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Abstract

Pattern separation is a central concept in current theories of episodic memory: this computa-

tion is thought to support our ability to avoid confusion between similar memories by trans-

forming similar cortical input patterns of neural activity into dissimilar output patterns before

their long-term storage in the hippocampus. Because there are many ways one can define

patterns of neuronal activity and the similarity between them, pattern separation could in

theory be achieved through multiple coding strategies. Using our recently developed assay

that evaluates pattern separation in isolated tissue by controlling and recording the input

and output spike trains of single hippocampal neurons, we explored neural codes through

which pattern separation is performed by systematic testing of different similarity metrics

and various time resolutions. We discovered that granule cells, the projection neurons of the

dentate gyrus, can exhibit both pattern separation and its opposite computation, pattern

convergence, depending on the neural code considered and the statistical structure of the

input patterns. Pattern separation is favored when inputs are highly similar, and is achieved

through spike time reorganization at short time scales (< 100 ms) as well as through varia-

tions in firing rate and burstiness at longer time scales. These multiplexed forms of pattern

separation are network phenomena, notably controlled by GABAergic inhibition, that involve

many celltypes with input-output transformations that participate in pattern separation to dif-

ferent extents and with complementary neural codes: a rate code for dentate fast-spiking

interneurons, a burstiness code for hilar mossy cells and a synchrony code at long time

scales for CA3 pyramidal cells. Therefore, the isolated hippocampal circuit itself is capable

of performing temporal pattern separation using multiplexed coding strategies that might be

essential to optimally disambiguate multimodal mnemonic representations.

Author summary

Pattern separation (the process of disambiguating incoming patterns of neuronal activity)

is a central concept in all current theories of episodic memory, as it is hypothesized to sup-

port our ability to avoid confusion between similar memories. For the last thirty years,
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pattern separation has been attributed to the dentate gyrus of the hippocampus, but this

has been hard to test experimentally. Moreover, because it is unclear how to define activity

patterns in the brain, such a computation could be achieved in many different ways. Here,

we demonstrate that pattern separation is performed by hippocampal networks (dentate

gyrus and CA3) through a variety of neural codes. By systematically testing different defi-

nitions of what it means for spike trains to be similar (using a range of time scales and

both standard and innovative metrics that assume different views of the neural code), we

assessed how the input-output transformation of multiple hippocampal celltypes relate to

pattern separation and found that different celltypes favor complementary coding strate-

gies. This might help storing rich but concise and unambiguous representations of com-

plex events. Finally, we provide the first experimental evidence of the importance of

inhibitory signals in mediating pattern separation, and identify through which coding

strategies.

Introduction

Understanding what computations hippocampal neurons perform and how they support epi-

sodic memory is a longstanding goal in neuroscience. The hippocampus is notably critical for

the discrimination of memories that are similar in content [1]. This cognitive function has

long been hypothesized to be supported by a neural process called pattern separation, which is

generally thought to be implemented in the dentate gyrus (DG) [2–4]. Pattern separation is

defined as the transformation of a non-simultaneous set of similar input patterns of neuronal

activity into less similar output patterns [5], and is theorized to happen in the hippocampus

before encoding a memory trace in order to avoid confusion between similar memories [6].

Despite a long history of research on the subject, mostly in silico [7], it is still unclear how the

activity of single neurons underlies this computation.

Generally speaking, single-neuron computations have been investigated experimentally

using two broad strategies: 1) by determining how the spiking of individual neurons, recorded

in vivo, is tuned to different parameters of the behavior or environment [8] or 2) by relating

the neuronal infra or suprathreshold membrane potential responses, generally recorded in

vitro, to their synaptic inputs.

The first strategy has led to the discovery that the principal cells of the hippocampus fire

preferentially in specific locations of an environment called place fields [9]. Upon sufficient

modification of the environment, the place field(s) of a given neuron remap by relocating or

changing their firing rate (in extreme cases, disappearing) [10, 11]. These different forms of

remapping have often been used as a proxy for pattern separation, yielding conflicting inter-

pretations on the role of DG and CA3 [12–14]. However, neurons remapping between two

similar environments is not sufficient evidence that those neurons participate in pattern sepa-

ration because place field remapping is assessed without knowledge of the direct synaptic

inputs: it is possible that separated representations are inherited from upstream networks.

Thus, despite extensive recordings of large populations of several hippocampal celltypes dur-

ing behavior [11, 14], it remains unknown how each celltype participates in pattern separation.

In contrast to the first strategy, the second one explicitly takes into account the synaptic

inputs of recorded neurons. Such an approach has been used to study dendritic integration

[15], short [16, 17] or long-term plasticity [18, 19] and the relationship between excitatory

inputs and the output spiking probability [19–23], but most of these studies were limited to

simple input activity patterns (i.e. rhythmic series of spikes or bursts of spikes) and simple

Neural codes supporting pattern separation in hippocampus

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006932 April 22, 2019 2 / 34

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1006932


output patterns (i.e. a single spike). Some have used more complex sequences of spatially dis-

tributed synaptic inputs [24–26], but the resulting input patterns were still spikes regularly

spaced in time. Yet, neuronal spike trains recorded in vivo are not so regular but instead

approximately follow a Poisson distribution [27] or a more bursty distribution [28, 29], and

what neurons integrate is thus a barrage of irregular synaptic inputs [30, 31]. To infer the sin-

gle-neuron suprathreshold input-output relationship in more naturalistic regimes, some have

thus recorded the spiking response to intracellular injections of current waveforms resulting

from either white noise [32] or from the simulated random discharges of a large number of

presynaptic neurons [27, 30]. But this only gives insight on the operations performed by a neu-

ron isolated from its network. To understand the role of the network, rare studies have directly

stimulated afferents with naturalistic spike trains to characterize short-term [33–35] or long-

term [35, 36] synaptic dynamics of hippocampal neurons. An even smaller number of studies

have aimed at characterizing the suprathreshold input-output function of a neuron in response

to external Poisson spike trains [37, 38], and such experiments have determined that this func-

tion was different when evaluated with simpler input patterns [39], confirming the necessity to

assess neuronal computations with complex, naturalistic input patterns.

Surprisingly, because none of the above studies have quantified and systematically varied

the similarity between input patterns, none have directly addressed how the input-output

transformation in single hippocampal neurons relates to pattern separation. To answer this

question, we developed a new paradigm [40], in mouse brain slices, where afferent axons of

the DG are stimulated with complex input spike trains of varying similarity while the output

spike trains from a single neuron are recorded. Thus, in contrast to in vivo studies, we consid-

ered input and output temporal patterns instead of spatial ones. With this paradigm, we

recently demonstrated that the suprathreshold responses of the principal neurons of the DG

and CA3 were strongly decorrelated compared to their inputs, whereas DG interneurons

exhibited less temporal decorrelation [40].

Importantly, our previous investigation only considered one type of neural code (binwise

synchrony, as measured by the Pearson’s correlation coefficient), even though temporal pat-

tern separation could, in principle, be achieved in a variety of ways depending on the features

considered relevant in a spike train. For example, if the only feature carrying information in a

spike train was its firing rate, a pattern separator would convert a series of input spike trains

with similar rates into a series of output spike trains with dissimilar rates. Alternatively, the fir-

ing rate could be irrelevant and two output trains with the same number of spikes could be

considered separated if their spike times are desynchronized. Pattern separation is thus a

group of potential computations, each computation corresponding to a specific neural code,

or, in other words, to a specific definition of "similarity". By testing a wide range of similarity

metrics and time scales, the present work aims to determine through which neural codes tem-

poral pattern separation is performed in the hippocampus.

Results

Temporal pattern separation via decorrelation, orthogonalization and

scaling

In Madar et al. (2019) [40], we demonstrated for the first time that single GCs exhibit high lev-

els of pattern decorrelation thanks to a novel pattern separation assay in acute brain slices. Our

general paradigm has three steps (Fig 1, Methods—Experiments): 1) ensembles of stimulus

patterns (simulating trains of action potentials) are generated, with known degrees of similar-

ity to each other. These sets of input spike trains are then fed into the DG by stimulating the

lateral perforant path. 2) The simultaneous response of a single neuron is recorded in whole-
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Fig 1. Temporal pattern decorrelation at the level of single dentate granule cells. (A) Histology of the DG in a horizontal slice (Cresyl

violet/Nissl staining; scale bar: 250 μm), overlaid with a schematic of the experimental setup: a theta pipette in the ML is used to focally

stimulate the perforant path (input) while a responding GC is recorded via whole-cell patch-clamp (output). GCL: granule cell layer, H:

hilus, ML: molecular layer. Celltype color code: green for granule cell (GC); red for fast spiking interneuron (FS); orange for hilar mossy cell

(HMC); black for CA3 pyramidal cell. Solid lines represent dendrites and dashed lines axons (B) Examples of input sets. Top: each input set

is constituted of five different trains of electrical pulses following a Poisson distribution and an average rate of 10 Hz. Bottom: correlation

coefficient matrix for each input set, each square is the Pearson’s correlation coefficient (R) between two input trains considered as vectors

of spike counts with a binning window (τw) of 10 ms. Rinput is the average of coefficients, diagonal excluded. We used 11 such input sets

(Rinput = 0.11 to 1). (C) Current-clamp recordings of the membrane potential of a single GC in response to a single input set (average Rinput

= 0.76). Each input set (five input trains) is repeated ten times, yielding a recording set of fifty output voltage traces. (D) Sorted input and

output rasters from the recording set in C (each parent input train has ten children output trains forming an output subset, with matching

colors). PW means pairwise. (E) Left: Corresponding 55x55 correlation coefficients matrix using a τw of 10 ms. Each small grey square

represents the correlation coefficient between two spike trains. The average of coefficients from children output trains corresponding to

one of the ten pairs of input trains (identified by color-coded squares), was computed to yield ten pairwise Routput coefficients. This

excludes comparisons between outputs generated from the same parent input. Right: mean across multiple cells, following the same color-

code as displayed in the matrix on the left. (F) Pattern separation graph showing the mean ± SEM pairwise Routput across 102 recordings

(from 28 GCs), for 11 different input sets (i.e. 110 pairwise Rinput). Values under the identity line (dashed) demonstrate that output spike
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cell current-clamp. 3) The similarity between the output spike trains is compared to the simi-

larity between the input patterns, revealing the degree of separation or convergence.

We used R as a similarity measure between spike trains because it is easy to implement and

is commonly used to quantify the similarity between neural activity patterns, both in computa-

tional [41] and experimental studies [12, 13, 42, 43]. However, the original Hebb-Marr frame-

work theorized pattern separation as the orthogonalization of the input patterns [5, 44]. As a

result, the terms "decorrelation" (corresponding to output patterns, viewed as variables, with a

lower Pearson’s correlation coefficient than their inputs) and "orthogonalization" (correspond-

ing to output patterns, viewed as vectors, that are closer to a right angle than inputs) are often

conflated in the literature, even though they are not mathematically equivalent and have a non-

linear relationship to each other (Figs 2A–2C, S1. See Methods –Similarity metrics and S1

Appendix- 1). For instance, pairs of spike trains can be uncorrelated (R = 0) without being

orthogonal, or can be orthogonal without being uncorrelated (Fig 2A–2C and S1). To deter-

mine whether output spike trains of GCs are truly orthogonalized, we explicitly considered

spike trains as vectors of spike-counts and computed the normalized dot product (NDP, i.e.

the cosine of the angle between two vectors) between pairs of spike trains to assess their simi-

larity (Fig 2A and 2C. See Methods –Similarity metrics and S1 Appendix—1). For every

recording set, NDPoutput was lower than NDPinput, indicating that the angle between output

spike trains was closer to a right angle (i.e., closer to orthogonal) than their inputs (Fig 2D and

2E).

Vectors can differ by their angle, but also by their norm. In other words, even if neurons

fire in the same time bins (relative to the start of each sweep), the number of spikes per bin can

be different, as quantified by the ratio between their norms (scaling factor, SF) (Fig 2A and

2C. See Methods –Similarity metrics and S1 Appendix—1). Our results show that for input

patterns highly similar in terms of SF, SFoutput is slightly but significantly lower than SFinput

(Fig 2F). This indicates that variations in the binwise firing rate of single GCs in response to

similar inputs is a potential, but weak, mechanism of pattern separation at the 10 ms time

scale.

As a whole, these results confirm that input spike trains are decorrelated in the DG at the

level of single GCs, and demonstrate that, at the 10 ms time scale, GCs exhibit temporal pattern

separation mediated by high levels of orthogonalization and weak levels of scaling.

Pattern separation of spike trains occurs through multiplexed neural codes

Trains of action potentials can be described in many different ways: their overall firing rate,

the timing of their spikes or the number of bursts of spikes, among other statistics (from now

on referred to as spike train features). Measuring the similarity between two spike trains is not

a trivial problem, if only because it is unclear what spike train features are relevant to the brain

and what counts as different or similar. In principle, pattern separation could be achieved by

the variation of any spike train feature (e.g. if the relevant feature is the total number of spikes

in two second bins, pattern separation will be achieved if this number varies more in the set of

output spike trains than in the input set). In other words, many different forms of pattern

trains were less similar to each other than inputs, and thus that pattern separation was performed. Blue indicates significant difference from

the identity line (one-sample t-test on the difference pairwise Rinput—pairwise Routput, p< 0.05). The solid grey line is a parabolic fit to the

102 recording sets. [Fig adapted from Madar et al. (2019) [40] (Fig 1, 2 and 5)]We first reanalyzed a dataset, presented in Madar et al.

(2019) [40], of GC recordings performed in response to input sets constituted of 10 Hz Poisson trains (Fig 1B). A pairwise similarity

analysis (Fig 1E), with the Pearson’s correlation coefficient R as a measure of similarity, confirmed our finding that the output spike trains

of GCs are significantly less correlated than their inputs at both low and high input correlations (Fig 1F). As detailed in Madar et al. (2019)

[40], even the repetition of the same input train leads to decorrelated output trains, due to the probabilistic nature of synaptic transmission.

https://doi.org/10.1371/journal.pcbi.1006932.g001
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Fig 2. Orthogonalization of input spike trains is a strong component of temporal pattern separation by single

granule cells. (A-C) Six hypothetical cases of pairs of spike trains and their associated Pearson’s correlation

coefficients (R), normalized dot products (NDP, cosine of the angle between two vectors) and scaling factors (SF, ratio

of the norms), showing that the three metrics assume different neural codes and are not equivalent. (A) Synthetic spike

trains (X and Y pairs) divided into six bins, with the corresponding number of spikes per bin. (B) R between each pair

of X and Y describes the linear regression between the number of spikes in the bins of X versus the corresponding bins

in Y (jitter was added to make all points visible). (C) Geometric view of vectors X and Y, where each bin is a dimension

of a 6-dimensional space, and the number of spikes in a bin is the coordinate along this dimension. NDP measures

how far from orthogonal two spike trains are and SF measures how different their binwise firing rates are. (A-C) NDP

and R are sensitive to whether spike trains have spikes in the same bins or not (row 1), whereas SF is sensitive to

differences in spike counts per bin (row 2), although neither NDP nor R is purely about "bin synchrony" (row 3). Note

that these examples provide the intuition that orthogonal vectors (NDP = 0) necessarily correspond to a negative

correlation between the spike trains (row 1 and 5) but that anticorrelated spike trains (R< 0) are not necessarily

orthogonal (row 6), and that orthogonal spike trains are not necessarily perfectly anticorrelated as in row 1 because R,

unlike NDP, considers common silent bins as correlated (row 5). See also S1 Fig. (D) Vector representation of

experimental data from one recording set, showing the average similarity between a set of input spike trains (dashed

line and green angle, Rinput = 0.76) and the average similarity between the fifty corresponding output spike trains

excluding comparisons between outputs from same parent input (solid line, purple angle). The angles are derived from

the NDP whereas the lengths of each vector express differences in binwise firing rates (SF). Here, outputs are more

orthogonal (closer to 90˚) than their inputs with little difference in scaling. (E-F) Pattern separation graphs showing

the pairwise output similarity as a function of the pairwise input similarity, as measured by the NDP or SF (mean

+/-SEM) across 102 recording sets (28 GCs) for 11 different input sets. As in Fig 1F, blue indicates a significant

difference from the identity line (one-sample t-test, p< 0.05). The solid grey line is a parabolic (E) or linear (F) fit to

the 102 recording sets. (E) Outputs are closer to orthogonality (NDP = 0) than their respective inputs, demonstrating

strong levels of pattern separation through orthogonalization at the 10 ms time scale. (F) At the 10 ms time scale,

pattern separation by scaling is present for inputs very similar in terms of SF (SFinput close to 1), but weak, at least over

the span of tested SFinput values.

https://doi.org/10.1371/journal.pcbi.1006932.g002
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separation could be performed depending on the neural code considered. In our analyses, the

neural code (i.e. the set of assumptions on which spike train features are considered relevant and

what definition of similarity is used) is determined by the choice of similarity metric and time

resolution (see S1 Appendix– 1). In order to better characterize which neural code(s) are used to

perform temporal pattern separation in the hippocampus, we thus tested multiple metrics and

time scales. This approach also allowed us to ask whether several coding strategies could be mul-

tiplexed (i.e. simultaneously relevant over different time scales) to achieve pattern separation.

The three measures of similarity we have used above (R, NDP and SF) all carry different

assumptions about the neural code (Table 1): R and NDP are mostly, but differently, sensitive to

the binwise synchrony whereas SF evaluates variations in spike number (Fig 2A–2C and see S1

Appendix—1). On the other hand, these metrics resemble each other in that they require binning

spike trains in time windows of a prespecified duration (τw). The time scales that are meaningful

for the brain are uncertain so we assessed the separation of spike trains for different τw. Indeed,

different durations of τw assume a different window to read the information contained in a spike

train. Our analysis shows that pattern separation, measured through R or NDP, is more pro-

nounced at short time scales (e.g. 5 ms) than at longer ones (e.g. 100 ms) (Fig 3A and 3B). In con-

trast, in the case of high input similarity, pattern separation through scaling is rather weak at short

time scales but gets stronger at longer ones (Fig 3C). This demonstrates that multiplexed coding

allows temporal pattern separation to be carried out by the DG for a large range of time scales.

In addition, because a long stream of research suggests that spike trains can carry informa-

tion directly through the timing of individual spikes [45–47], we also assessed the similarity

between spike trains using SPIKE, a binless metric purely based on spike times [48], thus

assuming a neural code completely different from the binned metrics above (Table 1, Meth-

ods–Similarity metrics and S1 Appendix). Our results show that input spike trains with simi-

lar spike times relative to their sweep start (defined here as spike trains with a high degree of

synchrony, see Methods –Similarity metrics), are transformed into significantly less synchro-

nous outputs, thereby demonstrating that temporal pattern separation in single GCs can occur

through spike timing modifications (Fig 3D). This is consistent with the high levels of decorre-

lation and orthogonalization at very short time scales (Fig 3A and 3B) and confirms that tem-

poral pattern separation can be achieved through multiple coding strategies.

Single GC computations depend on the statistical structure of their input

patterns

Results in Figs 2F and 3C show that the similarity of GCs output spike trains in terms of SF is

almost flat, suggesting it might be independent of the input similarity, hence leading to

Table 1. Similarity metrics assumptions on the neural code.

R NDP SF SPIKE

Binned (spike count code) X X X

Binless (spike time code) X

Preserved time relationship between time points or bins X

"raw" (not baseline-subtracted) spike count vectors X X

Assumption of linear relationship between spike trains X X X

Assumption of Euclidean space X X X

Excludes common periods of silence X

Mostly sensitive to binwise synchrony X X

Sensitive to spike time synchrony X

Sensitive to differences in firing rate or burstiness between spike trains X X

https://doi.org/10.1371/journal.pcbi.1006932.t001
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Fig 3. Single granule cells exhibit pattern separation on millisecond to second time scales using different codes. (A-C) Pattern separation/convergence

assessed at different time scales and using different measures of similarity (S). Top: pairwise Soutput (average across recording sets) as a function of pairwise

Sinput, measured with different binning windows τw. Solid curves are linear fits. Each color corresponds to a different τw ranging from 10 ms to 500 ms. Bottom:

Effect of τw on the effective decorrelation (Sinput−Soutput), interpolated from the linear regressions. Note that as τw increases, pattern separation through

decorrelation (R) or orthogonalization (NDP) becomes weaker while it becomes stronger through scaling (SF). (D) Similarity between spike trains is here

assessed with the binless SPIKE metric, directly using spike times. Left: example of two input spike trains associated with two output spike trains from a GC

recording set, and the corresponding distances D(t) between spike trains. D(t) can then be integrated over time to give a single value D.Middle: example of

55x55 matrix of SPIKE similarity (1-D) between all spike trains of an example recording set. 0 means that spikes of two trains never happened close in time,

and 1 that they were perfectly synchronous. The output SPIKE similarity (SPIKEoutput) is defined as the average similarity excluding comparisons between

spike train from the same parent input train (i.e. average of the 10 pairwise SPIKEoutput). Right: SPIKEoutput of the same 102 GC recordings as in Figs 1–3, as a

function of SPIKEinput, fitted with a parabola (red line). Most data points are below the dashed identity line indicating that output spike trains are less similar

than inputs. The average SPIKEinput-SPIKEoutput is significantly above 0 for all input sets except the two most dissimilar (SPIKEinput = 0.74, 0.78) (one-sample

T-tests, p< 0.05).

https://doi.org/10.1371/journal.pcbi.1006932.g003
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significant pattern convergence in certain conditions of low input similarity and short time

scales. However, those experiments were based on responses to ~10 Hz Poisson input spike

trains that did not differ much in terms of SF. To further characterize single GC computations,

we designed two new input sets spanning a wider range of SF values (Fig 4A and 4B). From its

definition, it was apparent that, unlike R and NDP, SF is very sensitive to both differences of

overall firing rate and differences in burstiness between spike trains (S2 Fig). Input set A was

thus made of highly correlated Poisson spike trains with different firing rates (7–31.5 Hz), and

input set B was made of uncorrelated spike trains with constant firing rate but different levels

of burstiness (see Methods - Experiments). By recording the spiking output of single GCs in

response to these input sets we could thus test how GCs transform input patterns with vastly

different statistical structures, and whether they can still perform pattern separation in those

conditions. Our results indicate that for both input sets GCs can perform weak levels of pattern

separation via scaling for highly similar inputs (Fig 4C), consistent with our experiments using

10 Hz Poisson trains (see Figs 2F and 3C). However, although not independent of input simi-

larity, the similarity of GCs output spike trains (in terms of SF) is comprised in a relatively nar-

row band, yielding high levels of pattern convergence for relatively dissimilar input spike

trains (Fig 4C). In other words, when assuming a neural code based on the norm of spike

count vectors, GCs outputs are maintained relatively similar to each other, even when their

corresponding input patterns are very different. This is true from the millisecond to the second

time scale, but pattern convergence decreases and separation increases with longer time scales

(Fig 4C), consistent with previous experiments (see Fig 3C).

Although SF makes mathematical sense when measuring the similarity between vectors, it

is difficult to interpret in terms of basic spike train features, in part because it is sensitive to

both firing rate and burstiness (see S1 Appendix– 1 for details). We thus aimed to gain a more

intuitive view of how those spike train features vary to result in pattern separation or conver-

gence. For that, we calculated the mean firing rate of each spike train and designed two new

indicators providing complementary information on the burstiness of individual spike trains:

Compactness and Occupancy (Fig 5A). Briefly, Compactness is anticorrelated to the number

of time bins occupied by at least one spike (the less occupied bins, the more compact a spike

train is), whereas Occupancy is the average number of spikes per occupied bin (Methods–Fir-

ing rate and burstiness codes and S1 Appendix—2).

First, we asked how GCs transform their inputs in terms of firing rate and burstiness. For

all time scales, GCs have generally equal or higher Compactness than their inputs but maintain

a constant low range of Occupancy (Fig 5B left). This combination suggests that, using S1

Table, GC responses are mostly a sparser version of their inputs, with a decrease in the number

of spikes per burst when inputs are bursty. Accordingly, the overall firing rate of GC output

spike trains is generally lower than their inputs (Fig 5B right), which is consistent with the

known sparsity of GC activity in vivo and fits the view of the DG acting as a filter of cortical

activity [49].

We next asked whether temporal pattern separation is performed through variation of the

firing rate between GCs output spike trains, or through variations of Compactness or Occu-

pancy, or a combination of those three. Our results indicate that pattern separation, but also

pattern convergence, can be exhibited for all three types of codes, depending on certain condi-

tions (Fig 6). First, separation is favored at longer time scales (for burstiness codes) and high

input similarity (for burstiness and rate codes) (Fig 6A). Second, the direction of the computa-

tion (separation or convergence) strongly depends on the statistical structure of the input pat-

terns (Fig 6B): 1) In response to Poisson inputs with very similar firing rates (P10Hz), GCs

exhibit low but significant levels of pattern separation through small variations of Compact-

ness, Occupancy and firing rate, which become more relevant with larger time scales. Pattern

Neural codes supporting pattern separation in hippocampus

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006932 April 22, 2019 9 / 34

https://doi.org/10.1371/journal.pcbi.1006932


Fig 4. Pattern convergence via scaling in single granule cells. (A-B) Two new input sets were designed to explore single GCs computations on

inputs with a wide range of pairwise similarity as measured by SF. Both input sets have ten input trains of 2 s, and were repeated five times during

the whole-cell patch-clamp recording of a single GC, yielding 50 output spike trains. (A) Left: Input set A was constituted of spike trains following

a Poisson distribution, each with a different firing rate (FR), increased from 7 to 31.5 Hz, but with an average Rinput constrained around 0.75 (τw =

10 ms). The ten input trains were thus well correlated but varied in their firing rate.Middle: matrix of SF coefficients for each pair of trains in input

set A, showing a wide range of values unlike the 11 input sets with 10 Hz trains used in previous experiments. Right: SF values are indeed sensitive

and anti-correlated to differences in overall firing rate between two spike trains (data points correspond to pairs of trains). (B) Because SF is

dependent on how differently clustered spikes are in two different trains, SF can vary even when the overall firing rate is the same. Left: Input set B

was constituted of spike trains with 21 spikes (FR = 10.5 Hz) that were clustered in more or fewer bins, leading to trains with varying burstiness

and thus a wide range of SF values (Middle). R was not constrained but ended up close to 0 for all pairs. Right: SF values are indeed sensitive and

anticorrelated to differences in Occupancy (average number of spikes per occupied bins), a direct measure of burstiness when FR is constant

across trains (data points correspond to pairs of trains). (C) Pattern separation graphs showing the pairwise output similarity as a function of the

pairwise input similarity, as measured by SF, across 5 GCs responses to input set A and 3 GCs responses to input set B (Both input sets tested GC

responses over 45 pairwise Rinput). Left and Middle: Mean+/-SEM. Blue indicates a significant difference from the identity line (one-sample t-test,

p< 0.05). The solid grey line is a linear fit to the 5x45 (Left) or 3x45 (Middle) data points. Both experiments confirm that, at the 10 ms time scale,

Neural codes supporting pattern separation in hippocampus
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separation measured through scaling (see Figs 2F and 3C) was thus due to the variability in all

three spike train features combined. 2) In response to Poisson inputs with varying firing rates

(PΔFR, input set A) GCs switch, as the time scale is increased, from pattern convergence to

pattern separation through Compactness variations, while increasing their levels of conver-

gence in terms of Occupancy. Accordingly, their output spike trains have more similar firing

rates than their inputs (this is because GCs maintain a narrow range of firing rates regardless

of the rate of their inputs, as shown in Fig 5B). 3) In response to inputs with a constant firing

rate but varying levels of burstiness (B 10.5 Hz, input set B), GCs show low but significant pat-

tern convergence in terms of Compactness and Occupancy. Pattern convergence in terms of

Occupancy progressively decreases as the time scale increases. This translates into significant

pattern separation through variations of the firing rate (note that, because spike trains were 2 s

long, pattern separation via FR variations is equivalent to pattern separation via Occupancy

variations in a single 2 s time scale). Interestingly, this analysis demonstrates that GCs can

exhibit both separation and convergence simultaneously through different neural codes: for

instance, at the 250 ms time scale, the Compactness of GC output spike trains vary more than

the Compactness in input set A, whereas GC output spike train Occupancy varies less (Fig 6B,

Table 2).

Inhibition enforces temporal pattern separation in GCs

GCs are known to receive strong feedforward and feedback inhibition from a variety of

GABAergic interneurons [50, 51] that impact GCs spiking output [21, 52, 53]. Furthermore,

theoretical work has long suggested a role for interneuron interactions with GCs in mediating

pattern separation [4, 54, 55], but experimental evidence is lacking. To test the influence of fast

inhibitory transmission on the complex computations of GCs characterized above, we

recorded GCs responses to 10 Hz Poisson trains before and after application of a nonsaturat-

ing concentration of Gabazine, a GABAA receptor antagonist (Fig 7A, see Methods - Experi-

ments). Under these conditions, IPSC amplitude was reduced by ~30%, which led to a slight

but visible increase in firing rate, in part due to a higher propensity to fire short bursts of action

potentials riding a single EPSP (Fig 7A and 7B). This pharmacological manipulation led to

lower levels of temporal pattern separation as measured by R, NDP, but also SF (Fig 7C). This

was true at all time scales (Fig 7D), with the importance of inhibition for pattern separation

even increasing at longer time scales. Interestingly, the impact on pattern separation at larger

time scales was not only for SF, whose relevance increases with larger τw (see Fig 3C) but also

for R and NDP, whose relevance normally decreases with larger τw (see Fig 3A and 3B).

The average Routput was well correlated to the average firing rate of a recording set (linear

regression: R2 = 94%, p< 0.0001, n = 14 data points from 7 GCs), suggesting that the inhibi-

tory control of sparsity in GC firing helps temporal pattern separation as measured with R.

Interestingly, in a previous report we did not detect such a strong relationship between R and

the firing rate levels of GCs [40]. Moreover, R is mathematically independent of proportional

increases of pairwise firing rate levels and not very sensitive to non-proportional ones (see S1

Appendix—1 and S1C Fig). In the present experiment, the correlation between R and the fir-

ing rate is thus likely to arise from physiological reasons that conjointly affect both the sparsity

GCs exhibit pattern separation through scaling for highly similar input trains (SF close to 1) as in Fig 2F, but show that GCs can exhibit pattern

convergence for more dissimilar inputs (SF< 0.7). Right: Mean across GC recordings for both experiments combined, measured at different time

scales. It confirms that SFoutput decreases when using larger binning windows, leading to more pattern separation for high input similarity and

lower pattern convergence for lower input similarities.

https://doi.org/10.1371/journal.pcbi.1006932.g004
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Fig 5. Granule cells input-output transformations in terms of firing rate and burstiness. (A) Graphs shown correspond to the same GC in response to

either input set A or B. Data points correspond to individual spike trains, (black empty circles for inputs: 10 trains per set; green filled circles for GC

outputs: 50 trains per set). For each spike train, we measured its overall FR, binwise Compactness and binwise Occupancy, all spike train features

providing information on sparseness and burstiness (see Methods). Error bars correspond to two different measures of dispersion. Black: mean +/- SD;

red: min-max center of gravity ± the mean absolute difference (self-comparisons and comparisons between output trains with the same parent input train

were excluded). Comparing mean values of a given spike train feature between inputs and outputs shows the direction of the transformation from inputs

to outputs. Comparing the dispersion between inputs and outputs shows whether pattern separation (larger output dispersion) or convergence (smaller

Neural codes supporting pattern separation in hippocampus
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and the binwise synchrony of output spike trains rather than from the mathematical assump-

tions behind R.

In contrast to R and NDP, the mathematical definition of SF makes it sensitive to pairwise

firing rate levels (i.e. SF systematically increases for pairs of spike trains with higher firing

rates. See S1 Appendix—1 and S1C Fig). As seen before, SF is also designed to be sensitive to

differences in firing rate and burstiness of individual spike trains (e.g. Figs 5 and S2). There-

fore, the effect of gabazine on decreasing pattern separation as measured by SF (Fig 7C and

7D) could be due: 1) to a global increase in firing rates in all the output spike trains, 2) to varia-

tions of firing rate or burstiness between output spike trains, or 3) to a combination of all of

the above. The direct assessment of pattern separation in terms of firing rate or burstiness indi-

cates that inhibition actually does not affect temporal pattern separation through rate or Com-

pactness codes and favors pattern convergence through Occupancy codes (Fig 7E). We can

thus conclude that the effect of inhibition on pattern separation via scaling (SF) is mostly due

to global suppression of the firing rate that is relieved under gabazine.

Overall, we provide here the first experimental evidence that fast inhibitory transmission in

the DG controls levels of temporal pattern separation and convergence through different mul-

tiplexed neural codes.

Different hippocampal celltypes support pattern separation through

different neural codes

GCs are embedded in a network of multiple celltypes, all participating in generating the output

of the DG. For instance, computational models of the DG have suggested that different popula-

tions of inhibitory and excitatory interneurons could modulate certain forms of pattern sepa-

ration [43, 54]. To develop a comprehensive understanding of the computations performed by

the DG, and hippocampal networks in general, it is important to characterize the input-output

transformation of a diverse set of celltypes. We recorded from dentate fast-spiking GABAergic

interneurons (FSs), glutamatergic hilar mossy cells (HMCs) and CA3 pyramidal cells (PCs) in

response to 10 Hz (for GC, FS, HMC) or 30 Hz (for PC and GC) Poisson input trains with

varying levels of correlation (Fig 8A and Methods–Experiments).

Previously, we found that temporal pattern separation, measured using R, was not specific

to GCs but that GCs exhibit the highest levels of decorrelation among tested dentate neurons,

and that CA3 PCs express even more temporal decorrelation than GCs [40]. Here we ask

whether this is still the case when considering other neural codes based on different similarity

metrics. A pairwise similarity analysis and a comparison of the pattern separation function

(the linear regression model describing Soutput as a function of Sinput, with S representing a

given similarity metric) across celltypes shows that pattern orthogonalization (NDP) and scal-

ing (SF) levels significantly differ at most time scales (Fig 8B–8D, Table 3).

For NDP, we notice a progression from FSs to HMCs to GCs to CA3 PCs, with GCs per-

forming the highest levels of separation among DG neurons, and CA3 PCs surpassing GCs,

especially with their ability to orthogonalize inputs already relatively dissimilar (Fig 8B). The

orthogonalization function of GCs, HMCs and CA3 PCs diverge as the time scale is increased

(Fig 8C).

output dispersion) was achieved through a neural code focused on the measured spike train feature. (B) For each output spike train, the output spike train

measures of Compactness, Occupancy or overall FR is plotted against the measure of its parent input train (input set A or B). For all time scales, GCs have

generally higher Compactness than their inputs, but maintain a low and narrow range of Occupancy regardless of their input statistics, showing that GCs

are sparser (see S1 Table). Consistently, GCs maintain a lower FR than their inputs.

https://doi.org/10.1371/journal.pcbi.1006932.g005
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Fig 6. Depending on input statistical structure, granule cells exhibit pattern separation or convergence via burstiness and firing rate codes. (A) Pattern

separation graphs showing the average pairwise output absolute difference across GC recordings as a function of the pairwise input absolute difference, for the

binwise Compactness (Left), binwise Occupancy (Middle) and overall FR (Right). Insets zoom in on the smallest values of the input-axis. Experiments using

input set A and B were combined. Note that because we plot the absolute difference between two spike trains (i.e. the distance between two data points in Fig

5A) and not a measure of similarity, pattern separation corresponds to points above the identity line (dashed) and pattern convergence to points below. Error

bars are SEM (not displayed in middle graph for readability). Right: input set A recordings (PΔFR) in black, input set B (B 10.5 Hz) in green. (B) The difference

in dispersion (Dispersionoutput−Dispersioninput; dispersion is the mean absolute difference, i.e. red bars in Fig 5A) of binwise Compactness, binwise Occupancy
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For SF, scaling functions do not depend much on the input similarity, except for CA3 PCs.

Mostly based on the scaling functions intercept, we notice two groups (Fig 8D): FSs and GCs

exhibit low levels of pattern separation through scaling, in contrast to HMCs and CA3 PCs

(and their GC controls) that produce spike trains with lower similarities in terms of SF. Note

that among celltypes tested with 10 Hz Poisson trains, HMCs are the best at pattern separation

through scaling, not GCs.

In contrast to GCs, HMCs and FSs tend to fire bursts of spikes (although the characteristics

of bursts differ between the two celltypes), which affects, at least partially, their levels of pattern

decorrelation [40]. An analysis of the distribution of inter-spike-intervals in all recorded cell-

types confirmed that HMCs and FSs are bursty (as they diverge from a Poisson process) but

not to the same extent (Fig 9A, and see Methods - Firing rate and burstiness codes). It also

revealed that, although neither CA3 PCs nor their GC controls (recorded under gabazine and

30 Hz inputs) displayed bursts elicited by a single input pulse [40], they can be considered

bursty in the sense that their output spikes tend to be clustered together in time in a nonran-

dom fashion (Fig 9A). We thus asked whether these celltypes with diverse bursty behaviors

could perform pattern separation through Compactness, Occupancy or firing rate codes. Our

analysis shows indeed that these features vary across the output spike trains of hippocampal

neurons, but in different ways for each celltype (Fig 9B, Table 4): for example, at long time

scales FSs and HMCs achieve pattern separation mostly through variations of Occupancy and

firing rate, whereas CA3 PCs achieve pattern separation mostly through variations of

Compactness.

Overall, we demonstrate here that not all hippocampal celltypes exhibit the same computa-

tions, but that they all can perform temporal pattern separation to different degrees through

different neural codes and over different time scales. This suggests that different types of neu-

rons can serve different, complementary, computations that allow the isolated hippocampal

network to perform temporal pattern separation using multiplexed coding strategies.

Discussion

In summary, we report that the hippocampus can perform temporal pattern separation or con-

vergence at the level of single neurons through different multiplexed neural codes. Pattern

or overall FR for each GC recording set from three experiments using different types of input sets: Poisson trains with 10 Hz FR and varying R (P10Hz: 102

recordings, 28 GCs), Poisson trains with R� 0.75 and varying FR (PΔFR, i.e. input set A: 5 GCs), trains with 10 Hz FR and varying burstiness (B 10.5 Hz, i.e.

input set B: 3 GCs). Positive values correspond to pattern separation through variations of the given spike train property (Compactness, Occupancy or FR) and

negative values to pattern convergence. Asterisks denote significant difference from 0, i.e. either pattern separation or convergence (one-sample t-test, p< 0.05.

See Table 2).

https://doi.org/10.1371/journal.pcbi.1006932.g006

Table 2. Related to Fig 6B One sample t-test (difference from 0) p value< 0.05 in red.

τw = 10 ms τw = 100 ms τw = 250 ms

Input set Compactness

P10Hz < 0.0001 < 0.0001 < 0.0001

PΔFR 0.0004 0.1576 0.0023

B10.5Hz 0.0135 0.0213 0.0298

Occupancy Firing rate

P10Hz < 0.0001 0.0004 < 0.0001 < 0.0001

PΔFR 0.0095 < 0.0001 < 0.0001 0.00016

B10.5Hz 0.0014 0.0003 0.00048 0.0244

https://doi.org/10.1371/journal.pcbi.1006932.t002
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separation can be achieved by varying many different spike train features in the ensemble of

output spike trains, like the spike times, the firing rate, the number of bursts or the number of

spikes in a burst. We found that GCs, the output neurons of the DG, mostly use a "desynchro-

nization" strategy leading to an orthogonalization of their output spike trains, especially at

short time scales. When considering a neural code focused on firing rates or burstiness, GC

output varies little, leading to pattern convergence or separation depending on the degree of

similarity of the inputs. Other hippocampal neurons perform different computations through

complementary combinations of various neural codes (mostly rate for FSs, burstiness for

HMCs and synchrony at long time scales for CA3 PCs), and their network interactions con-

strain the ability of the hippocampus to perform temporal pattern separation, notably through

inhibition of GC activity. Given that, during behavior, hippocampal neurons have a mixed

selectivity to different aspects of the environment and cognitive task contingencies [56–58],

the use of multiplexed codes is likely critical to encode rich representations efficiently [59].

Therefore, the multiplexed forms of pattern separation we have characterized here might be

essential to optimally disambiguate between similar multidimensional memories.

The hippocampus performs multiplexed forms of pattern separation

Overall, our study highlights that measuring neuronal computations implies a certain vision of

the neural code, and that brain networks or single neurons perform many different computa-

tions depending on the assumed coding scheme.

The "neural code" is a pervasive but vague concept that refers to the set of features of neural

activity that convey information, for example to represent our experiences and memories. The

first difficulty in breaking this code comes from the infinitely large number of potential fea-

tures and combinations of features that could be relevant in the brain. Since the early work of

Adrian [60], the most common view is that neurons transmit information about their stimulus

through their firing rate, i.e. the number of output spikes averaged over a certain time window.

This rate code is often contrasted to time codes, but this is a false dichotomy [45]: there is an

infinite number of possible rate codes, as there is an infinite number of time windows over

which the number of spikes could be integrated (are spikes counted by reader neurons over

milliseconds, seconds or minutes?). In addition to spike counts, information can also be car-

ried by the timing of single spikes [45, 46, 61], bursts [62, 63] or even more complex spike pat-

terns [61, 64–66]. Even when focusing on time or burstiness codes, many subfeatures could be

Fig 7. Inhibition controls levels of pattern separation in granule cells through different neural codes. (A) Single GCs were

recorded twice in response to the same input set (P10Hz, R = 0.76 at τw = 10 ms, shown in Fig 1B): First in normal aCSF, then under

conditions of partial inhibitory block (aCSF + 100 nM gabazine, gzn), without changing any other parameter (i.e. same stimulation

location and intensity). (B) Partial disinhibition of GCs led to higher FR and a higher propensity to fire small bursts of spikes riding on

the same EPSP, as illustrated in A and evidenced by an increased p(Burst) (probability of firing more than one spike between two input

pulses). FR and p(Burst) were computed for each recording set (n = 7 GCs). Paired t-test (FR and p(Burst) respectively): p = 0.02,

p = 0.04. (C) Pattern separation graphs showing the pairwise output similarity as a function of the pairwise input similarity, as

measured by R, NDP or SF at the 10 ms time scale (mean+/-SEM) across recordings in 7 GCs. Data points below the identity line

(dashed) correspond to pattern separation. Partial block of inhibition in GCs led to a significant decrease in pattern separation through

all similarity metrics (ANCOVA with separate-lines model fitting 70 data points per treatment group: p< 0.0001). Solid lines are the

linear fits used for the ANCOVA. (D) Cumulative frequency distributions of the distance of (pairwise Sinput, pairwise Soutput) data

points to the identity line in pattern separation graphs as in C (insets show medians). Positive values of the x-axis correspond to pattern

separation, and negative values to pattern convergence. Red curves (after gzn) are all shifted to the left of their black counterparts

(before gzn), showing a decrease in pattern separation at all time scales. The shift is more pronounced at larger time scales for R and

NDP, at smaller time scales for SF. ANCOVA on (pw Sinput, pw Soutput) data points with separate-lines model: p< 0.0001 for τw up to

1000 ms for R and NDP, p< 0.02 for SF. (E) Average levels of pattern separation via Compactness, Occupancy or FR codes were

measured for each recording set (as in Fig 6B). Surprisingly, partial block of inhibition did not significantly change the variations in FR

or binwise Compactness of output spike trains, but it led to less pattern convergence or even pattern separation through variations of

Occupancy (paired t-test: p = 0.008, 0.024, 0.031 for τw = 10, 20 and 50 ms respectively, p> 0.05 for larger τw).

https://doi.org/10.1371/journal.pcbi.1006932.g007
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Fig 8. Levels of pattern separation through orthogonalization and scaling differ between hippocampal celltypes. (A) Temporal pattern separation assays

were performed by single whole-cell current-clamp recordings from GCs (green, same experiments as Figs 1–3), FSs (red), HMCs (orange) and CA3 PCs

(black). For GCs, FSs and HMCs, input sets with Poisson trains of 10 Hz FR (e.g. Fig 1B) were delivered by stimulating in the outer molecular layer (OML), and

recordings done in regular aCSF. For CA3 PCs those stimulus parameters rarely if ever elicited spiking, therefore input sets were constituted of Poisson trains

with a 30 Hz FR delivered in the GCL, and recordings were performed under partial block of inhibition (100 nM Gabazine). Control experiments (teal) were

performed in GCs under the same pharmacological conditions using 30 Hz input sets, but the stimulations were delivered in the OML. The membrane

potential was maintained around -70 mV (between -70 and -60 mV for CA3 PCs). Note: although all celltypes and treatments are displayed on the same graphs

for concision (B-D and Fig 9), CA3 PCs should only be directly compared to their corresponding GC controls. (B) Top: Pattern separation graphs showing the

pairwise output similarity as a function of the pairwise input similarity, as measured by NDP or SF at the 50 ms time scale (mean+/-SEM: 28 GCs, 3–13

recordings per input set; 4 FSs, 4 recordings per input set; 11 HMCs, 5–7 recordings per input set; 14 CA3 PC + gzn, 6–9 recordings per input set; 13 control

GCs + gzn, with 11 recordings per input set). Same color code as in A. Data points below the identity line (dashed) correspond to pattern separation. All

celltypes performed pattern separation through both orthogonalization and scaling but with different levels. Bottom: We performed ANCOVAs with separate-

lines model for all five celltypes (e.g. solid lines shown in the top graphs) for 11 different time scales (5–1000 ms). Dashed horizontal line represents significance

level at 0.05: orthogonalization and scaling levels differ between celltypes at most time scales. (C-D) Slope and intercept of the linear models (e.g. solid lines in

B, top) used to fit [Sinput, Soutput] data points for a given celltype and time scale. Shaded patches correspond to the 95% confidence interval of the parameter

estimate. Significant differences between celltypes in pattern separation functions (with Tukey-Kramer correction for multiple comparisons) are detailed in

Table 3.

https://doi.org/10.1371/journal.pcbi.1006932.g008
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considered words in the elusive language of the brain: for example, the information could be

encoded in the specific spike times [67] or the interspike intervals [64, 68], the relative or exact

latency or synchrony with regard to other spike trains [67] or the relative timing of individual

spikes with regard to a reference network oscillation [69], the timing or frequency of bursts

[62, 63], the spike times within a burst or the spike counts per burst [63, 70].

Pattern separation has long been thought to cover several potential computations depend-

ing on the neural code considered [5]. Indeed, past investigations did not always define brain

activity patterns the same way, nor did they choose the same similarity metrics and time reso-

lution, thus assuming different forms of pattern separation. When the hypothesis of pattern

separation was first formulated, activity patterns were defined as binary vectors representing

populations of ON or OFF neurons, without considering a time dimension [4, 6, 44]. As a

result, modeling work that followed often excluded the dynamics of neural activity, and used

the number of common active neurons between two population patterns as their measure of

similarity [43, 54, 71]. In addition to this purely spatial population code, others have defined

activity patterns as maps of firing rates averaged over minutes, or as population matrices of

those maps [12, 14], measuring pattern separation using R [72] or NDP [73] as their similarity

metric. Only two modeling studies have investigated pattern separation by directly considering

spike trains at a time scale less than a minute: one considered an input pattern as a static popu-

lation of ON/OFF neurons, an output pattern as a population vector of firing rates averaged

over 500 ms and the similarity between two output patterns was based on the sum of firing

rate ratios [71]; the second considered an input pattern as an ensemble of 30 ms spike trains (0

or 1 spike per input channel, i.e. akin to a population of ON/OFF neurons but with the time of

an input spike carrying some information due to the possibility of temporal summation) and

an output pattern as an ensemble of 200 ms spike trains, using R with a τw of 20 ms to measure

the similarity between spatiotemporal patterns [41].

Past computational studies suggest, together, that the DG could perform pattern separation

through different codes, but our investigation is the first to systematically explore and compare

Table 3. Related to Fig 8C and 8D Post-hoc t-test p-values with correction for multiple comparisons when necessary (Tukey-Kramer) comparing slope or intercept

estimates (from ANCOVA) between celltypes. Note that CA3+gzn and GC+gzn are only compared with each other. P-values< 0.05 in red.

τw = 10 ms τw = 50 ms τw = 100 ms τw = 250 ms τw = 1000 ms

Compared Celltypes NDP

GC FS slope: 0.3197, slope: 0.2177, slope: 0.7884, intercept:

0.2455

slope: 0.6601, intercept:

0.3798

slope: 0.8479,

intercept:0.8847intercept: 0.0205 intercept: 0.0028

GC HMC slope: 0.0038, intercept:

<0.0001

slope: 0.0013, intercept:

0.0009

slope: 0.0140, intercept:

0.0177

slope: 0.0758, intercept:

0.0818

slope: <0.0001, intercept:

<0.0001

FS HMC slope: 0.0069, slope: 0.8737, intercept:

0.4558

slope: 0.6957, intercept:

0.9756

slope: 0.9990, intercept:

0.8882

slope: 0.0001, intercept: <

0.0001intercept: 0.9758

GC+gzn CA3+gzn slope: 0.8228, slope: 0.0920, slope: 0.0004, intercept:

<0.0001

slope: <0.0001, intercept:

<0.0001

slope: <0.0001, intercept:

<0.0001intercept: 0.0110 intercept: 0.0084

Compared Celltypes SF

GC FS slope: 0.7487, intercept:

0.6242

slope: 0.7583, intercept:

0.6209

slope: 0.9279,

intercept:0.9838

slope: 0.7575, intercept:

0.9719

slope: 0.5867, intercept:

0.5271

GC HMC slope: 0.4701, intercept:

0.1568

slope: 0.1848, slope: 0.0749, slope: 0.0028, intercept:

<0.0001

slope: 0.970,

intercept: 0.0138 intercept: 0.0069 intercept: 0.0052

FS HMC slope: 0.3924, intercept:

0.1585

slope: 0.2396, slope: 0.6326, intercept:

0.2795

slope: 0.8893, intercept:

0.5867

slope: 0.3993, intercept:

0.2901intercept: 0.0477

GC+gzn CA3+gzn slope: 0.1092, intercept:

0.1247

slope: 0.0969, intercept:

0.1231

slope: 0.1436, intercept:

0.1573

slope: 0.2810, intercept:

0.3182

slope: 0.1605, intercept:

0.1942

https://doi.org/10.1371/journal.pcbi.1006932.t003
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Fig 9. Levels of pattern separation and convergence through burstiness and firing rate codes differ between hippocampal celltypes. (A)

Assessment of burstiness in different celltypes (binless analysis). Left: Cumulative frequency distributions of interspike intervals (ISI) observed in the

output spike trains of different hippocampal celltypes and their associated input trains. ISI of all recordings of a given celltype or input set type were

pooled. The ISIs were normalized to their median for a given celltype or input type, such that their cumulative distribution would cross at

frequency = 0.5, and that all exponential cumulative distributions characteristic of a Poisson process (as both type of input sets are) would be super-

imposed or very close to each other. Thus, GCs are visually close to an exponential distribution, suggesting their output is close to a Poisson process,

i.e. not bursty. Distributions falling away from their corresponding input distribution suggest that spikes are organized in a non-Poisson manner,

suggestive of a bursty behavior. In this sense, HMCs, CA3 PCs and their GC controls seem to exhibit a similar bursty behavior, and FSs an even more

bursty one. Right: Quantification of the burstiness of each recording set (102 for GCs, 20 for FSs, 18 for HMCs, 15 for CA3 PCs+gzn and 22 for GCs

+gzn). Burstiness was assessed as the Kullback-Leibler divergence from P to M, with M the frequency distribution of normalized ISI in an output set

(50 output trains), and P the frequency distribution of normalized ISI in the associated input set type (either Poisson 10Hz or Poisson 30 Hz input sets

were combined, as in A). The higher the divergence, the burstier a cell is. This analysis confirms that GCs outputs are close to a Poisson process, and

that all other celltypes and conditions are significantly burstier (Kruskal-Wallis one-way ANOVA: p< 0.0001; post-hoc t-tests with Tukey-Kramer

correction for multiple comparisons: p< 0.01 for all GC (10Hz) to other celltypes comparisons. CA3 PCs and GC controls (30Hz) are not

significantly different (p = 0.99) nor FSs and HMCs (p = 0.64)). Box plots: central mark and edges are the median, the 25th and the 75th percentiles,

respectively. Whiskers are most extreme data points not considered outliers (red +). (B) Average levels of pattern separation via binwise Compactness,

binwise Occupancy or FR codes were measured for each recording set of every celltype, as in Fig 6B (negative values indicate pattern convergence).

Neural codes supporting pattern separation in hippocampus

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006932 April 22, 2019 20 / 34

https://doi.org/10.1371/journal.pcbi.1006932


pattern separation levels based on diverse coding strategies. It is also the first focusing on time

codes. Thanks to our slice-based pattern separation assay, we could control input patterns

while recording the output of the DG, thus allowing us to experimentally test pattern separa-

tion in the DG for the first time [5, 40]. We considered activity patterns (for both input and

output) to be two-second long spike trains, and used multiple definitions of spike train similar-

ity at time scales going from submillisecond to second resolution. We first measured spike

count correlations with R and NDP, two common metrics with different sets of assumptions

on the neural code (e.g. NDP does not consider common periods of silence as correlated; see

S1 Appendix), showing that the DG performs decorrelation and orthogonalization of its out-

puts at subsecond time scales at the level of single GCs (Fig 3A and 3B). Because this phenom-

enon is stronger at millisecond time scales, and that R and NDP are mostly sensitive to binwise

synchrony, we measured spike train similarity with SPIKE, assuming a synchrony code purely

based on spike times instead of spike counts [48]. This confirmed that GC outputs are sepa-

rated through "desynchronization" of their spike times from sweep to sweep (Fig 3D). More-

over, we designed a new simple similarity metric, SF (which complements NDP in the

description of the similarity between two spike count vectors), as well as two complementary

measures of spike train "burstiness" (Compactness and Occupancy). These revealed that, in

addition to desynchronization strategies, GCs can exhibit pattern separation through firing

rate or burstiness codes, and that depending on the time scale, the neural code considered and

the input statistical structure, different levels of pattern separation or convergence are per-

formed (Fig 6).

In conclusion, our work demonstrates that single neuron pattern separation can be

achieved in isolated hippocampal tissue through multiplexed coding, which is a way of simul-

taneously representing several features of a stimulus or, in our case, simultaneously perform-

ing different computations, through different temporal scales and spike train features [59, 63,

74]. Our work illustrates the importance of considering multiple neural codes when studying

neuronal computations for three reasons: 1) The fact that conceptually different metrics lead

to converging results bolsters our conclusion that temporal pattern separation occurs within

the DG and CA3 at the level of single neurons; 2) a single neuron can exhibit either pattern

convergence or separation depending on the coding scheme; 3) a given neural code can be

more relevant for pattern separation/convergence in certain celltypes than others.

Levels were different between celltypes (Kruskal-Wallis one-way ANOVA: p< 0.0001 at all time scales; post-hoc t-tests with Tukey-Kramer

correction for multiple comparisons in Table 4).

https://doi.org/10.1371/journal.pcbi.1006932.g009

Table 4. Related to Fig 9B Post-hoc t-test after Kruskal-Wallis one-way ANOVA, with Tukey-Kramer correction for multiple comparisons. CA3+gzn and GC+gzn

are only compared with each other. P values< 0.05 in red.

τw = 10 ms τw = 100 ms τw = 250 ms

Compared Celltypes Compactness

GC FS <0.0001 0.4368 0.0339

GC HMC 0.0064 0.9214 0.7015

FS HMC 0.6255 0.437 0.0326

GC+gzn CA3+gzn 0.0728 0.0112 0.3864

Occupancy FR

GC FS < 0.0001 < 0.0001 < 0.0001 <0.0001

GC HMC 0.0044 < 0.0001 0.1911 0.067

FS HMC 0.6787 0.7675 0.0467 0.1138

GC+gzn CA3+gzn 0.1732 0.8045 0.4212 0.0592

https://doi.org/10.1371/journal.pcbi.1006932.t004
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Our finding that DG can perform pattern convergence in some conditions is particularly

intriguing. If pattern separation is conceptualized to support mnemonic discrimination, then

pattern convergence would support generalization, another elusive mnemonic phenomenon

[75]. In the future, experiments correlating mnemonic discrimination and generalization with

the levels of pattern separation or convergence through various potential codes will help pin-

point which computations are actually used in the brain to support episodic memory.

Network mechanisms supporting hippocampal computations

Our work, in showing that spiking was difficult to elicit in GCs and that their responses were

sparser than their inputs (Fig 5) is in line with past research [20, 23]. It also resonates with the

long-standing idea that the DG acts as the gate of the hippocampus, filtering out incoming cor-

tical activity before it reaches CA3 to prevent overexcitation [49]. Figuring out the computa-

tions of the DG is equivalent to reverse-engineering the transfer function defining the DG

filter. Some have suggested that the DG is a low-pass [22, 76] or a ~10 Hz band-pass filter [21].

Our results confirm that the output frequency of GCs is constrained in a narrow band (Fig

5B) and go one step further by providing the first demonstration that the filtering properties

of the DG allow it to perform different computations including pattern separation in response

to complex naturalistic inputs (Fig 6).

The question is then: how are these filtering properties implemented? The physiological

mechanisms underlying DG computations in general are understudied and remain a mystery.

In Madar et al. (2019) [40], we provided a proof-of-principle that the short-term dynamics of

synaptic transmission at the perforant path-GC synapses could explain the levels of temporal

pattern decorrelation in the DG. But GCs also receive feedforward and feedback inhibition

and excitation from multiple interneurons that also interact between each other [51, 77, 78].

Indeed, our finding that partial block of GABAA-mediated neurotransmission impairs tempo-

ral pattern separation in the DG (Fig 7) strongly suggests that the computations we investi-

gated are network phenomena. Interactions between multiple celltypes are likely involved, and

it is thus critical to characterize the suprathreshold input-output transformation of each cell-

type to parse out their computational role. In the present work, we shed light on the computa-

tions of dentate FSs (also known as basket cells providing fast feedforward and feedback

perisomatic inhibition to GCs [79]), HMCs (glutamatergic interneurons providing feedback

monosynaptic excitation and disynaptic inhibition to GCs mostly outside of the lamellar plane

[77]), and CA3 PCs, the output neurons of the hippocampal subnetwork directly downstream

of the DG in the trisynaptic circuit, but which can also provide indirect feedback to the DG via

collaterals targeting hilar neurons [77]. We discovered that, in contrast to GCs (Figs 8 and 9,

and see [40]): 1) FSs generally exhibit low levels of pattern separation through binwise desyn-

chronization (R, NDP) or scaling (SF, likely due to high firing rates), but high levels of separa-

tion through simple variation of local firing rates from sweep to sweep, especially at the 100 ms

time scale and higher; 2) HMCs exhibit intermediate to low levels of binwise desynchroniza-

tion up to the 500 ms time scale. However, contrarily to GCs and FSs, they are able to achieve

high levels of pattern separation through scaling, thanks to a variable bursting response and

low overall firing rates; 3) CA3 PCs exhibit high levels of pattern separation through all tested

neural codes, but significantly more than their GC controls through binwise desynchroniza-

tion only, especially at long time scales, suggesting that CA3 might complement and amplify

the separation inherited from the DG, possibly to make pattern completion more efficient

[40]. In the future, computational modelling combining those results with knowledge of the

synaptic dynamics between these populations of neurons will help dissect the role played by

each element of the network in hippocampal computations.
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Our study especially calls for more work on the computational role of inhibitory synaptic

dynamics as it reveals the first experimental evidence that fast GABAergic transmission favors

pattern separation through multiple neural codes (binwise desynchronization and scaling) and

impairs it through another code (Occupancy variations at short time scales) (Fig 7). Past

research has long suspected the importance of inhibition to hippocampal computations.

Computational models of the DG implementing perisomatic feedforward inhibition (provided

by FSs) in the form of a "k-winners take all" rule controlling the number of GCs activated by a

given input pattern have stressed the importance of such inhibition on pattern separation

through a population code [4, 54, 55]. The seminal model of Myers and Scharfman (2009) [54]

also suggested that certain hilar interneurons, providing feedforward and feedback inhibition

on the distal dendrites of GCs, could impair population pattern separation through their influ-

ence on other GABAergic interneurons (see also [43]). Experimentally, a recent behavioral

study on mice showed that normal levels of tonic inhibition in GCs are critical for mnemonic

discrimination [80]. Our results now demonstrate that inhibition is also critical for computa-

tions that could support this episodic memory function. Future experiments will need to clar-

ify the exact role of different interneuron populations as well as different types of inhibition

(e.g. feedforward vs feedback or somatic vs dendritic). Such work will be especially critical to

further understand CA3 computations and how they differ from those of DG, because our

findings on CA3 are based on recordings with partially reduced inhibition. On one hand, the

enhancement of pattern separation we observed in CA3 could be due to abnormal pharmaco-

logical conditions, on the other hand, the necessity to lower inhibition to get CA3 PCs to spike

could instead indicate that CA3 must be disinhibited during episodic memory formation.

Methods

Herein, we revisited experiments performed in Madar et al. (2019) [40] and expanded on

them by using additional types of input patterns, new pharmacological conditions, and by ana-

lyzing the previous and new datasets with multiple similarity metrics assuming different neural

codes.

Experiments

All experiments were performed in accordance with the National Institute of Health guidelines

outlined in the National Research Council Guide for the Care and Use of Laboratory Animal

(2011) and regularly monitored and approved by the University of Wisconsin Institutional

Animal Care and Use Committee.

Briefly, we performed experiments on C57Bl6 male mice (Harlan/Envigo) following the

general paradigm described in Madar et al. (2019) [40]. Horizontal acute slices of a mouse

brain hemisphere containing the hippocampus were prepared in cutting solution (CS; two

version were used. CS#1/CS#2, in mM: 83/80 NaCl, 26/24 NaHCO3, 2.5/2.5 KCl, 1/1.25

NaH2PO4, 0.5/0.5 CaCl2, 3.3/4 MgCl2, 22/25 D-Glucose, 72/75 Sucrose, 0/1 Na-L-Ascorbate,

0/3 Na-Pyruvate, bubbled with 95% O2 and 5% CO2) and recorded at 33–35˚C in regular arti-

ficial cerebrospinal fluid (aCSF, in mM: 125 NaCl, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2

CaCl2, 1 MgCl2, and 25 D-Glucose). Two second input trains of varying similarity were deliv-

ered to neural afferents of DG or CA3 neurons via bipolar electrical stimulation through a

glass theta pipette, while recording the membrane potential of a single responsive patched neu-

ron in whole-cell current-clamp mode. For the intracellular solution (IS), we used two differ-

ent recipes that yielded similar electrophysiological behaviors and results (IS#1/IS#2 in mM:

140/135 K-gluconate, 0/5 KCl, 10/0.1 EGTA, 10/10 HEPES, 20/20 Na-phosphocreatine, 2/2

Mg2ATP, 0.3/0.3 NaGTP, 0/0.25 CaCl2, adjusted to pH 7.3 and 310 mOsm with KOH and
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H2O). The location of the stimulation (>100um away from dendrites of the recorded neuron)

and its intensity (0.1–1 mA) was determined to yield ~50% probability of spiking after an

input pulse (range: ~20–80%). A stimulation protocol consisted of five or ten trains (i.e. a

given input set), interleaved (with 5 s of pause between each train) and repeated ten or five

times, respectively, such that fifty output traces were recorded (Fig 1C). The amount of pattern

separation or convergence effectuated for a given recording was assessed by pairwise similarity

analysis (defined below), displayed as what we refer to as a "pattern separation graph": the pair-

wise input similarity across all pairs of input trains (excluding self-comparisons) was com-

pared to the average similarity of all pairs of output spike trains coming from the

corresponding pairs of input trains (excluding comparisons between output spike trains com-

ing from the same input train) (Fig 1D and 1E).

Figs 1–3 (GCs) and Figs 8 and 9 (all celltypes) are based on recordings from GCs, fast-spik-

ing interneurons (FSs), hilar mossy cells (HMCs) and CA3 pyramidal cells (CA3 PCs) reana-

lyzed from Madar et al. (2019) [40]. They were performed on slices (CS#1 for GCs, CS#2 for

other celltypes; IS#1 for all) from young mice (p15-25), using 11 input sets consisting of five

Poisson spike trains with a mean rate of 10 Hz (GCs, FSs, HMCs) or 30 Hz (CA3 PCs and

their GC controls). GCs (10 Hz), FSs and HMCs were recorded in regular aCSF. Because it

was very difficult to promote firing of CA3 PCs in aCSF, CA3 PCs and their GCs control were

recorded in aCSF with 100 nM gabazine (gzn, SR-95531) to decrease inhibitory postsynaptic

current (IPSC) amplitude by ~30% and allow CA3 PCs to occasionally escape inhibition and

fire action potentials. Note that the GCs recorded in gabazine as controls for the CA3 PC

experiments could not be directly compared to GC recordings in regular aCSF because input

sets with different mean rates were used.

To determine the role of inhibition on pattern separation in GCs, we performed additional

recordings of single GCs in slices from young mice (p22-32, 6 animals) (Fig 7). After cutting

(CS#2), slices were moved to a storing chamber containing 100% CS, at 37˚C for 30 minutes

after dissection. As in all other experiments, the storing chamber was then placed at room tem-

perature and slices left there for at least 30 min. Slices were then transferred to the recording

chamber and perfused (5 ml/min) with oxygenated regular aCSF at 33–35˚C. Patch-clamp

recordings of GCs were performed using IS#1. An experiment consisted of recording the same

GC under the same input set of five 10 Hz Poisson trains (average Rinput = 0.76 at 10 ms,

shown in Fig 1B) before and after addition of 100 nM gabazine to the flow of regular aCSF.

We waited at least five minutes after the solution switch, to allow for equilibrium to be reached.

The resting membrane potential (held around -70 mV), the location of the stimulation elec-

trode, the stimulus current intensity and all other parameters were unchanged between the

two recordings (e.g. under gabazine, the spiking probability was not re-targeted to ~50%,

unlike the gabazine experiments using 30 Hz inputs mentioned above). The intrinsic proper-

ties of recorded GCs (n = 7) were (mean ± SEM): 1) Before gzn: resting membrane potential

Vrest = -76.5 ± 2.5 mV, input resistance Ri = 194 ± 30 MO and membrane capacitance Cm =

20 ± 1.4 pF; 2) After gzn: Vrest = -74.4 ± 2 mV, Ri = 184 ± 29 MO and Cm = 17 ± 1.6 pF. Ri was

not significantly affected and Vrest and Cm were only slightly decreased after treatment (Wil-

coxon signed rank test: Vrest p = 0.09; Ri p = 0.44; Cm p = 0.03). The slight drift of Cm was likely

an artifact due to the small increase in series resistance occurring over time (before: 6 ± 0.8

MO, after: 7.3 ± 1.4 MO; p = 0.06).

To explore the impact of a variety of input pattern statistical structures on single neuron

computations, we designed two new input sets comprised of 10 different two seconds spike

trains (Figs 4–6). Trains in "input set A" follow a Poisson (P) distribution and have an average

Pearson’s correlation of 75% at the 10 ms time scale, but each train has a different mean firing

rate (PΔFR, Fig 4A). Trains in "input set B" do not follow a Poisson distribution: they all have
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21 spikes, making them all 10.5 Hz overall, but are more or less bursty (B) (i.e. for each spike

train the same number of spikes was distributed in a different number of time bins. Occupied

time bins were selected randomly–following a uniform distribution–among all the possible

time bins) (B 10.5 Hz, Fig 4B). For these experiments, we used slices from two adult mice

(p145 and p153) injected with saline at p46 as controls for a separate set of experiments in ani-

mals with epilepsy (not reported here). Slices were prepared as described above (CS#2) and

patch-clamp recordings were performed in regular aCSF using IS#2. The intrinsic properties

of recorded GCs were: 1) Input set A (n = 5): Vrest = -80.4 ± 2.9 mV, Ri = 155 ± 19 MO and

Cm = 23 ± 2 pF; 2) Input set B (n = 3): Vrest = -78.0 ± 5.5 mV, Ri = 178 ± 14 MO and Cm =

24 ± 3 pF.

All chemicals and drugs were purchased from Sigma-Aldrich (USA).

Input spike trains

As explained above, three types of input sets were used, defined by the statistical structure (P

for Poisson, B for Bursty) and the firing rate of their spike trains (constant or varying across

trains): 1) P10Hz (Figs 1–3 and 7–9), 2) PΔFR (input set A in Figs 4–6), 3) B10.5Hz (input set

B in Figs 4–6).

Input sets with Poisson spike trains (P10Hz and PΔFR) were generated using two different

algorithms allowing to specify the number of spike trains in an input set (5 or 10, respectively),

the firing rate of each spike train, and the average Pearson’s correlation coefficient across all

spike trains (computed with τw = 10ms). First, through iterative modifications of a random

Poisson spike train, we generated five different P10Hz input sets of 5 trains with average corre-

lation Rinput = 0.88, 0.84, 0.74, 0.65, 0.56. Six other P10Hz input sets of 5 trains (Rinput = 1.00,

0.95, 0.76, 0.48, 0.26, 0.11) and one PΔFR set of 10 trains (Rinput = 0.75) were generated using

the Matlab toolbox provided by Macke and colleagues [81], which uses a more efficient and

mathematically principled algorithm that randomly samples from a multivariate Poisson dis-

tribution with preset rate (FR) and covariance matrix. For both algorithms, although pairwise

correlations were constrained around the specified mean Rinput (e.g. at τw = 10 ms, on average

across all P10Hz input sets, the relative standard error of pairwise Rinput values is 4% of the

mean Rinput), some variability remained (see Fig 1E right) which allowed to test a wide array

of pairwise input correlations (Fig 1F). Because this variability may be larger when measuring

spike train similarity with different metrics than R, or at τw values that were not used to design

input sets, we reported pairwise similarity values (as opposed to the average similarity across

all trains) throughout the article.

To design an input set with 10 spike trains spanning a range of burstiness (B10.5Hz), we

simply constrained the number of spikes to be equal in all trains and specified the number of

bins with at least one spike for each train (bursty trains have a lower number of occupied

bins). Spikes were assigned to randomly selected bins and to random times within those bins.

Similarity metrics

We assessed the similarity between spike trains in four ways, spanning a range of different

assumptions on the neural code: 1) with the Pearson’s correlation coefficient (R), 2) with the

normalized dot product (NDP), 3) with the scaling factor (SF) and 4) with a distance metric

called SPIKE specifically designed to assess the dissimilarity between two spike trains [48]. In

addition, we used measures of differences between spike trains that assume different neural

codes, related to the one assumed by SF but easier to interpret in terms of basic spike train fea-

tures (see Firing rate and burstiness codes and Dispersion metrics sections below).
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For R, NDP and SF, two spike trains X and Y of the same duration were divided into N

time bins of duration τw, with Xi and Yi the respective numbers of spikes in bin i for each spike

train. In contrast, the SPIKE metric is binless and based on the spike times of each spike train.

For all similarity measures, empty spike trains (i.e. sweeps during which no spikes were

evoked) were excluded.

R (Pearson’s correlation coefficient) can take values between 1 (perfectly correlated, i.e.

identical) and -1 (anticorrelated) with 0 indicating X and Y are uncorrelated. It was computed

with the following equation, where cov is the covariance (scalar), σ is the standard deviation

and �X and �Y are the means of X and Y:

R ¼
covðX;YÞ
sX:sY

¼

PN
i¼1
ðXi � �XÞðYi � �Y Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ðXi � �XÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ðYi � �Y Þ2

q ðEq 1Þ

NDP (Normalized Dot Product) is the cosine of the angle θ between the two vectors: it is 0

when they are perfectly orthogonal, 1 when they are collinear (see Fig 2A and 2C). NDP was

computed as the dot product of X and Y divided by the product of their norms, with the fol-

lowing equation (where Xi and Yi are the coordinates of X and Y):

NDP ¼ cosðyÞ ¼
PN

i¼1
XiYiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1
X2
i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
Y2
i

q ðEq 2Þ

SF (Scaling Factor) quantifies the difference of length between the two vectors X and Y.

We have defined it as the ratio between the norms of each vector, the smaller norm always

divided by the bigger one to have SF values ranging from 0 to 1. SF = 1 means X and Y

are identical in terms of binwise spike number. The closer to 0 SF is, the more dissimilar

are X and Y (see Fig 2A and 2C). SF was computed with the following equation (where

0< ||X||� ||Y||):

SF ¼
jjXjj
jjYjj

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
X2
i

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
Y2
i

q ðEq 3Þ

NDP and SF focus on complementary features of a system of two vectors (angle vs norms),

and thus, together they are sufficient to fully describe the similarity between two vectors in a

Euclidean space.

The binless SPIKE similarity metric was computed from lists of spike times using the

Matlab toolbox provided at www.fi.isc.cnr.it/users/thomas.kreuz/sourcecode.html. The pro-

vided software computes the SPIKE-distance between two spike trains (called D(t) in our

study and S(t) in eqn. 19 of the original paper [48]) and we derived the SPIKE similarity as:

SPIKE = 1 � 1

T

R T
0
DðtÞdt, where T is the duration of the spike train. Because D(t) ranges from

0 to 1, SPIKE is thus also between 0 and 1, like NDP and SF. When SPIKE is equal to 1, spike

trains have exactly the same spike times, i.e. they are synchronous (n.b. in our experiments,

spike trains were not simultaneously recorded, but we use "synchronous" in the sense of spike

trains aligned to the start of each sweep). Note that SPIKE has a large dynamic range (i.e. sensi-

tivity over large differences of spiketimes), and, as a result, realistic spike trains like in our

input sets rarely have a SPIKE similarity lower than 0.45 [48, 82] (see Fig 3D).
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The ranges of possible values for the metrics we used are listed below, where closer to 1

always means more similar (although what similar means is different for each metric):

� 1 � R � 1

0 � NDP � 1

0 < SF � 1

0 � SPIKE� similarity � 1; but � 0:45 in most cases

Each metric assumes a specific neural code. For instance, R, NDP and SF all consider that

the basic informative feature in spike trains is the number of spikes in a time bin (i.e. a spike

count code), but R and NDP suppose that spike trains are similar when the spike counts

increase or decrease similarly in the same time bins (with empty bins not counting for NDP),

thus assuming a binwise synchrony code, whereas SF is independent of the temporal structure

(i.e. the fact that Xi and Yi correspond to the same time bin) and assumes a code where it is the

similarity in overall burstiness or firing rate that is relevant (see Fig 4A and 4B), not the bin-

wise synchrony (see Fig 2A–2C). SPIKE, on the other hand, considers a spike time synchrony

code. Details on the neural codes assumed by each metric, how they differ from each other and

how they are impacted by global increases in firing rate can be found in the S1 Appendix (part

1). The main assumptions and properties of each similarity metric on the neural code are sum-

marized in Table 1. Note that we do not consider one metric to be better than the other, or bet-

ter than alternative metrics not used in this study. Each metric can be used as a tool to analyze

different aspects of the neural code, with a set of pros, cons and assumptions that complement

other methods.

Firing rate and burstiness codes

R, NDP, SF and SPIKE are considering different aspects of spike trains and thus assume differ-

ent neural codes. However, it can be difficult to interpret those similarity measures in terms of

common properties of spike trains like the firing rate or the burstiness. To get a better sense of

the neural code assumed by each similarity metric, and to directly assess whether pattern sepa-

ration was performed through easily interpretable strategies like variation of the firing rate or

variation of the burstiness, we measured such properties in each spike train.

The firing rate is simply the number of spikes divided by the duration of a sweep (2 sec-

onds). Measuring burstiness is less straightforward as there is currently no consensus on the

definition of a burst of action potentials [83–85]. We used three measures, detailed below.

Spike trains are often considered bursty when they diverge from a Poisson process [28, 85].

To determine the tendency of a neuron to fire bursts, we computed the burstiness of a given

output set as the Kullback-Leibler divergence (DKL) of its interspike interval (ISI) frequency

distribution M (normalized to the median ISI) from the normalized ISI frequency distribution

P of a Poisson process. In practice, output sets from a 10 Hz input set were compared to the ISI

distribution from all combined 10 Hz input sets, whereas input sets from 30 Hz input set were

compared to the combined distribution of all 30 Hz input sets.

Burstiness ¼ DKL MjjPð Þ ¼
X

j

MðjÞlog
MðjÞ
PðjÞ

� �

ðEq 4Þ

where M(j) or P(j) is the value of M or P in the jth bin of the distribution. Normalized ISI
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frequency distributions were discretized in 250 bins going from 0 to 50, and DKL was com-

puted using the KLDIV matlab function (v 1.0.0.0), written by David Fass, available at:

https://www.mathworks.com/matlabcentral/fileexchange/13089-kldiv.

See S1 Appendix—2 for details on why DKL is a suitable measure of cell burstiness.

To assess burstiness in single spike trains, the DKL measure being not well-suited for this

(see S1 Appendix—2), we designed two simple nonparametric measures that we called Com-
pactness and Occupancy. Instead of explicitly defining "burstiness", these measures are based

on the binning of spike trains, offering the advantage of being directly comparable to the neu-

ral codes assumed by binned similarity metrics like R, NDP and SF (S2 Fig). A spike train is

thus seen as a vector of spike counts, and a time bin (or vector coordinate) is considered a win-

dow in which spikes can be clustered. Thus, instead of counting the number of detected bursts

and the number of spikes in a burst, our two measures provide information on the number of

occupied bins (Compactness) and the number of spikes in occupied bins (Occupancy). These

measures of burstiness should be viewed as complementary to previous definitions, not as

replacements.

The Compactness of a spike train was computed as follows:

Compactness ¼ 1 � proportion of occupied bins

¼ 1 �
number of bins with at least 1 spike

total number of bins
ðEq 5Þ

Compactness thus runs between 0 (all bins are occupied by at least one spike) and 1 (no spikes:

this case was excluded so the true maximum, corresponding to any spike train with all its

spikes clustered in just one bin, was 1 � 1

total number of bins). Values closer to 1 mean very few bins

are occupied: either many spikes are clustered in a small number of bins or the measured spike

train has very few spikes.

The Occupancy of a spike train is the average number of spikes per occupied bin:

Occupancy ¼
number of spikes

number of occupied bins
ðEq 6Þ

Because we excluded empty spike trains, the Occupancy can theoretically go from 1 to infinity.

Note that the lowest value (i.e. 1 spike per occupied bin) means that all spikes are distributed

in different bins (or that there is just 1 spike).

Note that, in addition to being dependent on the binsize, Compactness and Occupancy are

both dependent on the firing rate of a given spike train, but not in the same way (see S1

Appendix—2 for details). They are complementary measures that, together, allow determining

whether two spike trains with different firing rates are also different in terms of burstiness (S1

Table). When spike trains have the same firing rate (e.g. input set B 10.5 Hz in Fig 4B, which

were all trains with 21 spikes each but were constructed by specifying different numbers of

occupied bins), Compactness and Occupancy are redundant (S2C and S2D Fig) and, for both

measures, higher values mean higher burstiness.

Dispersion metrics

To assess the amount of pattern separation performed by variation of a given spike train fea-

ture like the firing rate, Compactness or Occupancy, we measured the difference in this feature

between two spike trains. In the same spirit as for similarity metrics, we could then compute

the difference between all pairs of trains in an input set (excluding self-comparisons) and com-

pare to the difference of all corresponding pairs of output spike trains, (excluding comparisons

between output spike trains associated with the same input spike train). This would yield
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matrices of pairwise differences organized in the same fashion as the similarity matrix dis-

played in Fig 1E, which could then be converted to pattern separation graphs showing the

average pairwise output absolute difference as a function of the pairwise input difference (Fig

6A). Note that the mean absolute difference (MAD) between all spike trains of a given set

(either input or output) corresponds to the Gini mean difference [86], a common measure of

dispersion of a sample akin to the standard deviation (Fig 5A). The difference in MAD

between an input set and its output set indicates whether pattern separation or convergence

was achieved through variation of the measured spike train feature (Fig 6B).

Software and statistics

Data analysis was performed using MATLAB (2017a, Mathworks). Sample sizes were chosen

based on the literature and estimations of the variance and effect size from preliminary data.

The one-sample Kolmogorov-Smirnov test was used to verify the normality of data distribu-

tions. Parametric or non-parametric statistical tests were appropriately used to assess signifi-

cance (p-value < 0.05). Assumptions on equal variances between groups were avoided when

necessary. All tests on means or medians were two-tailed. To determine whether distributions

of similarity values [Sinput, Soutput] (S standing for any similarity metric) were significantly dif-

ferent at a given time scale (Figs 7 and 8), we performed an analysis of the covariance

(ANCOVA) using separate lines regression models, with Sinput as a continuous predictor and

Treatment (Fig 7) or Celltype (Fig 8) as a categorical predictor with 2 or 5 levels respectively

(the aoctool function in Matlab and a custom-written code yielded the same results). The 95%

confidence interval around the slope and intercept of a given linear model was determined

from the regress function (Fig 8).

Supporting information

S1 Appendix. This document provides all supplementary figures and tables and a discus-

sion on how to interpret the similarity and burstiness metrics used in the article.

(PDF)

S1 Fig. (Related to Fig 2). R, NDP and SF are not equivalent. (A) Relationships between

these three similarity metrics (R, NDP and SF) computed between the 36 possible spike count

vectors with six bins and that can have 0, 1 or 2 spikes per bin (All pairs combinations = 499,500

data points). (B) Relationships between these three similarity metrics for the 124,950 pairs of

spike trains from the 102 experimental GC recording sets. Green lines correspond to a linear

regression (R2 and p-value in each panel). Note that although R and NDP are well correlated in

our experimental data (R2>0.95), there is not a linear relationship between R and NDP in the-

ory. (C) Impact of non-proportional firing rate increase on similarity values for all three metrics.

For each 6-bin spike count vector X (same as in A), a vector A was generated such that for each

bin i with at least one spike, Ai = Xi + k, with k = 1, 10 or 100, and Ai = Xi when Xi = 0 (e.g. for

k = 1, if X = [010101] and Y = [020202], then A = [020202] and B = [030303]. For both pairs, the

difference is [010101]). NDP, SF and R values were computed for all pairs in each set of vectors,

and the values of the initial set (x-axis) was compared to the values of the X+k set (y-axis). Data

points away from the identity line (red) demonstrate an effect of the firing rate increase.

(TIF)

S2 Fig. (Related to Fig 4). Influence of firing rate and burstiness differences on binned sim-

ilarity metrics. Data points correspond to single pairs of input trains from input set A (A-B)

or input set B (C-D). The similarity between two spike trains (R, NDP or SF), their difference

of Compactness (proportion of occupied bins), and their difference in Occupancy (average
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number of spikes per occupied bins) were measured using binning windows of 10 ms (A, C)

or 100 ms (B, D). When FR is constant across spike trains, Compactness and Occupancy dif-

ferences are direct measures of burstiness differences, given a certain time scale. As intuited

from Fig 2A–2C, SF is very sensitive to variations in FR, Compactness and Occupancy between

spike trains, whereas R and NDP are only mildly influenced at best (and mostly at larger time

scales), by such variations.

(TIF)

S1 Table. (Related to Fig 7). How to interpret Compactness and Occupancy in terms of

burstiness and sparseness when comparing two spike trains? The table shows what it means

when Compactness (C) is increased, stays constant or decreases while Occupancy (O) increases,

stays constant or decreases. We distinguish the cases when the mean firing rate (FR) is con-

stant (FR absolute difference = 0) or different (FR abs diff> 0). The second spike train is either

unambiguously burstier (B+) or less bursty (B-), has a greater FR (F+) or is sparser (F-), or a

combination of those (i.e. B+F+ or B-F-). In each case, we provide an example (4-dimensional

vectors of spike counts) when the conditions can coexist (NA means not applicable). Notice

that the resulting table of examples is centrally antisymmetric: the central cell is invariant and

every other cell around the center is the reverse image of the 180˚ opposite cell (e.g. B+, 0101

! 0200 as opposed to B-, 0200! 0101).

(TIF)
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