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MeinteR: A framework to prioritize 
DnA methylation aberrations 
based on conformational and cis-
regulatory element enrichment
Andigoni Malousi1*, Sofia Kouidou1, Maria tsagiopoulou2, nikos papakonstantinou2, 
emmanouil Bouras3, elisavet Georgiou1, Georgios tzimagiorgis1 & Kostas Stamatopoulos2

DnA methylation studies have been reformed with the advent of single-base resolution arrays and 
bisulfite sequencing methods, enabling deeper investigation of methylation-mediated mechanisms. 
in addition to these advancements, numerous bioinformatics tools address important computational 
challenges, covering DNA methylation calling up to multi-modal interpretative analyses. However, 
contrary to the analytical frameworks that detect driver mutational signatures, the identification of 
putatively actionable epigenetic events remains an unmet need. The present work describes a novel 
computational framework, called MeinteR, that prioritizes critical DnA methylation events based 
on the following hypothesis: critical aberrations of DnA methylation more likely occur on a genomic 
substrate that is enriched in cis-acting regulatory elements with distinct structural characteristics, 
rather than in genomic “deserts”. In this context, the framework incorporates functional cis-elements, 
e.g. transcription factor binding sites, tentative splice sites, as well as conformational features, such as 
G-quadruplexes and palindromes, to identify critical epigenetic aberrations with potential implications 
on transcriptional regulation. The evaluation on multiple, public cancer datasets revealed significant 
associations between the highest-ranking loci with gene expression and known driver genes, enabling 
for the first time the computational identification of high impact epigenetic changes based on high-
throughput DNA methylation data.

Basic and applied research on DNA methylation (DNAm) have been revolutionized with the advent of single-base 
resolution and genome-wide assays. Along with these advancements, a wide range of bioinformatics methods 
has been developed to address the computational complexities of high-throughput analyses. These methods 
are generally classified in two categories: (a) those focusing on the core analysis pipeline that transforms raw 
array-based1,2 or sequencing data to DNAm calls3,4, and (b) those implementing downstream analyses5–11, e.g. 
cell mixture proportions, age calculators, differential analysis, visualization, association with gene expression and 
phenotypic data, pathway enrichment analyses, genomic architecture mappings etc. Furthermore, several frame-
works provide comprehensive solutions by either integrating existing tools from both categories in user-friendly 
pipelines12–16, or by interpreting DNAm events with respect to the enrichment of diverse types of colocalized 
regulatory elements11.

While significant progress has been made on improving DNAm calling methods and enriching the types 
of interpretative analyses17, the need to computationally identify the most critical aberrations is still poorly 
addressed. The main origins of this deficiency are: (a) the plethora of differentially methylated sites (DMS) that 
are usually identified from high-throughput experiments18; (b) the dynamics and tissue specificity of DNAm 
events; (c) modest interpretability, as aberrant DNAm is usually observed in poorly annotated, non-coding 
regions18; and (d) unlike genomic studies, lack of efficient analytical frameworks that detect critical events19. To 
this end, a computational framework that could address the above issues would constitute a significant advance-
ment in interpretative DNAm analyses.
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In particular, recent studies highlight the benefits of encompassing DNAm data in computational frame-
works that deal with driver event detection. For example, a beta mixture model was proposed for the detection of 
important methylation-driven genes in cancer by integrating methylome and gene expression data20,21. A similar 
data- driven pathway method identified pan-cancer genes by integrating DNAm, copy number variation and gene 
expression data22. In the same context, a functional interaction network developed to prioritize cancer genes from 
multi-omics data, including DNAm23. The above methods share certain common features: (a) driving events do 
not solely derive from DNAm profiles; (b) aberrant DNAm is inferred at gene level by averaging DNAm levels at 
promoters, intronic and exonic regions; and (c) pathway enrichment from each -omics modality is used to classify 
driver genes.

In addition, these studies do not encounter an important regulator of epigenetic modifications, that is the 
genomic substrate underlying driver events. The contribution of specific positional (e.g. cis-acting regulatory ele-
ments) and compositional features (e.g. CpG islands, k-mers) in DNAm has been highlighted in multiple research 
studies. For example, a set of cis-acting, methylation-prone and methylation-resistant motifs were identified that 
increase the predictive power of the DNAm detection methods24. Other studies elaborated further on: (a) the 
role of context-dependent DNAm as instructor for gene regulation25, (b) associated DNAm with the presence of 
ENCODE’s regulatory elements26, and (c) developed computational tools that accurately predict DNAm levels, 
based on context-based features27–29.

The role of the genomic context is also supported by several studies associating the presence of particular 
regulatory elements with DNAm. For example, dual-specificity of transcription factors is related with variable 
binding affinity in methylated and unmethylated forms of a CpG sequence30,31. As transcription factor bind-
ing sites are identified by position-specific dependencies among nucleotides it is important to specify whether 
putative bindings are potentially inhibited or promoted when co-localized with methylated CpG sites (CpGs), 
implying an indirect role of DNAm in regulatory processes32. In the same context, DNA sequences that fold into 
G-quadruplexes were found to be less prone to CpG methylation, while increased DNAm is depleted in these 
structures33, and might change protein binding to quadruplex-forming DNA segments during transcriptional 
regulation, particularly in aging34,35.

Although less clearly demonstrated, non-canonical hairpin structures formed by palindromic sequences could 
potentially regulate methylation-mediated processes by becoming resistant to DNAm36. Furthermore, short 
sequences neighboring methylated cytosines in palindromic sequences were found to attract protein-DNA bind-
ing37. Other DNA helix elements, such as local geometric features (minor/major groove, propeller twist etc.), alter 
their shapes in the presence of DNAm, and could probably affect protein-DNA binding, subsequently leading to 
transcriptional activation or silencing38. In this context, computational methods could corroborate or deputize 
limited experimental data by predicting local structural changes of the double helix induced by DNAm that 
may successively alter protein-DNA binding affinity39. DNAm also exhibits distinguishable positional patterns 
in constitutive and alternative splicing40–43. CpGs that are located on the exon-intron junctions exhibit increased 
DNAm levels, contrary to the neighboring intronic regions44,45. Considering these complexities, further analyzed 
by Machado et al.46, it is evident that the genomic substrate could provide valuable insights in deciphering the 
impact of aberrant DNAm events.

Herein, we present a computational framework, called MeinteR, that identifies putatively functional DNAm 
sites based on the following hypothesis: aberrant DNAm that occurs on a genomic substrate enriched in 
cis-regulatory and conformational elements is more likely to trigger methylation-mediated transcriptional events 
than differential DNAm observed in genomic “deserts”. In this context, MeinteR builds genomic signatures of 
DMS and identifies critical loci where aberrant DNAm might have a greater effect on phenotype expression, 
using a linear function of the elements enrichment, called genomic index. With three use cases and extensive 
comparisons, we show that MeinteR provides an efficient means to decode complex associations between DNAm 
aberrations and gene expression deregulation.

Results
MeinteR is a computational framework consisting of three modules (Fig. 1). Briefly, the data preprocessing mod-
ule contains functions for loading, validation, reformatting and filtering of DNAm data that are exported from 
BeadChip arrays or next-generation sequencing platforms. The feature detection module implements a set of 
functions for batch sequence retrieval and enrichment analysis of the incorporated features. Finally, the signature 
extraction module builds genomic signatures of the candidate sites and implements a ranking scheme. The func-
tionality of each module is described in Methods.

MeinteR is a software package that primarily builds genomic signatures of epigenetic aberrations and identi-
fies critical events in high-throughput datasets. The modularity of the software components enables a wide variety 
of applications in multiple settings as shown in the following use cases. Use case 1 shows a differential analysis of 
tumor/normal samples using only G-quadruplexes, and use case 2 builds genomic signatures of tumor/normal 
samples using the complete set of conformational and cis-regulatory elements. Use case 3 implements the pri-
mary goal of the framework that is to export the genomic index of aberrantly methylated sites and to associate 
the genomic index with differential gene expression. In these use cases, DNAm data are retrieved from Gene 
Expression Omnibus (GEO)47 and The Cancer Genome Atlas (TCGA)48 and for most differential analyses we 
applied a stringent threshold (Δβ > = 0.3, p < 0.01 and FDR < 0.01) to avoid the detection of false positive DMS 
sites and improve the quality of downstream analysis towards biological interpretation of the results. Notably, the 
objective of these use cases is to provide pre-configured examples on public datasets, rather than to interpret the 
biological findings. These use cases can be easily adapted to other research applications using custom configu-
rations as regards to the composition of the feature set and weighting scheme. MeinteR provides supplementary 
functions to further annotate the input data in terms of the CpG/G + C content and β value distribution. These 

https://doi.org/10.1038/s41598-019-55453-8


3Scientific RepoRtS |         (2019) 9:19148  | https://doi.org/10.1038/s41598-019-55453-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

functions, coupled with various filtering parameters embedded in each core function, can be used towards com-
prehensive and accurate characterization of the input data.

Use Case 1: Genome-wide association of G-quadruplexes with DNAm using public breast 
cancer datasets. To demonstrate the applicability in revealing associations between DNAm and particu-
lar genomic features, we used MeinteR to investigate DNAm resistance in sequences that fold in G-quadruplex 
structures33. First, we downloaded TCGA HumanMethylation450 array data from 91 breast cancer patients with 
matched primary tumor and normal tissue samples47. Then, we calculated the mean DNAm levels per sample 
group using the beta (β) values of the interrogated CpGs. β values range from 0 to 1 and are calculated by the 
formula β = Intensity of the methylated probe/(Intensity of the unmethylated probe + Intensity of the methylated 
probe + 100). For each sample group, we identified G-quadruplex structures in sequences centered at unmeth-
ylated and methylated sites, with β ≤ 0.1 and β ≥ 0.9, respectively. Batch analysis of normal samples revealed a 
statistically significant two-fold increase (two-tailed t-test, p < 0.001) of G-quadruplex frequency at unmethylated 
sites compared to methylated sites (Fig. 2A, left-hand side). Similarly, as shown in Fig. 2A (right-hand side), in 
primary breast tumor samples G-quadruplex-forming sequences are less frequently observed in regions neigh-
boring highly methylated sites (two-tailed t-test, p < 0.001).

We further evaluated the propensity of G-quadruplex structures to co-localize with sites that significantly 
lower their DNAm level in cancer (hypomethylated, DMS−) and vice versa, sites that exhibit a significant decrease 
in their DNAm level in cancer (hypermethylated, DMS+) with ( βΔ ≥ .0 3, p < 0.01 and FDR < 0.01). Differential 
analysis of the cancer/normal breast pairs identified 3,981 DMS+, and 1,869 DMS−. Both datasets were randomly 
subsampled to 1,000 DMS and scanned for putative G-quadruplexes. Figure 2B on the left side shows a three-fold 
increase of G-quadruplex frequency in DMS+ compared with DMS− (two-tailed t-test, p < 0.001). This observa-
tion is inline with the results shown in Fig. 2A, since DMS+ mostly involves low methylated sites in normal sam-
ples due to the bimodal distribution of the β values and vice versa.

To validate these results, we followed the same procedure on HumanMethylation450 DNAm data obtained 
from 80 breast cancer and 40 normal samples that are deposited to GEO (GSE66695 data series). β values were 
averaged on each sample group and differentially analyzed, resulting in 293 DMS+ and 62 DMS− (| β|Δ | ≥ .0 3, 
p < 0.01, FDR < 0.01). Then, we estimated the frequency of G-quadruplex forming sequences in 100nt regions 
centered at DMS. The histogram in Fig. 2B (right-hand side) shows that most DMS− sequences lack G-quadruplex 
structures (mean G4: 0.597, s.d. = 0.878), while most DMS+ are co-localized with at least one G-quadruplex 
structure (mean G4: 1.901, s.d. = 1.462). The difference is statistically significant (two-tailed t-test, p < 0.001) and 

Figure 1. Overview of the MeinteR workflow. Input data, either interval files or GEO data series, are pre-
processed and genomic sequences are obtained from human genome assembly (data preprocessing panel). 
Plotting functions and summary statistics supplement the data preprocessing module. Fetched DNA sequences 
are then analysed with respect to the abundance of the incorporated features through the corresponding 
MeinteR functions that export tabular and graphical outputs (feature detection panel). The identification 
of transcription factor binding sites and splicing elements is based on reference data that are automatically 
retrieved from relevant public resources. The last module (signature extraction panel) builds a matrix of genomic 
signatures per CpG site and the genomic index is calculated based on user-defined weighting schemes. The 
genomic signature of each DNAm is a numerical vector containing the abundance of each feature, multiplied by 
a user-defined weighting factor. The genomic index is a non-negative real number that is calculated using the 
linear mixture of the values in the signature vector.
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in accordance with the outcome of the TCGA data analysis (Fig. 2B, left). Overall, the results of both breast cancer 
datasets dictate a protective role of G-quadruplex structures against DNAm that apparently characterizes DNAm 
patterns independently of the cell type and phenotype.

To further validate these findings, we performed the same analysis on six other cancer types using TCGA 
datasets. Fig. S1 (Supplementary File 1) shows the results that further validate the same findings. Overall, the 
results dictate a protective role of G-quadruplex structures against DNAm that apparently characterizes DNAm 
patterns independently of the cell type and phenotype. This observation needs further elaboration that is beyond 
the scope of the present work.

Use Case 2: Evaluation of genomic signatures on cancer DNAm profiles. In this  use case, we 
determined the enrichment of the incorporated conformational and regulatory elements, in order to assess the 
contribution of the genomic substrate to DNAm alterations in cancer. To this end, we built the genomic signatures 
of nine cancer types using DNAm datasets deposited to GEO48. Each cancer dataset contains DNAm data from 
tumor and normal samples. Table 1 lists the mean values, standard deviations and statistical evaluation of each 
feature in the hypo- and hypermethylated subsets. In addition, each subset is characterized with respect to the 
CpG/G + C content in all cancer types. As expected, sites that are hypermethylated in cancer are located in more 
G + C/CpG-rich regions than DMS−. Overall, the abundance of DMS varies, depending on the assay. In addition, 
the number of DMS+ and DMS− differs significantly in all cancer types, yet not in the same way. The abundance 
of G-quadruplex structures in DMS+ and DMS− sites (Table 1, G4 column) is statistically different in eight out of 
nine cancer types (p < 0.01). Similarly, the frequency of palindromic sequences (Table 1, Pals column) in DMS+ 
and DMS− sites is significantly different in six out of nine cancer types, while transcription factor binding sites 
exhibit also important differences. Transcription factor binding sites exhibit statistically significant differences 
in one out of nine cancer types (Table 1, TFBS column), while for conserved human/mouse/rat transcription 
factors the statistical significance is observed in five cancer types (Table 1, cTFBS column). Alternative splicing 
events exhibit mixed profusion and statistically significant results in two out of six datasets. Among four con-
formational changes, only minor groove width and propeller twist seem to affect or to be affected by differential 
DNAm in a small subset of cancer data (Supplementary File 1, Table S1), that is partially consistent with recent 
non-cancer-specific analyses39.

Figure 2. Histograms of the G-quadruplex density in breast cancer. (A) Comparison of low and highly 
methylated sites in matched normal tissue (left) and primary breast tumor (right) retrieved from TCGA. (B) 
Comparison of hypermethylated (DMS+) and hypomethylated (DMS−) sites in TCGA and GEO breast cancer 
samples (left and right panel, respectively). The curves correspond to normal distributions projected over the 
histograms.

https://doi.org/10.1038/s41598-019-55453-8


5Scientific RepoRtS |         (2019) 9:19148  | https://doi.org/10.1038/s41598-019-55453-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

In this use case, MeinteR automates the investigation of complex associations between epigenomic and 
genomic features across different cancer types. The results demonstrate a clear association between DNAm pro-
files and the genomic substrate that should be further elaborated and interpreted in the context of disease-specific 
analyses, as different outcomes may be attributed to the design, assay, and the experimental protocol of each study.

Use Case 3: Associating genomic DMS signatures with gene expression. The objective of this 
use case is to appraise the association between the genomic index and differential gene expression. First, we 
used MeinteR to download a GEO dataset for which both DNAm and gene expression data of the same samples 
are available. We used a set of 24 non-muscle invasive bladder cancer and matched normal samples (BLCA/
GSE37817)49. To build expression profiles at gene level we applied GEO2R48, and calculated the differential 
expression levels between cancer and control samples, using the binary logarithmic fold change. To analyze 
DNAm data, we used MeinteR in order to: (a) import β values of all samples, and (b) calculate mean β values per 
group. DMS were finally mapped to expression data and the level of differential DNAm was correlated with the 
expression levels of the mapped genes. To validate the results, we performed the same steps on processed TCGA 
Illumina HiSeq expression data from primary bladder urothelial carcinomas and normal tissues.

Differential DNAm analysis resulted in 1,474 probes that are more frequently located in “open sea” regions 
and less frequently to CpG islands. Fig. S2 (Supplementary File 1) illustrates the distribution of the genomic 
index in different regions relative to CpG islands. Probes located in CpG islands exhibit statistically significant 
differences of the genomic index and increased mean genomic index against all other regions (Shelf: p-val = 0.02, 
Shore: p-val < 0.001, Open sea: p-val < 0.001). None of the pairwise differences between shelves, shores and open 
sea probes were found statistically significant. DMS located in CpG islands were further annotated based on 
their position relative to gene regions. The density plots in Fig. S2 show that most CpG island DMS are located 
in 5′UTR and first exons, while the probes located in 200nt upstream transcription start sites (TSS200) have the 
highest mean genomic index. As expected, DMS+ are more often located in genes that decrease their expres-
sion level, while DMS− are spatially linked with genes that increase their expression with significant statistical 
difference (p < 0.001) for both BLCA datasets (Supplementary File 1, Fig. S3). To demonstrate the relevance of 
the genomic substrate in prioritizing critical DNAm events, we used MeinteR to assess whether differential gene 
expression is associated with higher genomic index. First, we calculated the genomic index of all DMS by assign-
ing equal weights to the incorporated feature set. Figure 3 shows that among all aberrantly methylated sites, 
higher absolute differential expression is observed in sequences with increased genomic index. The differences 
are statistically significant for both BLCA datasets from TCGA and GEO (p < 0.05), implying that the effect of 

GEO ID
Cancer Data 
Series Samples Assay DMS(+/−)

G + C/
ΟΕ CpG 
content

G4 Pals Alt. Spl. TFBS cTFBS

Refmean(sd) p-val mean(sd) p-val p-val mean(sd) p-val mean(sd) p-val mean(sd)

GSE42752 Colorectal 
adenocarcinoma 22/22 HM450k

2,028 0.68/0.83 2.90 (1.33)
<10−3

9.65 (4.63)
0.002 —

0.07 (0.25)
0.065

5.96 (5.81)
0.23

0.35 (1.17)
71

49 0.55/0.52 1.51 (1.10) 7.53 (3.11) — 9.25 (4.19) 0.2 (0.91)

GSE54503 Hepatocellular 
carcinoma 66/66 HM450k

1,227 0.69/0.85 2.87 (1.37)
<10−3

10.43 (5.03)
<10−3 <10−3

0.07 (0.25)
0.143

5.61 (5.07)
<10−3

0.38 (1.16)
51

7,490 0.53/0.52 1.18 (1.19) 6.9 (3.06) 0.01 (0.08) 6.62 (6.52) 0.08 (0.5)

GSE85464* Gastric 
adenocarcinoma 19/19 HM450k

161 0.65/0.78 2.57 (1.37)
<10−3

8.95 (4.94)
<10−3 —

0.08 (0.27)
0.002

5.06 (4.82)
<10−3

0.4 (1.13)
72

353 0.53/0.57 1.25 (1.24) 6.9 (3.4) — 11.25 (14.29) 0.1 (0.66)

GSE25093 Head & NeckSC 
carcinoma 91/18 HM27k

16 0.60/0.68 1.69 (1.13)
0.188

8.12 (4.96)
0.56 0.423

0.06 (0.25)
0.481

12 (12.19)
0.28

0.81 (2.74)
73

83 0.53/0.4 1.29 (1.04) 7.06 (3.18) 0.02 (0.15) 9.32 (11.9) 0.16 (0.63)

GSE32866* Lung 
adenocarcinoma 28/27 HM27k

175 0.66/0.82 2.45 (1.35)
<10−3

9.78 (4.62)
<10−3 0.941

0.04 (0.20)
0.443

5.73 (5.1)
0.174

0.63 (1.56)
74

23 0.53/0.35 1.17 (1.27) 5.26 (2.07) 0.04 (0.21) 9.67 (8.96) 0.13 (0.34)

GSE37754# Breast cancer 62/10 HM450k
152 0.59/0.69 1.95 (1.39)

<10−3
7.25 (2.72)

0.466 —
0.03 (0.18)

0.546
5.67 (9.54)

0.36
0.24 (0.92)

75
49 0.48/0.39 1.02 (1.13) 6.9 (3.1) — 4.83 (3.19) 0.1 (0.42)

GSE26989 Ovarian cancer 41/10 HM27k
613 0.56/0.49 1.54 (1.34)

0.001
7.12 (3.52)

0.099 0.304
0.09 (0.29)

0.751
7.98 (9.56)

0.008
0.32 (1.17)

76
1,160 0.53/0.38 1.31 (1.21) 6.84 (3.11) 0.08 (0.27) 7.57 (7.93) 0.18 (0.69)

GSE109402 Medulloblastoma 33/5 EPIC
14,120 0.55/0.43 1.22 (1.19)

<10−3
7.23 (3.25)

0.0095 0.002
0.04 (0.19)

0.121
6.1 (5.76)

0.0099
0.16 (0.72)

77
56,444 0.48/0.32 0.95 (1.09) 6.86 (3.09) 0.01 (0.12) 7.83 (8.29) 0.08 (0.53)

GSE61441 Renal cell 
carcinoma 46/46 HM450k

86 0.60/0.74 1.97 (1.52)
<10−3

8.2 (3.53)
0.002 0.36

0.03 (0.18)
0.95

4.64 (2.62)
0.002

0.36 (0.94)
78

129 0.50/0.35 1.15 (1.21) 6.78 (2.97) 0.02 (0.12) 5.69 (5.84) 0.09 (0.64)

Table 1. p-values of methylation-mediated features in cancer DNAm data obtained from BeadChip GEO 
data series. DMS+ and DMS− columns contain the number of hypermethylated and hypomethylated sites (DMS) 
respectively, for various cancer datasets (Cancer Data Series) and BeadChip assays. Maximum 1,000 sites were 
analyzed. p-values (p-val columns) are calculated with t-test and Wilcoxon test for non-normal distributions in 
addition to the mean values and standard deviations for each feature (mean(sd) columns). Column G + C/OE 
CpG content contains the G + C content and the observed/expected (OE) ratio of the CpG frequencies. Putative 
transcription factor binding sites (TFBS column) were identified only in DMS sequences located in promoters. 
The samples column contains the number of tumor/normal samples included from each data series (matched 
pairs when numbers are identical). p-values are not shown when no DMS co-localized with alternative 
splicing events (Alt. Spl column). *|Δβ| > 0.25, #transformed M-values, |Δβ| > 0.20. G4: G-quadruplexes, Pals: 
Palindromes, cTFBS: Conserved TFBS, SC: squamous cell.
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differential DNAm in gene expression is probably modulated by the underlying genomic elements involved in the 
transcriptional regulation. The linear regression models for genomic index and logarithmic fold-change pairs are 
shown in Fig. S4 (Supplementary File 1).

comparison with epigenetic markers and driver mutational signatures of hepatocellular car-
cinoma. To evaluate the competency of our approach, we performed comparisons with software tools and 
computational methods that identify driver events in two settings: (a) comparison between the genomic index 
and Δβ values to find the best-fitting metric for identifying epigenetic markers, and (b) correlations of the highly 
prioritized sites with known mutation-based driver genes and epimarkers.

DNAm data from hepatocellular carcinoma (HCC) were used to assess the overall performance. First, we 
downloaded TCGA level 3 HumanMethylation450 data from 50 primary HCC and matched normal pairs and 
built genomic signatures of the 13,153 DMS ( ∆β ≥ .0 3, p < 0.01, FDR     < 0.01), using equal-weighted attributes. 
Overlaps with palindromes, G-quadruplexes and conserved transcription factors were analyzed within 100nt 
region adjacent to each DMS. All sequences were scanned for transcription factors that unveil differential binding 
on DNAm targets in HepG2 cell line, using the curated data of the MEDReaders database50. To validate the 
results, we additionally used MeinteR to build genomic signatures of 8,717 DMS ( ∆β ≥ .0 3, p < 0.01, 
FDR < 0.01) exported from 66 matched HCC and adjacent non-tumor tissues (GSE54503 data series)51, using the 
same configuration. The datasets exhibit similar bimodal β value distributions for normal and tumor samples 
(Fig. 4A). The list of all critical DMS according to our ranking scheme is provided in Supplementary File 2.

To assess the efficiency of our method, we performed comparisons with known HCC markers that have been 
identified using DNAm data. Specifically, we found two probe-sets corresponding to: (a) 33 high-confidence 
epimarkers (epiHCC1) predicted by Zheng et al.52, and (b) 109 HCC epimarkers (epiHCC2) identified by Cheng 
et al.53. For each reference probe-set, we calculated the enrichment of the genomic substrate using MeinteR. 
The genomic index of the epiHCC1 and epiHCC2 markers was estimated using the same configuration as for 
the TCGA-LIHC and GSE54503 datasets and is listed in Supplementary File 3. Figure 4B shows that epiHCC1 
and epiHCC2 markers exhibit significantly more enriched genomic substrate (epiHCC1: mean g.index = 1.52, 
s.d. = 0.57, epiHCC2: mean g.index = 1.62, s.d. = 0.65), compared with the genomic index of all aberrantly meth-
ylated sites identified in the TCGA-LIHC and GSE54503 datasets (TCGA-LIHC: mean g.index = 0.77, s.d. = 0.52, 
GSE54503: mean g.index = 0.85, s.d. = 0.53). The differences of the genomic index levels are statistically signifi-
cant for the TCGA-LIHC/epiHCC1 (p = 9.9e-09) and GSE54503/epiHCC1 (p = 1.2e-07) pairs and, as expected, 
not important for the TCGA-LIHC/GSE54503 comparison (p = 0.31). In accordance, the genomic index dif-
fers significantly for the TCGA-LIHC/epiHCC2 (p < 2.22e-16) and GSE54503/epiHCC2 (p < 2.22e-16) pairs. 
The genomic index of the epiHCC1 and epiHCC2 markers does not exhibit statistically significant differences 
(p = 0.4).

Cheng et al.53 identified six epiHCC2 markers in four genes (NEBL, FAM55C, GALNT3, and DSE) that are 
hypermethylated exclusively in HCC. Interestingly, these HCC-specific diagnostic biomarkers have higher 
genomic index, compared to all 109 epiHCC2 markers (mean genomic index 2.03 vs.1.62, respectively), and 
more than two-fold higher genomic index than the average genomic index of all DMS identified in the TCGA/
LIHC and GSE54503 datasets. Notably, the epimarkers of both methods would have been missed, if the Δβ level 
was used for selecting the most critical sites, since the differential DNAm level of the epimarkers (Fig. 4C) is lower 
(epiHCC1: mean |Δβ| = 0.17, s.d. = 0.07, epiHCC2: mean |Δβ| = 0.26, s.d. = 0.05) than the threshold commonly 

Figure 3. Smoothed density curves corresponding to the distribution of the genomic index in high 
differentially expressed genes (DEx) and low DEx in bladder cancer (BLCA). Horizontal black lines correspond 
to the mean genomic index and white boxes show the 95% bayesian highest density intervals.
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set in cancer-specific analyses |Δβ| ≥ 0.3). These results further support the relevance of the genomic index as an 
important criterion to prioritize actionable epigenetic markers compared with the usage of the Δβ level.

Next, we pursued the evaluation of our method with respect to known driver cancer genes, motivated by 
previous studies that revealed significant associations between mutations in driver cancer genes with DNAm 
alterations54–56. First, we built a set of candidate driver genes based on the number of detection methods that 
report their causality in HCC, using DriverDB57. DriverDB57 is a database that provides access to common driver 
genes that are computationally identified by 15 mutation-based methods. We assumed that more accountable 
driver genes are those reported by multiple driver detection methods and built the genomic signatures of driver 
genes with different levels of evidence. Accordingly, Driver-5 genes i.e. driver genes shared by at least five meth-
ods are more reliable than driver genes detected by two methods. Using these reference mutation-based data, we 
sought to compare the genomic index of low and high confident gene lists reported for HCC. The analysis of both 
TCGA-LIHC and GSE54503 datasets shows that driver genes identified by at least five methods (Driver-5) are 
associated with clearly higher genomic index than those with poorer evidence (Fig. 4D). The same procedure was 
applied on the gene set that is included in the COSMIC Cancer Gene Census (CGC, Tier 1)58. Compared with the 
entire set of DMS of TCGA-LIHC and GSE54504 datasets, those topologically linked with COSMIC CGC driver 
genes are on average associated with higher genomic index (Fig. 4E).

Finally, we compared MeinteR with relevant methods that detect driver genes/markers based on mutational 
and epigenetic HCC signatures. For this analysis, we additionally obtained the list of KEGG genes that are 
involved in the HCC pathway (hsa05225) and performed pairwise comparisons, in order to estimate the Wang’s 
semantic distance between Disease Ontology terms59 and the best-max average combination method60. The corre-
lation plots in Fig. 4F show the semantic similarity levels of the highly-ranked TCGA-LIHC and GSE54503 genes 
with known driver genes and epimarkers. The comparison between MeinteR and the consensus mutation-based 
driver genes (Driver-5) shows that MeinteR exhibits similar semantic correlation with the KEGG and COSMIC 
genes and slightly better semantic correlation with COSMIC Tier 2 genes. These results are obtained using both 
TCGA and GEO datasets. Finally, the highly-ranked genes prioritized by our method are evidently better corre-
lated with KEGG and COSMIC genes than epiHCC1 and epiHCC2 markers. As expected, the highest correlation 
level is observed between COSMIC CGC Tier 1 and KEGG pathway genes, while the epiHCC1/Driver-5 compar-
ison has the lowest correlation level.

Figure 4. (A) Mean β value densities of the tumor(T)/normal(N) samples included in two public HCC datasets 
(TCGA-LIHC, GSE54503). (B) Smoothed density curves of the genomic index distributions and p-values (two-
tailed t-test) for all pairwise comparisons between TCGA-LIHC/GSE54503 datasets and epimarkers (epiHCC1, 
epiHCC2). (C) Differential β value density of the TCGA-LIHC/GSE54503 datasets and epimarkers (epiHCC1, 
epiHCC2). (D) Mean genomic index of aberrantly methylated sites |Δβ| ≥ 0.3) in driver genes that have been 
detected by at least two to five computational methods. (E). Mean genomic index of all TCGA-LIHC and 
GSE54503 differentially methylated sites compared with the genomic index of COSMIC Tier-1 (T1) cancer gene 
census. (F). Semantic similarity plot correlating highly-ranked sites of the TCGA-LIHC and GSE54503 datasets, 
according to MeinteR, with the COSMIC T1, Tier 2 (T2) Gene Census, KEGG HCC pathway, Driver-5 genes 
and epigenetic markers (epiHCC1, epiHCC2).
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Discussion
The role of DNAm in disease onset and progression has been extensively studied, particularly in cancer (reviewed 
by Chatterjee et al.19). Although epigenome aberrations are frequently observed in most cancer types, recent 
studies have shown that small sets of aberrantly methylated sites are able to discriminate cancer subtypes54 and to 
predict drug response61, posing computationally challenging questions on which of the epigenetic alterations are 
functionally key events in cancer. MeinteR consolidates our knowledge on methylation-modulating mechanisms 
enabling, for the first time, the identification of high-impact epigenetic alterations, under the prism of conforma-
tional and cis-regulatory element enrichment, quantified by the genomic index as a linear function of the feature 
abundance. The genomic index does not explicitly dictate the presence of protective regions or regions prone 
to transcriptional changes, yet higher values imply a greater incidence of methylation-modulated, functional 
elements, that might play a critical role in transcriptional events. In this context, MeinteR is better described as 
an approach that implements “upstream” biological interpretation, as it incorporates features associated with 
potential causes of the DNAm events, as opposed to the “downstream” biological interpretation that quantifies 
the effect of DNAm events on biological pathways17.

In comparison with other epigenetic driver detection methods, MeinteR differs in both the research hypothe-
sis and methodology. First, MeinteR identifies the most influential DNAm sites, rather than driver DNAm alter-
ations. The latter imply the presence of causal relationships between driver and passenger epigenetic alterations 
that are not essentially relevant with the genomic substrate. Second, most computational methods entail the 
integration of multi-omics data to identify driver events, e.g. gene expression, DNAm and copy number varia-
tions20–22. MeinteR relies exclusively on DNAm data enabling faster and straight-forward interpretative analyses 
of high-throughput experiments. The evaluation results demonstrate that aberrant DNAm sites, co-localized with 
putative conformational and cis-regulatory elements, are better correlated with known cancer drivers, suggesting 
a potential role in transcriptional regulation with significant diagnostic and therapeutic implications.

MeinteR is an open-source R package, easily applicable to TCGA and GEO data analyses, enabling 
case-by-case configuration of the incorporated features and weighting scheme. In addition, MeinteR is valuable in 
improving the accuracy of imputation methods, as it has been shown that the prediction of CpG methylation lev-
els based only on neighboring CpG sites is suboptimal, especially in sparsely assayed genomic regions26. Equally 
important, MeinteR incorporates functions that are time-effectively applied in genome-wide DNAm datasets, 
with no special hardware requirements. In this respect, our contribution is inline with the FAIR principles62 (i.e. 
Findable – Accessible; as it is publicly available in a reference software repository – Interoperable; as it has been 
implemented in R, an open source environment, and exploits data and software from reference third-party repos-
itories – Reusable; since besides its public availability, it is also accompanied with detailed documentation and 
comprehensive examples of use), fostering transparency and reproducibility of the source code.

Overall, with MeinteR we aim to provide the basis for exploratory and explanatory analyses related with devel-
opment, aging, cancer and other biological processes and diseases complementing the interpretation of DNAm 
alterations, beyond local architecture annotations and pathway enrichments and with potential usability in devel-
oping predictive models for identifying disease subtypes and response to treatments.

Methods
Module 1: Data preprocessing. MeinteR’s functions are applied on bed-formatted chromosomal inter-
val files containing the coordinates of each DMS, and the corresponding score values. These files are retrieva-
ble by tools performing differential DNAm analyses, such as limma9, RnBeads63, minfi64, ChAMP16, Bicycle65 
etc. Alternatively, MeinteR is able to fetch array-based and sequencing-based data from GEO48 and to auto-
matically build valid data files. In case of array platforms, such as Illumina’s BeadChip HumanMethylation27, 
HumanMethylation450 and MethylationEPIC, MeinteR splits samples in two subsets, according to a predefined 
annotation file that contains the list of sample identifiers and the corresponding group e.g. normal/tumor, pre-/
post-treatment. Then, Δβ values are calculated and valid interval files are generated (Supplementary File 1, 
Fig. S5). Sequencing data from whole genome bisulfite-sequencing (WGBS), reduced representation bisulfite 
sequencing (RRBS) and targeted bisulphite-based experiments contain the number of methylated reads and read 
depth information per CpG site. MeinteR fetches sequencing data for each sample, filters data based on the read 
depth and chromosome, and builds interval files containing DNAm level per site, as a fraction of cytosine-report-
ing reads vs. the total number of mapped reads (example usage on WGBS, RRBS data is available on the software’s 
vignette). Besides data loading, the preprocessing module contains a set of functions for the validation of data 
values and format, M to β value conversion, as well as plotting and filtering functions.

Module 2: Feature detection. MeinteR calculates the abundance of methylation-mediated features in 
variable-length sequences centered at each CpG target, using a set of functions as described below (Fig. 1).

Transcription factor binding motifs. MeinteR identifies putative binding sites of: (a) conserved transcription fac-
tors in human/mouse/rat alignments and (b) human transcription factors included in the JASPAR’s core collec-
tion (version 2018)66. Conserved factors and their ~5.8 million genome-wide binding loci are retrieved from the 
corresponding track of the UCSC Table Browser. The intersection of the binding loci and the genomic coordinates 
of the regions flanking each DMS is exported and comparatively visualized against the expected frequency. For 
the detection of JASPAR’s profile matrices, MeinteR uses the scanning algorithm implemented in TFBSTools67, 
in order to identify high-scoring matches between transcription factor profile matrices and DMS in user-defined 
sequence offset. To speed-up the analysis of large datasets, searches can be narrowed-down to promoters or CpG 
islands. In addition, MeinteR allows users to select a list of transcription factors, among hundreds available, and 
perform targeted enrichment analyses, excluding the “noisy” binding sites.
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Palindromes and G-quadruplex structures. Palindromic sequences are detected using Biostrings68. First, MeinteR 
retrieves sequences of variable length centered at DMS and scans for palindromic regions based on user-defined 
arm lengths and in-between loop sizes. The identification of potential quadruplex-forming sequences is imple-
mented using the pqsfinder algorithm69. As for palindromes, MeinteR retrieves genomic sequences corre-
sponding to the coordinates of each DMS expanded by a user-defined offset and performs batch detection of 
G-quadruplex structures. The output of both functions includes summary and verbose reports of the detected 
readouts that are subsequently used to build genomic signatures.

Splice sites and alternative splicing events. MeinteR enables batch analyses of splicing-related events by: (a) 
detecting putative 5′ and 3′ splice sites, and (b) matching known alternative splicing events to the CpG coor-
dinates. Generally, splice junctions and their short neighboring sequences are characterized by species-specific 
conserved motifs. In this work, motifs are described as position-specific weight matrices, following the definition 
of donor and acceptor sites by Shapiro & Senapathy70. Then, short sequences adjacent to DMS are searched for 
these matrices, using the same scanning method that is applied for transcription factor binding site detection67. 
The detection of overlapping alternative isoforms is based on known alternative splicing events available by the 
UCSC Table Browser. MeinteR calculates the frequency of different alternative splicing events overlapping DMS 
data and builds graphical reports of the observed and expected frequency in the human reference genome.

Conformational DNA features. To determine putative conformational DNA changes caused by DNAm, MeinteR 
uses the methyl-DNAshape algorithm39. For each DNAm site, the respective function retrieves short sequences 
of user-defined length adjacent to DMS in batches and uses methyl-DNAshape to calculate minor groove width, 
roll, propeller and helix twist in the unmethylated and methylated context. The difference between the two states 
is evaluated and the statistical significance of each DNA shape is calculated using Wilcoxon tests.

Module 3: Signature extraction. The third module aggregates genomic features at each CpG site and: (a) 
constructs a signature matrix, and (b) performs multi-variate ranking to identify putatively actionable sites as 
shown below (Fig. 1).

Genomic signature matrix. The genomic signature of each DMS is assembled in a matrix containing at least one 
of the incorporated genomic features. Let ∈ = …x X x x x{ , , , }i m1 2  be a set of m DMS sites and 

∈ = …a A a a a{ , , , }i n1 2  is the list of n attributes, i.e. genomic features associated with each CpG site. The attrib-
utes are of different scaling and data types and treated accordingly, in order to operate on the same scale. 
Splicing-related observations i.e. putative donor, acceptor sites and co-localized alternative splicing events are 
joined into logical values representing the incidence of at least one feature. Similarly, conformational changes are 
quantified as logical variables that are positive, when at least one DNA shape alteration is statistically significant 
(p < 0.05). Finally, the abundance of G-quadruplex structures, palindromic sequences and transcription factor 
binding sites (conserved, putative human JASPAR core collection 2018) are normalized to fit (0,1) scale. Overall, 
depending on the feature aj, a mapping function mj is applied for each attribute j, where ′ =a m a( )j j j  and the 
genomic signature matrix ′A  is built that tabulates the mapped attribute values a′ij for each xi.

Multi-variate ranking. Given a signature matrix A′, the final step is to rank each DMS xi based on the genomic 
index idxi, with ( ∈ +idxi ). For each xi, idxi is defined by the weighted sum of all attributes a′ij. For example, if wj 
is the positive weight of the jth DMS attribute, xi is defined by the sum of the weighted attribute values of xi, i.e.: 

= ∑ = …=idx w a i m, 1, 2, ,i j
n

j ij1 . The output data are exported in an m-length vector of genomic index values 
quantifying the enrichment of the incorporated elements at each CpG site (genomic signature).

Data availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information Files). MeinteR is an R package available under the GNU General Public Licence v3. The source code 
and binaries can be found at https://github.com/andigoni/MeinteR. The repository contains also documentation 
of the respective R package including a manual, a package tutorial with examples and the source code of the 
three use cases.
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