

γ1 Recovery rate from M to R 0:14 Assumed

γ2 Recovery rate from M to R 0:10 Assumed

α Infection saturation rate 0:0000058 Assumed

ϕ Comorbidity rate 0.3 Assumed

Λ Recruitment rate 1

Spain

N Population in 2020 46,754,778 [18]

μ Death rate
1
70 yr−1 [16]

β Transmission rate 3:3182 × 10−7 Fitted

ω1 Progression rate from L to M 0:00034 Assumed

ω2 Progression rate from L to C 0:00034 Assumed

γ1 Recovery rate from M to R 0:3 Assumed

γ2 Recovery rate from M to R 0:3 Assumed

α Infection saturation rate 0:0000004 Assumed

ϕ Comorbidity rate 0.3 Assumed

Λ Recruitment rate 1

USA

N Population in 2020 331,002,651 [19]

μ Death rate
1
70 yr−1 [16]

β Transmission rate 3:1828 × 10−7 Fitted

ω1 Progression rate from L to M 0:02 Assumed

ω2 Progression rate from L to C 0:01 Assumed

γ1 Recovery rate from M to R 0:02 Assumed

γ2 Recovery rate from C to R 0:008 Assumed

α Infection saturation rate 0:00000266 Assumed

ϕ Comorbidity rate 0.3 Assumed

Λ Recruitment rate 1
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The result shows the total population size NiðtÞ
bounded in this case, and naturally, it follows that each
of the compartment states (i.e., S, L, M, C, and R) are also
bounded.

3. Estimation of Model Parameters

This section estimated the model parameters based on the
available six countries’ COVID-19 reported case data from
http://worldometers.info [1]. Figure 3 presents the curve
of cumulative confirmed COVID-19 cases each day from
the 15th February to 30th March 2020 in Australia, Italy,
Spain, the USA, the UK, and Canada. In order to parame-
terize the model (1)–(5), we obtained some of the parame-
ter values from the literature (see Table 1). Others were
estimated or fitted from the data. We obtained the best-
fitted parameter values by minimizing the error using the
least-square method between the COVID-19 case data
and the solution of the proposed model (1)–(5) (see the
blue-solid graph in Figure 3). The model was fitted in
MATLAB using the multistart algorithm with 1000 starting
points [14]. By keeping the model-convergence results, we
estimated the confidence intervals of the model with the
normal distribution assumption.

The objective function used in the parameter estimation
is as follows:

bθ = argmin〠
n

i=1
ω1 + ω2ð ÞL − datati

� �2, ð8Þ

where datati denotes the COVID-19 data and ðω1 + ω2ÞL is
the corresponding model solution at time ti, while n is the
number of available actual data points. Findings reveal that
the proposed model is well-fitted with the data.

The prediction results from the model are also depicted
in Figure 3 to assist in the evidence-based decision-making
process. For example, predicted results could assist politi-
cians or decision-makers in the health department of Austra-
lia, Italy, Spain, the USA, the UK, and Canada for planning
for their health systems’ need. They can then implement
measures regarding staff resources and hospital beds to meet
the challenges of this difficult time. However, if the number
of infected individuals follows this trend for the next month,
there will be more than 200,000 in Australian, 200,000,000 in
Italian, 140,000,000 in Spanish, 250,000,000 in USA,
40,000,000 in UK, and 300,000 in Canadian patients infected
by 30th April 2020 as shown in Figure 3.

Table 1: Continued.

Countries Parameters Description Estimated values References

UK

N Population in 2020 67,886,011 [20]

μ Death rate
1
70 yr−1 [16]

β Transmission rate 1:1526 × 10−7 Fitted

ω1 Progression rate from L to M 0:0003 Assumed

ω2 Progression rate from L to C 0:0003 Assumed

γ1 Recovery rate from M to R 0:1 Assumed

γ2 Recovery rate from C to R 0:02 Assumed

α Infection saturation rate 0:00001 Assumed

ϕ Comorbidity rate 0.3 Assumed

Λ Recruitment rate 1

Canada

N Population in 2020 37,742,154 [21]

μ Death rate
1
70 yr−1 [16]

β Transmission rate 2:0731 × 10−7 Fitted

ω1 Progression rate from L to M 0:0003 Assumed

ω2 Progression rate from L to C 0:0003 Assumed

γ1 Recovery rate from M to R 0:2 Assumed

γ2 Recovery rate from C to R 0:2 Assumed

α Infection saturation rate 0:00001 Assumed

ϕ Comorbidity rate 0.3 Assumed

Λ Recruitment rate 1
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Moreover, Figure 4 shows the impact of saturation infec-
tion on the dynamics of COVID-19 cases in the six countries
Australia, Italy, Spain, the USA, the UK, and Canada. We
observed that saturation infection negatively correlates with

COVID-19 cases, which means increasing saturation infec-
tion will reduce the COVID-19 cases. Further, decreasing sat-
uration infection will increase the COVID-19 cases in all six
burden countries.
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Figure 4: Impact of saturation infection ðαÞ on the dynamics of COVID-19 cases in (a) Australia, (b) Italy, (c) Spain, (d) the USA, (e) the UK,
and (f) Canada.
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Pandemic COVID-19 simulation with age structure in Australia
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Pandemic COVID-19 simulation with age structure in Italy
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Figure 5: Continued.
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Pandemic COVID-19 simulation with age structure in Spain
50000

30000

20000
N

um
be

r o
f p

re
va

le
nc

e c
as

es

10000

0

0 20 40

Days

60 80

40000

(c)

Pandemic COVID-19 simulation with age structure in USA
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4. Impact of Age Structure on the
Dynamics of COVID-19

In this section, we explored the impact of three age classes,
including children (0-14 years), adults (15-64 years), and
older (over 64 years), on the transmission dynamics of
COVID-19 cases over 80 days in the six high-burden
countries. In Australia, Italy, Spain, the USA, the UK,
and Canada, the percentages of children (0-14 years)
among the total population are 18.72%, 13.45%, 15.02%,
18.46%, 17.63%, and 15.99%, respectively. Further, the per-

centages of adults (15-64 years) among the total popula-
tion are 35.39%, 64.47%, 66.50%, 64.69%, 63.89%, and
65.03%, respectively. Finally, the percentages of older peo-
ple (over 64 years) among the total population are 15.88%,
22.08%, 18.49%, 16.85%, 18.48%, and 18.98%, respectively
[22]. Results show that adults are more infected than chil-
dren and the older population in all countries. However,
in Italy, Spain, the UK, and Canada, older people are more
infected than children. In contrast, children are more
infected than older people in Australia and the USA (see
Figure 5).

Pandemic COVID-19 simulation with age structure in UK
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Figure 5: Shows the COVID-19 prevalence in each of the age groups as the epidemic progresses in six countries: (a) Australia, (b) Italy, (c)
Spain, (d) the USA, (e) the UK, and (f) Canada.
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5. Sensitivity Analysis

Sensitivity analysis is a handy method to investigate the
parameters that most significantly influence on the model
outputs [23, 24]. In this study, we performed the partial rank
correlation coefficient (PRCC) estimation, a global sensitivity
analysis technique proven to be the most reliable and efficient
sampling-based method [24, 25]. The analysis conducted
about 100,000 simulations by assigning a uniform distribution
to each model parameter and using independent sampling.
The positive (negative) correlation suggests that a positive
(negative) variation in the parameter will increase (decrease)
the model outcome [24]. Here, the model outputs we consider
are the total number of infectious individuals M + C ðwhere,
M + C = ð1 + ðγ2ðϕ + γ1 + μÞ + ϕω1Þ/ω1ðγ2 + μÞÞððβΛω2

1ðω1
ðγ2 + μÞ + ω2ðϕ + γ1 + μÞ + ϕω1Þ − ω1μðγ2 + μÞðω1 + ω2 + μÞ
ðϕ + γ1 + μÞÞ/ðω1ðγ2 + μÞ + ω2ðϕ + γ1 + μÞ + ϕω1Þðω1 + ω2
+ μÞðϕ + γ1 + μÞðαω1μ + βω1ÞÞÞ and the basic reproduction

number R0ðwhere, R0 = ðΛ/μÞβω1/ðω1 + ω2 + μÞðγ1 + ϕ + μÞ
+ ðΛ/μÞβðμω2 + ω1ω2 + ω1ϕ + ω2ϕÞ/ðγ2 + μÞðω1 + ω2 + μÞð
γ1 + ϕ + μÞÞ. The PRCC results of ðM + CÞ and R0 corre-
sponding to the model parameters β, ω1, ω2, γ1, γ2, ϕ, and α
are displayed in Figures 6 and 7. Parameters β, ω1, ω2, and ϕ
have positive PRCC values, implying that a positive change
of these parameters will increase the total number of infectious
individuals ðM + CÞ and the basic reproduction number. In
contrast, parameters γ1, γ2, and α have negative PRCC values,
which imply that increasing these parameters will decrease the
total number of infectious individuals ðM + CÞ and R0.

6. Discussion and Concluding Remarks

In this paper, we presented an age-structured SLMCR compart-
mental model with nonlinear incidence. We estimated the
number of cases from COVID-19 infection and applied it to
data from the COVID-19 epidemics in Australia, Italy, Spain,
the USA, the UK, and Canada to predict the COVID-19 situa-
tion until 30th April 2020. After model calibration, we estimated
the transmission rates of 4:6214 × 10−8, 1:2292 × 10−8, 3:3182
× 10−7, 3:1828 × 10−7, 1:1526 × 10−7, and 2:0731 × 10−7,
respectively, in Australia, Italy, Spain, the USA, the UK, and
Canada. The model estimates revealed a strong relationship
between the transmission rate and the number of cases in
COVID-19 of the selected countries, which is a consistent result
with other studies related to COVID-19 [26–28].

Within the six selected countries, we found that Spain has
the highest transmission rate than the other countries, which
may increase the massive number of COVID-19 cases and
make it one of the worst situations in Spain. The Spanish
government may not have taken proper action at the initial
stage to control transmission, including handwashing, social
distancing, and good respiratory hygiene. For instance, in
China, they took immediate action for transmission control,
including lockdown in every city; that is how they were able
to minimize the outbreak of COVID-19. Our finding is con-
sistent with such typical observations because COVID-19
mainly spreads from person to person through droplet trans-
mission. Droplets cannot go through the skin and can only
lead to infection if they touch the mouth, nose, or eye. There-
fore, it is essential to protect susceptible individuals from
COVID-19 exposure from a public health perspective by
effectively reducing the contact rate between susceptible
and infectious individuals.

Age is a significant risk factor that can increase the sever-
ity of the outbreak of COVID-19. In our study, we found that
adults are more infected than children and older people. The
SARS-CoV-2 may be present for several days before there are
any symptoms, and many adult people will have few or no
symptoms at all. Surveillance data confirm that the SARS-
CoV-2 virus is more in adults and had the highest rates of
COVID-19 cases [29]. Modelling studies have found that
children are less likely to acquire an infection and are much
less likely to show symptoms [30], similar to our results in
Italy, Spain, the UK, and Canada but dissimilar in Australia
and the USA. This information will assist policymakers in
strategy development.
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Figure 6: PRCC values depicting the sensitivities of the model
output, i.e., the total number of infectious individuals ðM + CÞ for
the estimated parametersβ, ω1, ω2, γ1, γ2, ϕ, and α.
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Figure 7: PRCC values depicting the sensitivities of the model
output, i.e., the basic reproduction number (R0) for the estimated
parametersβ, ω1, ω2, γ1, γ2, and ϕ.
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Estimation of transmission rates from different settings
must be done with caution, though, as the pattern of a pan-
demic, the standard of care, and, as a result, the number of
cases are time and setting dependent. For instance, very few
cases have been reported so far in Bangladesh [31]. In this
developing country, the health system is indigent and not
comprehensive to cover every citizen, which leads to fewer
reported cases. Therefore, data from other countries, in par-
ticular, the number of cases by date of COVID-19 onset, is
necessary to better understand the variability in cases across
different settings.

Our model determined that from the explicit expression
for the total number of infectious individuals ðM + CÞ and
the basic reproduction number R0, it is clear that they
depended on transmission rates β, progression rates ω1 and
ω2, recovery rates γ1 and γ2, comorbidity rate ϕ, and infec-
tion saturation rate α. From the sensitivity analysis findings,
it is also clear that the most critical parameter was the trans-
mission rate, β, followed by the recovery rate, γ1. Therefore,
to control and eradicate COVID-19 infection, it is crucial to
consider the following strategies: (i) the first and most impor-
tant strategy is to minimize the contact rates β with infected
individuals by decreasing the values of β; (ii) the second-
most important strategy is to increase the recovery rate γ1
of infective individuals through treatment. Therefore, we
suggest that the most feasible and optimal strategy to elimi-
nate COVID-19 in the six different countries, i.e., Australia,
Italy, Spain, the USA, the UK, and Canada, is to reduce con-
tact rates as well as increase the treatment rate. Finally, the
application of the proposed model and its related outputs
can be extended to many other countries dealing with such
a critical outbreak of COVID-19 to control this global pan-
demic disease.
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