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Hematopoiesis is well-conserved 
between Drosophila and verte-

brates. Similar as in vertebrates, the sites 
of hematopoiesis shift during Drosophila 
development. Blood cells (hemocytes) 
originate de novo during hematopoi-
etic waves in the embryo and in the 
Drosophila lymph gland. In contrast, the 
hematopoietic wave in the larva is based 
on the colonization of resident hemato-
poietic sites by differentiated hemocytes 
that arise in the embryo, much like in 
vertebrates the colonization of periph-
eral tissues by primitive macrophages of 
the yolk sac, or the seeding of fetal liver, 
spleen and bone marrow by hematopoi-
etic stem and progenitor cells. At the 
transition to the larval stage, Drosophila 
embryonic hemocytes retreat to hemato-
poietic “niches,” i.e., segmentally repeated 
hematopoietic pockets of the larval body 
wall that are jointly shared with sensory 
neurons and other cells of the peripheral 
nervous system (PNS). Hemocytes rely 
on the PNS for their localization and 
survival, and are induced to proliferate 
in these microenvironments, expanding 
to form the larval hematopoietic system. 
In this process, differentiated hemocytes 
from the embryo resume proliferation 
and self-renew, omitting the need for 
an undifferentiated prohemocyte pro-
genitor. Larval hematopoiesis is the first 
Drosophila model for blood cell coloni-
zation and niche support by the PNS. It 
suggests an interface where innocuous 
or noxious sensory inputs regulate blood 
cell homeostasis or immune responses. 
The system adds to the growing concept 
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of nervous system dependence of hema-
topoietic microenvironments and organ 
stem cell niches, which is being uncov-
ered across phyla.

Drosophila Blood Cell Lineages 
and Compartments

Drosophila blood cells, or hemocytes, 
play essential roles in the removal of apop-
totic cells, immune responses against 
pathogens and parasites, and the repair 
of damaged tissue.1-13 Three differentiated 
blood cell lineages, and undifferentiated 
prohemocytes that have progenitor func-
tion, are currently being distinguished.13-19 
Macrophages, also called plasmatocytes, 
correspond to the vertebrate myeloid lin-
eage, and represent 90–95% of hemocytes 
at most developmental stages, serving roles 
in immunity and phagocytosis.3,13,14,16 
Invertebrate-specific crystal cells mediate 
melanization reactions in the embryo and 
larva,13-16,20 and lamellocytes are induced 
by specific immune challenges in the 
larva to wrap large immune targets.7,16,21-23 
Several transcription factors and signaling 
pathways, many of which are conserved in 
vertebrates, play roles in the specification, 
differentiation, maintenance and func-
tional responses of hemocytes.18,20,22,24-49

During development, Drosophila 
blood cells are supplied by a number of 
hematopoietic tissues to meet the demand 
during normal homeostasis and chal-
lenges such as infection, infestation or 
stress.18,32,42 Each of these hematopoietic 
waves follows its own mechanisms, based 
either on the de novo generation of blood 
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of “larval hemocytes” is active during lar-
val development.23,58

Larval Hematopoiesis: 
A Wave of Macrophage Expansion 

Initiated by Blood Cell  
Colonization

Larval hematopoiesis fills the developmen-
tal gap between embryonic hematopoiesis 
and the release of LG hemocytes at the 
onset of metamorphosis (Fig. 1).13,16,18,58 
Only recently, larval hematopoiesis has 
been recognized to be initiated through 
the colonization of hematopoietic micro-
environments by existing blood cells, 
rather than involving the de novo forma-
tion of prohemocytes or differentiation of 
existing progenitors, as was evidenced by 
extensive lineage tracing and functional 
approaches.58 Differentiated hemocytes of 
the embryo are being carried over to the 
larval stage, colonize segmentally repeated 
epidermal-muscular (hematopoietic) 
pockets (Fig. 2) and proliferate in these 
locations,58 explaining why embryonic 
hemocytes persist into postembryonic 
stages.59 Interestingly, after a period of 
quiescence, and reduction in number in 
the late-stage embryo (You Bin Lin and 
K.B.),3,16,58 these hemocytes re-enter, or 
proceed in, the cell cycle and expand from 
~300 at the beginning of larval life to more 
than 5,000 in the third instar larva (You 
Bin Lin and K.B., unpublished).16,58 While 
in early larval development most if not all, 
hemocytes retreat to hematopoietic pock-
ets, an increasing number of hemocytes 
circulate in the hemolymph of second and 
third instar larvae, playing roles in immu-
nosurveillance. Mobilization of hemocytes 
culminates during the prepupal phase, leav-
ing only a small fraction of hemocytes in 
resident locations (K.M. and K.B., unpub-
lished).16,41 Throughout larval life, resident 
hemocytes are in a dynamic steady-state, 
exchanging between hematopoietic pock-
ets.58 Similar dynamics have been reported 
for circulating and dorsal vessel-associated 
larval hemocytes.60,61 Resident hemocytes 
can be dispersed by mechanical manipula-
tion, which is followed by their spontane-
ous return, or “homing,” to hematopoietic 
pockets in an hour or less, suggesting that 
the microenvironment has attractive and/
or specific adhesive properties.58

grows and matures over the course of 
larval development and supplies hemo-
cytes at the beginning of metamorpho-
sis,7,13,16,52,53 corresponding to the third 
wave of hematopoiesis on the develop-
mental timeline of Drosophila (Fig. 1). 
The LG is developmentally and physi-
cally associated with the dorsal vessel,54 
a circulatory organ with heart-like func-
tions. LG and dorsal vessel arise from a 
common hemangioblast progenitor,54 
similar to the differentiation of hema-
topoietic and endothelial cells from a 
hemangioblast progenitor that emerges 
from the primitive streak during mam-
malian development.55,56 The LG is orga-
nized into a central medulla of immature, 
tightly packed prohemocyte progenitors, 
a peripheral cortical zone of hemocytes 
that differentiate into plasmatocytes and 
crystal cells and show increased pro-
liferation, and the posterior signaling 
center, a microenvironment that con-
trols hemocyte progenitor maintenance 
and differentiation.22,38,43,52,57 With the 
exception of severe immune challenges, 
LG hemocytes do not play roles in the 
immune or phagocytic functions in the 
larva,16,22,53 but are released at the begin-
ning of pupariation.53 Thus, a separate set 

cells, or the recruitment of existing blood 
cells by colonization of hematopoietic 
microenvironments.

Hematopoietic Waves Based  
on De Novo Blood Cell Generation

The initial wave of Drosophila hema-
topoiesis takes place in the embryo  
(Fig. 1). Hemocytes originate from the 
procephalic mesoderm, forming undif-
ferentiated progenitor cells, or prohemo-
cytes, which undergo a series of four rapid 
cell divisions during embryonic stages 
8–11.3,50 Subsequently, with the exception 
of about 5% of the cells that differentiate 
into crystal cells and retain proliferative 
capacity,20 these cells stop proliferating 
and switch to a differentiation program, 
maturing toward plasmatocyte lineage.3 
As plasmatocytes differentiate, they dis-
perse all over the embryo, migrating ini-
tially on defined paths.8,10,51 Therefore, 
stage 11–16 embryos comprise a develop-
mentally fixed number of 600–700 hemo-
cytes, ~90% of which differentiate into 
plasmatocytes.3,10,35

An independent set of blood cells orig-
inates from the lymph gland (LG), which 
develops from an embryonic anlage that 

Figure 1. Hematopoietic waves in Drosophila. Timeline of hematopoietic waves in the Drosophila 
embryo and larva. Embryonic and lymph gland hematopoiesis are based on the de novo genera-
tion of blood cells, while larval hematopoiesis is founded by embryonic hemocytes that colonize 
hematopoietic pockets of the larval body wall. Vertical hatching indicates release of hemocytes 
from hematopoietic sites. Note progressive release of larval hemocytes into circulation over the 
course of larval development. HM, embryonic head mesoderm; HP, larval hematopoietic pockets; 
LG, lymph gland
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Parallels with Mammalian  
Systems

Hematopoiesis in the Drosophila larva 
and vertebrates show numerous parallels. 
In vertebrates, seeding of hematopoietic 
sites through colonization by blood cells 
occurs at multiple times during devel-
opment. Primitive macrophages of the 
yolk sac give rise to many types of tissue 
macrophages, such as the microglia of 
the brain,82-85 dendritic cells of the skin, 
Kupffer cells of the liver and resident mac-
rophages of the pancreas, lung, spleen and 
kidney,86 and also differentiated blood 
cells from other sources, such as mono-
cytes from fetal liver, seed certain tissue 
macrophage populations.87 Similarly, 
AGM (aorta gonad mesonephros) -derived 
hematopoietic stem cells (HSCs) engraft 
the fetal liver, and, later on, the thymus, 
spleen and bone marrow,88-90 and commit-
ted T-cell progenitors from the thymus 
seed primary lymphoid organs such as the 
gut.91

Blood cells that give rise to a hema-
topoietic population typically require an 
appropriate microenvironment, or niche, 
which provides signals that ensure their 
survival, maintenance, controlled prolif-
eration and differentiation. For example, 
the mammalian bone marrow niche relies 
on sympathetic nerves and their associated 

functionally depend on the PNS as 
attractive and trophic microenviron-
ment: Atonal (ato) mutant,74,75 or geneti-
cally neuron-ablated larvae, deficient for 
chordotonal organs and few md neurons, 
show a progressive apoptotic decline in 
hemocytes and an incomplete resident 
hemocyte pattern.58 Complementary to 
this, supernumerary peripheral neurons 
induced by ectopic expression of the 
proneural gene scute (sc) can misdirect 
hemocytes to these ectopic locations.58 
Since the PNS contains several neuron 
populations that are distinct by func-
tion and lineage,67,76,77 it will be interest-
ing to dissect functional requirements 
and potential regulatory connections 
through neurons and/or their tightly 
associated glia or support cells.78,79 Since 
the PNS has a prime function in detect-
ing innocuous and noxious stimuli, and 
hemocytes become rapidly activated and 
mobilized for tissue repair and immune 
functions after an assault,8,9,60,80,81 it is 
interesting to speculate that the anatomi-
cal and functional connection of the PNS 
with blood cells may coordinate develop-
mental hematopoiesis, homeostasis and 
immune responses in the Drosophila 
larva. Similar mechanisms of blood cell 
colonization, and potentially regula-
tion, could also play roles in post-larval 
hematopoiesis.

The Nervous System  
as Microenvironment  

in Larval Hematopoiesis

Searching for the attractive and inductive 
constituents of the larval hematopoietic 
microenvironment, a central functional 
role of the peripheral nervous system 
(PNS), was identified.58 The larval PNS 
consists of segmentally repeated ven-
tral, lateral and dorsal neuron clusters, 
which sense intrinsic and environmental 
innocuous and noxious stimuli, such as 
mechanical strain and movement, tem-
perature, chemicals and light.62-66 Each 
segment contains a stereotyped clus-
ter of chordotonal organs (ch), external 
sensory organs (es) and multidendritc 
neurons (md),67 which extend dendritic 
processes into all areas of the larval body 
wall68-70 and project axons ventrally to 
the brain.69,71,72 Resident hemocytes 
tightly associate with the cell bodies and 
extensions of several neuron types in the 
lateral and dorsal PNS clusters, which 
jointly localize to hematopoietic pockets, 
forming the “lateral patch” and “dorsal 
stripe” of hemocytes (Fig. 2).58 Lateral 
patches form around clusters of oeno-
cytes, metabolically active cells with sim-
ilarity to vertebrate hepatocytes,73 which, 
however, are not essential for hemocyte 
attraction.58 In contrast, larval hemocytes 

Figure 2. The PNS as hematopoietic microenvironment. (A) Co-labeling of neurons (21–7-GAL4, UAS-CD8-GFP, green),63 and hemocytes (HmlΔ-DsRed, 
red),58 located in the hematopoietic pockets of a filleted 3rd instar larva, anterior left, dorsal up. Two larval abdominal segments showing hemocytes 
colocalizing with the lateral and dorsal PNS clusters, forming the ‘lateral patch’ and ‘dorsal stripe’. (B) Model of a lateral patch and dorsal stripe. Arrow 
represents attractive and inductive cues provided by cells of the PNS that support larval hemocytes.
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Much like Drosophila larval hemocytes, 
vertebrate tissue macrophages expand 
within local microenvironments.82,84,86,97,99 
However, compared with the systemic 
functions of Drosophila larval hemo-
cytes,16,23,60 vertebrate tissue macrophages 
may have evolved to adopt more restricted, 
tissue-specific roles.126-128

Outlook

The optically transparent and geneti-
cally tractable Drosophila larva provides 
a powerful system to study principles of 
nervous system-hematopoietic regulation. 
Drosophila sensory neurons comprise 
a major part of the larval hematopoi-
etic niche, suggesting an interface that 
could link innocuous or noxious stimuli 
with blood cell homeostasis and immune 
responses. It will be interesting to investi-
gate further whether, in vertebrates, sen-
sory innervation in the proximity of tissue 
macrophages129 and in microenvironments 
of HSCs in the bone marrow and lymph 
nodes118,119,130 serve similar functions.
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