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Abstract: Chrysanthemum (Chrysanthemum morifolium (Ramat.) Kitamura) plants have
great ornamental value, but their flowers can also be a source of pollen contamination.
Previously, morphological and cytological studies have shown that anthers of some chrysanthemum
cultivars such as ‘Qx-115′ fail to dehisce, although the underlying mechanism is largely unknown.
In this study, we investigated the molecular basis of anther indehiscence in chrysanthemum via
transcriptome analysis of a dehiscent cultivar (‘Qx-097′) and an indehiscent cultivar (‘Qx-115′). We also
measured related physiological indicators during and preceding the period of anther dehiscence.
Our results showed a difference in pectinase accumulation and activity between the two cultivars
during dehiscence. Detection of de-esterified pectin and highly esterified pectin in anthers during the
period preceding anther dehiscence using LM19 and LM20 monoclonal antibodies showed that both
forms of pectin were absent in the stomium region of ‘Qx-097′ anthers but were abundant in that of
‘Qx-115′ anthers. Analysis of transcriptome data revealed a significant difference in the expression
levels of two transcription factor-encoding genes, CmLOB27 and CmERF72, between ‘Qx-097′ and
‘Qx-115′ during anther development. Transient overexpression of CmLOB27 and CmERF72 separately
in tobacco leaves promoted pectinase biosynthesis. We conclude that CmLOB27 and CmERF72 are
involved in the synthesis of pectinase, which promotes the degradation of pectin. Our results lay a
foundation for further investigation of the role of CmLOB27 and CmERF72 transcription factors in the
process of anther dehiscence in chrysanthemum.

Keywords: Chrysanthemum morifolium; anther dehiscence; RNA-Seq; pectin degradation; CmERF72;
CmLOB27

1. Introduction

Chrysanthemum (Chrysanthemum morifolium (Ramat.) Kitamura) originates from China, where it
is one of the 10 most beloved traditional flowers, and is among the world’s most popular cut flowers [1].
Chrysanthemum flowers have a single capitulum/inflorescence which bears multiple bisexual tubular
flowers and female ray flowers; all of the bisexual tubular flowers release pollen grains after anther
dehiscence, thus it may cause serious pollen contamination. Pollen contamination significantly reduces
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the ornamental value of chrysanthemum, quickly shortens its shelf life, and also elicits severe allergic
reactions in some people, particularly those allergic to pollen [2,3]. Manual removal of anthers
can ameliorate the pollen contamination of cut flowers; however, this method is not feasible in
chrysanthemum. A single inflorescence of chrysanthemum contains hundreds of bisexual tubular
flowers, each of which contains a large number of tiny anthers. Manual removal of anthers is not
only time-consuming and laborious, but also causes chrysanthemum to lose its ornamental value.
Therefore, pollen contamination due to chrysanthemum flowers is a major problem in the cut flower
industry and should be urgently resolved. The severity of pollen contamination is usually proportional
to the degree of anther dehiscence and amount of pollen grains produced by a plant [4,5]. Breeding of
male sterile lines with anther indehiscence or pollen abortion phenotype could be used to reduce or
eliminate pollen pollution due to chrysanthemum flowers.

Three key processes are implicated in anther dehiscence: Dehydration of anther, lignin deposition
in anther wall, and degradation of anther wall (Figure S1) [6]. Aquaporins, in addition to several
metal cation transporters, reportedly participate in the process of anther dehydration by increasing the
osmotic potential of anther tissues [7,8], thus generating enough force to bend the anther wall outwards.
Additionally, lignin synthase and carbonic anhydrase regulate the thickening of woody deposits in
endothecium cells [9]; these uniformly thickened cells also provide a directional mechanical force that
triggers anther dehiscence. The dehydration of anthers, together with lignin deposition in endothecium
cells, is sufficient to induce anther dehiscence [10]. During the process of anther dehiscence, cells in the
stomium region are degraded by pectinase and cellulase to form a crack, which directly leads to the
complete dehiscence of the anther [11,12].

To date, few studies have focused on anther dehiscence in chrysanthemum. Previously, we showed
that anther dehiscence or indehiscence is a critical factor affecting pollen contamination in
chrysanthemum [13]. However, studies on the mechanism of anther dehiscence in chrysanthemum
are limited [4]. In this study, we used two chrysanthemum cultivars, ‘Qx-097′ and ‘Qx-115′,
as experimental materials. Anthers of ‘Qx-097′ dehisce normally and produce a large amount of pollen;
by contrast, anthers of ‘Qx-115′ are indehiscent and therefore incapable of pollen pollution (Figure S2).
To understand the key factors driving anther dehiscence in chrysanthemum, we investigated the
differences in the cellular characteristics and transcriptome profiles of anthers between ‘Qx-097′and
‘Qx-115′ cultivars during flowering, with a special focus on the regulatory genes and metabolic
components involved in anther dehiscence.

2. Results

2.1. Anther Development and Dehiscence in Chrysanthemum

The ‘Qx-097′ cultivar produced larger inflorescences than ‘Qx-115′ (Figure 1A,B) and dehiscent
anthers, thus producing a large amount of many pollen grains (Figure 1C). The anthers of ‘Qx-115′

were indehiscent and maintained their surface integrity, thus producing no pollen (Figure 1D).
The cross-sectional view of anthers revealed a uniform U-shaped thickening of endothecium cells in the
stomium in ‘Qx-097′ cultivar (Figure 1E), but an uneven thickening in the ‘Qx-115′ cultivar (Figure 1F).

At the stage before anther dehiscence (period 1), ‘Qx-097’ (Qx-097-1; Figure 2A) and ‘Qx-115’
(Qx-115-1; Figure 2C) anther samples retained their complete morphological structure. However, at the
crucial stage of anther dehiscence (period 2), in the ‘Qx-097’ sample (Qx-097-2; Figure 2B), the anther
septum was completely degraded, and the cells in the stomium region were in the process of degradation.
Moreover, the ‘Qx-097-2’ anthers showed a crack, and pollen grains released from this crack could
be observed (Figure 2B). At the corresponding stage (Qx-115-2), the anther wall of the anthers in the
‘Qx-115’ cultivar had collapsed inward and contained many pollen grains, with no apparent dehiscence
(Figure 2D).
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Figure 1. Morphological and anatomical features of anthers of chrysanthemum cultivars, ‘Qx-097′ 
and ‘Qx-115′. (A) Blooming inflorescence of ‘Qx-097′. (B) Blooming inflorescence of ‘Qx-115′. (C) Five 
dehiscing anthers of ‘Qx-097′. (D) Five indehiscent anthers of ‘Qx-115′. (E) Cross-section of the 
‘Qx-097′ anther observed under a transmission electron microscope (TEM). (F) Cross-section of the 
‘Qx-115′ anther observed under TEM. En, endothecium; Ep, epidermis; PG, pollen grain; St, 
secondary thickening. 

At the stage before anther dehiscence (period 1), ‘Qx-097’ (Qx-097-1; Figure 2A) and ‘Qx-115’ 
(Qx-115-1; Figure 2C) anther samples retained their complete morphological structure. However, at 
the crucial stage of anther dehiscence (period 2), in the ‘Qx-097’ sample (Qx-097-2; Figure 2B), the 
anther septum was completely degraded, and the cells in the stomium region were in the process of 
degradation. Moreover, the ‘Qx-097-2’ anthers showed a crack, and pollen grains released from this 
crack could be observed (Figure 2B). At the corresponding stage (Qx-115-2), the anther wall of the 
anthers in the ‘Qx-115’ cultivar had collapsed inward and contained many pollen grains, with no 
apparent dehiscence (Figure 2D). 

Figure 1. Morphological and anatomical features of anthers of chrysanthemum cultivars, ‘Qx-097′

and ‘Qx-115′. (A) Blooming inflorescence of ‘Qx-097′. (B) Blooming inflorescence of ‘Qx-115′.
(C) Five dehiscing anthers of ‘Qx-097′. (D) Five indehiscent anthers of ‘Qx-115′. (E) Cross-section
of the ‘Qx-097′ anther observed under a transmission electron microscope (TEM). (F) Cross-section
of the ‘Qx-115′ anther observed under TEM. En, endothecium; Ep, epidermis; PG, pollen grain; St,
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Figure 2. Cytological analysis of ‘Qx-097′ and ‘Qx-115′ anthers. (A,B) Paraffin-embedded sections of 
anthers of cultivar ‘Qx-097′ at period 1 (A) and period 2 (B). (C,D) Paraffin-embedded sections of 
anthers of cultivar ‘Qx-115′ at period 1 (C) and period 2 (D). Pe, petal; PG, pollen grain; Sm, septum; 
St, stomium; StR, stomium region; V, vascular region; CL, collapsed locule. 

2.2. RNA-Seq Analysis and Read Assembly 

To compare gene expression during anther development between the two cultivars, three 
biological replicates of Qx-097-1 (97-1a, 97-1b, 97-1c), Qx-097-2 (97-2a, 97-2b, 97-2c), Qx-115-1 (115-1a, 
115-1b, 115-1c), and Qx-115-2 (115-2a, 115-2b, 115-2c) samples were used to construct cDNA 
libraries, which were sequenced on Illumina Hiseq platform. We expected to get 12 libraries, but 
only 11 libraries were available due to low RNA quality of 97-1c. A total of 73.43 Gb data was 
generated. The clean reads were assembled to generate 213,845 unigenes, with a total length of 
217,351,585 bp. The average length, N50 value, and GC content of the unigenes were 1016 bp, 1606 
bp, and 39.60%, respectively. Read quality metrics of each sample after filtering are shown in Table 
S1. 

2.3. Gene Annotation and Functional Classification 

After assembling, we mapped clean reads to unigene, then calculated gene expression level for 
each sample. Then we performed principal component analysis (PCA) with all samples (Figure 3A). 
The results show that the gene expression pattern of anther tissue in the same period was relatively 
close in different cultivars (Qx-097-1 and Qx-115-1, Qx-097-2 and Qx-115-2). 

Figure 2. Cytological analysis of ‘Qx-097′ and ‘Qx-115′ anthers. (A,B) Paraffin-embedded sections
of anthers of cultivar ‘Qx-097′ at period 1 (A) and period 2 (B). (C,D) Paraffin-embedded sections of
anthers of cultivar ‘Qx-115′ at period 1 (C) and period 2 (D). Pe, petal; PG, pollen grain; Sm, septum; St,
stomium; StR, stomium region; V, vascular region; CL, collapsed locule.
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2.2. RNA-Seq Analysis and Read Assembly

To compare gene expression during anther development between the two cultivars, three
biological replicates of Qx-097-1 (97-1a, 97-1b, 97-1c), Qx-097-2 (97-2a, 97-2b, 97-2c), Qx-115-1 (115-1a,
115-1b, 115-1c), and Qx-115-2 (115-2a, 115-2b, 115-2c) samples were used to construct cDNA libraries,
which were sequenced on Illumina Hiseq platform. We expected to get 12 libraries, but only 11 libraries
were available due to low RNA quality of 97-1c. A total of 73.43 Gb data was generated. The clean
reads were assembled to generate 213,845 unigenes, with a total length of 217,351,585 bp. The average
length, N50 value, and GC content of the unigenes were 1016 bp, 1606 bp, and 39.60%, respectively.
Read quality metrics of each sample after filtering are shown in Table S1.

2.3. Gene Annotation and Functional Classification

After assembling, we mapped clean reads to unigene, then calculated gene expression level for
each sample. Then we performed principal component analysis (PCA) with all samples (Figure 3A).
The results show that the gene expression pattern of anther tissue in the same period was relatively
close in different cultivars (Qx-097-1 and Qx-115-1, Qx-097-2 and Qx-115-2).

Of all the 213,845 unigenes identified in our data, the number of unigenes annotated using
seven public databases, including nucleotide (NT), non-redundant (NR), Clusters of Orthologous
Groups (COG), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Swiss-Prot,
and InterProScan, are listed in Table 1. Based on the functional annotation results, a total of 28,004 simple
sequence repeats (SSRs) were detected in 23,317 unigenes, and 3463 unigenes encoding transcription
factors (TFs) were predicted.

Table 1. Summary of the functional annotation of chrysanthemum unigenes.

Values Total Nr Nt Swiss-ProtKEGG COG Interpro GO

Number 213,845 115,949 95,803 79,969 87,073 41,570 76,348 37,081
Percentage (%) 100 54.22 44.08 37.40 40.72 19.44 35.70 17.34

Database abbreviations: Nr, non-redundant; Nt, nucleotide; KEGG, Kyoto Encyclopedia of Genes and Genomes;
COG, Clusters of Orthologous Groups; Interpro, InterProScan; GO, Gene Ontology.

The differentially expressed genes (DEGs) were analyzed by sequence homology using the
GO database, which categorized 3495 DEGs into 94 functional groups belonging to three main
classes: ‘Biological process’ (44 categories), ‘cellular component’ (26 categories), and ‘molecular
function’ (24 categories). The majority of the GO-annotated unigenes belonged to ‘metabolic process’
(1577 unigenes, 45.1%) and ‘cellular process’ (1,497 unigenes, 42.8%) categories under ‘biological
process’; ‘membrane’ (1202 unigenes, 34.4%) and ‘intracellular’ (1,191 unigenes, 3%) categories under
‘cellular component’; and ‘binding’ (1560 unigenes, 44.6%) and ‘catalytic activity’ (1556 unigenes,
44.5%) categories under ‘molecular function’ (Figure 3B).

Furthermore, we annotated DEGs to higher-level systemic functions at the cell, species,
and ecosystem levels using the KEGG database (E-value threshold = 0.00001) and KEGG-linked catalog
of genes obtained from completely sequenced genomes. A total of 4446 DEGs located in 20 KEGG
pathways were annotated (Figure 3C). These included ‘global and overview maps’ (1917 unigenes,
43.1%), ‘carbohydrate metabolism’ (762 unigenes, 17.1%), ‘folding, sorting, and degradation’
(689 unigenes, 15.5%), ‘translation’ (688 unigenes, 15.5%), and ‘transport and catabolism’ (556 unigenes,
12.5%), implying that these pathways might play a primary role in the process of anther dehiscence
in chrysanthemum.
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2.4. Validation of Gene Expression by qRT-PCR

To verify the RNA-Seq data, the expression of 15 randomly selected DEGs was examined by
quantitative real-time polymerase chain reaction (qRT-PCR). The qRT-PCR results were consistent
with the RNA-Seq data (Table S3), as the correlation coefficients (r) were greater than 0.9 for all genes.
Thus, this confirmed the reliability of our RNA-Seq data.

2.5. Anther Dehiscence-Associated DEGs

Four-way comparisons of transcriptome data were carried out: Qx-097-1 vs. Qx-097-2, Qx-115-1
vs. Qx-115-2, Qx-097-1 vs. Qx-115-1, and Qx-097-2 vs. Qx-115-2 (Figure S5). Compared with Qx-097-1,
399 and 787 genes were up- and down-regulated, respectively, in Qx-097-2. Compared with Qx-115-1,
838 and 1577 genes were up- and down-regulated, respectively, in Qx-115-2. Compared with Qx-097-1,
4129 and 7573 genes were up- and down-regulated, respectively, in Qx-115-1. Compared with Qx-097-2,
5202 and 10,033 genes were up- and down-regulated in Qx-115-2, respectively.

The heatmap in Figure 4 shows the expression of DEGs in the anthers of ‘Qx-097′ and ‘Qx-115′

cultivars. The 33 DEGs which were relevant to the process of anther dehiscence were selected according
to the existing literatures for investigation of their expression in ‘Qx-097’ and ‘Qx-115’; the details of
these DEGs are listed in Table S2. Two NEC3 genes (CL25624.Contig2_All, CL21412.Contig1_All) and four
other genes (CL25204.Contig2_All, CL12578.Contig1_All, CL17791.Contig2_All, CL12578.Contig2_All)
encoded aquaporin proteins involved in anther dehydration. The expression level of these genes was
up-regulated in Qx-097-2 compared with Qx-097-1, Qx-115-1, and Qx-115-2 (Figure 4A).

The expression levels of genes involved in lignin deposition, including NAC83 (CL5973.Contig2_All),
ABC (CL26012.Contig6_All, CL26012.Contig3_All), and CA (CL25624.Contig2_All, CL21412.Contig1_All,
CL1489.Contig2_All, CL1489.Contig1_All), were significantly different between anthers of ‘Qx-097’ and
‘Qx-115’, whereas OPR1 (CL19922.Contig1_All) and DAD1 (Unigene38121_All) genes were similarly
expressed in anthers of ‘Qx-097′ and ‘Qx-115′ (Figure 4B).

Based on the expression level, some enzyme genes involved in cell wall degradation were
identified, which included PL (pectate lyase), PG (polygalacturonase), PME (pectin methylesterase),
and EXP (expansin). Three PL genes (CL21016.Contig1_All, CL11721.Contig4_All, CL11721.Contig1_All),
three PG genes (CL9057.Contig2_All, Unigene46674_All, Unigene38948_All), three PME genes
(CL24615.Contig2_All, Unigene43657_All, CL24615.Contig1_All), four EXP genes (CL7761.Contig1_All,
CL7761.Contig2_All, CL14843.Contig1_All, CL14843.Contig3_All), and five CP (cysteine protease) genes
(CL10699.Contig2_All, Unigene60644_All, CL10699.Contig3_All, Unigene15250_All, CL262.Contig4_All)
were up-regulated in ‘Qx-097′ anthers compared with ‘Qx-115′ anthers. The expression levels of these
genes were also up-regulated in Qx-097-2 anthers compared with Qx-097-1 anthers (Figure 4C).

To further identify DEGs, we used Venn diagrams to plot transcription factor-encoding genes
with different expression levels between ‘Qx-097’ and ‘Qx-115’ anthers (Figure 5) and screened 122
DEGs after the removal of duplicates. The 122 differentially expressed TFs belonged to 30 TF families,
and the heatmap in Figure 6 shows the different expression levels of them. Based on their functional
annotation information and expression level in Qx-097-1, Qx-097-2, Qx-115-1, and Qx-115-2 samples
(Table S4), we can further screen for differentially expressed transcription factor-encoding genes that
may be associated with anther dehiscence.
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The expression levels of genes involved in lignin deposition, including NAC83 
(CL5973.Contig2_All), ABC (CL26012.Contig6_All, CL26012.Contig3_All), and CA 
(CL25624.Contig2_All, CL21412.Contig1_All, CL1489.Contig2_All, CL1489.Contig1_All), were 
significantly different between anthers of ‘Qx-097’ and ‘Qx-115’, whereas OPR1 

Figure 4. Heatmap of differentially expressed genes (DEGs) potentially involved in anther dehydration,
lignin deposition, and stomium region degradation in chrysanthemum cultivars ‘Qx-097′ and ‘Qx-115′.
97-1, anthers of ‘Qx-097′ at period 1; 97-2, anthers of ‘Qx-097′ at period 2; 115-1, anthers of ‘Qx-115′ at
period 1; 115-2, anthers of ‘Qx-115′ at period 2. The bar represents the expression (FPKM) level of each
gene in 97-1, 97-2, 115-1, and 115-2 as indicated by red/blue rectangles, the deeper color indicates the
higher/lower expression. The number next to the color bar on the right side refers to the Log2 value of
the FPKM.
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‘Qx-097′. 115UP: Up-regulated genes during the anther development of ‘Qx-115′. 115DOWN: 
Down-regulated genes during the anther development of ‘Qx-115′. 97N: Genes showing no 
differential expression in the Qx-097-2 vs. Qx-097-1 comparison. 115N: Genes showing no differential 
expression in the Qx-115-2 vs. Qx-115-1 comparison. 97 vs. 115: Genes that are not differentially 
expressed during the anther development of ‘Qx-097’ or ‘Qx-115’, but differentially expressed when 
‘Qx-097’ compared with ‘Qx-115’. TF, all the transcription factor-encoding genes identified in our 

Figure 5. Venn diagrams showing the number of DEGs encoding TFs. Overlaps represent genes
simultaneously differentially expressed in two or three groups. 97UP: Up-regulated genes during the
anther development of ‘Qx-097′. 97DOWN: Down-regulated genes during the anther development
of ‘Qx-097′. 115UP: Up-regulated genes during the anther development of ‘Qx-115′. 115DOWN:
Down-regulated genes during the anther development of ‘Qx-115′. 97N: Genes showing no differential
expression in the Qx-097-2 vs. Qx-097-1 comparison. 115N: Genes showing no differential expression
in the Qx-115-2 vs. Qx-115-1 comparison. 97 vs. 115: Genes that are not differentially expressed during
the anther development of ‘Qx-097’ or ‘Qx-115’, but differentially expressed when ‘Qx-097’ compared
with ‘Qx-115’. TF, all the transcription factor-encoding genes identified in our data. The comparison
scheme is as follows: (A) 115UP ∩ (97N ∪ 97DOWN) ∩ TF, (B) 115DOWN ∩ (97UP ∪ 97N) ∩ TF,
(C) 115N ∩ (97UP ∪ 97DOWN) ∩ TF, (D)97 vs. 115 ∩ TF.
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Log2 value of the FPKM.

2.6. Six Selected Gens Expressions in Different Tissues

We selected six chrysanthemum genes, including CmCP (CL262.Contig4_All), CmPL6
(CL11721.Contig1_All), CmCA3 (CL7761.Contig2_All), CmNAC72 (CL17347.Contig3_All), CmNAC83
(CL5973.Contig2_All), and CmWRKY12 (CL12182.Contig1_All), whose homologs in model plants are
known to play key roles in the process of anther dehiscence [9,11,12,14–17]. We quantified the
expression levels of these genes in four tissues (leaves, ray flowers, and anthers at period 1 and
period 2) of ‘Qx-097′ and ‘Qx-115′ cultivars (Figure 7). Compared with Qx-097-1, the expression of
CmCP, CmPL6, and CmCA3 was up-regulated in Qx-097-2, and these three genes were not expressed
in the leaves, ray flowers, and anther tissues of ‘Qx-115′. Only CmNAC72 showed higher expression
in Qx-115-2 compared with the other seven tissues. During anther development, CmWRKY12 was
up-regulated in ‘Qx-097′ compared with ‘Qx-115′.



Int. J. Mol. Sci. 2019, 20, 5865 10 of 22
Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  10 of 22 

 

 
Figure 7. Quantitative real-time PCR (qRT-PCR) expression analysis of genes in different tissues and 
at different developmental stages in the chrysanthemum cultivars ‘Qx-097′ and ‘Qx-115′. 97L, 
‘Qx-097′ leaves; 97R, ‘Qx-097′ ray flowers; 97-1, ‘Qx-097′ anthers at period 1; 97-2, ‘Qx-097′ anthers at 
period 2; 115L, ‘Qx-115′ leaves; 115R, ‘Qx-115′ ray flowers; 115-1, ‘Qx-115′ anthers at period 1; 115-2: 
‘Qx-115′ anthers at period 2. Data represent mean ± standard deviation (SD; n = 3). 

2.7. Comparisons of Accumulated Galacturonic Acid, Pectinase, Lignin, and Lignin Synthase in Anthers 
Between the Four Samples 

Anthers of ‘Qx-097′ showed significantly lower galacturonic acid content than those of ‘Qx-115′. 
During anther development from period 1 to period 2, the galacturonic acid content decreased 
significantly by 26.17% in ‘Qx-097′ but remained unchanged in ‘Qx-115′ (Table 2). Furthermore, the 
pectinase content of ‘Qx-097′ anthers significantly exceeded that of ‘Qx-115′ anthers. Nevertheless, 
increased pectinase content during anther development was also detected in ‘Qx-115′ (Table 2), 
which needs to be confirmed by further research. 

Table 2. Contents of galacturonic acid, pectinase, lignin, and lignin synthase (LNS) in anthers of 
‘Qx-097′ and ‘Qx-115′ chrysanthemum cultivars. 

Samples. Galacturonic Acid (ng/g) Pectinase (ng/g) Lignin (ng/g) LNS (ng/g) 
Qx-097-1 113.298 ± 5.389 b 117.105 ± 2.093 a 387.261 ± 7.674 c 528.150 ± 31.466 c 
Qx-097-2 83.651 ± 4.791 c 107.070 ± 4.063 b 449.010 ± 18.205 a 670.039 ± 39.355 a 
Qx-115-1 137.171 ± 4.533 a 69.677 ± 0.934 d 415.938 ± 4.386 b 591.352 ± 19.321 b 

Figure 7. Quantitative real-time PCR (qRT-PCR) expression analysis of genes in different tissues and at
different developmental stages in the chrysanthemum cultivars ‘Qx-097′ and ‘Qx-115′. 97L, ‘Qx-097′

leaves; 97R, ‘Qx-097′ ray flowers; 97-1, ‘Qx-097′ anthers at period 1; 97-2, ‘Qx-097′ anthers at period 2;
115L, ‘Qx-115′ leaves; 115R, ‘Qx-115′ ray flowers; 115-1, ‘Qx-115′ anthers at period 1; 115-2: ‘Qx-115′

anthers at period 2. Data represent mean ± standard deviation (SD; n = 3).

2.7. Comparisons of Accumulated Galacturonic Acid, Pectinase, Lignin, and Lignin Synthase in Anthers
Between the Four Samples

Anthers of ‘Qx-097′ showed significantly lower galacturonic acid content than those of
‘Qx-115′. During anther development from period 1 to period 2, the galacturonic acid content
decreased significantly by 26.17% in ‘Qx-097′ but remained unchanged in ‘Qx-115′ (Table 2).
Furthermore, the pectinase content of ‘Qx-097′ anthers significantly exceeded that of ‘Qx-115′ anthers.
Nevertheless, increased pectinase content during anther development was also detected in ‘Qx-115′

(Table 2), which needs to be confirmed by further research.
The lignin content of ‘Qx-097′ anthers increased by 15.95% during development, whereas the

corresponding increase in ‘Qx-115′ anthers was considerably lower (11.17%). The lignin synthase
content increased by 26.87% in ‘Qx-097′ during anther development, more than double the increase
observed in ‘Qx-115′ anthers (17.62%). During anther development, the contents of lignin and lignin
synthase increased significantly in both ‘Qx-097′ and ‘Qx-115′ cultivars, with no significant differences
between them in period 2. This result suggests that endothecium cells in the anthers of both ‘Qx-097′

and ‘Qx-115′ cultivars underwent lignin deposition (Table 2).



Int. J. Mol. Sci. 2019, 20, 5865 11 of 22

Table 2. Contents of galacturonic acid, pectinase, lignin, and lignin synthase (LNS) in anthers of
‘Qx-097′ and ‘Qx-115′ chrysanthemum cultivars.

Samples. Galacturonic Acid (ng/g) Pectinase (ng/g) Lignin (ng/g) LNS (ng/g)

Qx-097-1 113.298 ± 5.389 b 117.105 ± 2.093 a 387.261 ± 7.674 c 528.150 ± 31.466 c
Qx-097-2 83.651 ± 4.791 c 107.070 ± 4.063 b 449.010 ± 18.205 a 670.039 ± 39.355 a
Qx-115-1 137.171 ± 4.533 a 69.677 ± 0.934 d 415.938 ± 4.386 b 591.352 ± 19.321 b
Qx-115-2 139.494 ± 1.983 a 94.747 ± 3.134 c 462.407 ± 16.761 a 695.570 ± 44.867 a

Data represent mean ± standard error (SE). Different lowercase letters indicate significant differences (p < 0.05;
Duncan’s test).

2.8. Pectin Accumulation in ‘Qx-097’ and ‘Qx-115’ Anthers

Immunohistochemistry revealed that both LM19 and LM20 antibodies displayed weak significant
fluorescence signals in the stomium region of Qx-097-2 anthers, indicating low content of de-esterified
pectin and highly esterified pectin. However, stronger fluorescence signals of LM19 and LM20
antibodies were detected in the stomium region cells of ‘Qx-115′ anthers, indicating greater accumulation
of de-esterified and highly esterified pectin (Figure 8).
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2.9. Expression Model of CmERF72 and CmLOB27 in Chrysanthemum

Based on previous studies and our transcriptome findings, we selected 2 out of 122 transcription
factor-encoding genes (CmERF72 and CmLOB27), both of which may be associated with anther
dehiscence in chrysanthemum. The CmERF72 gene was down-regulated during anther development
in ‘Qx-115′ but up-regulated in ‘Qx-097′. Conversely, CmLOB27 was specifically expressed in ‘Qx-097′

anthers and was up-regulated during anther development, yet this gene was barely expressed in the
anthers of ‘Qx-115′ (Figure 9A).
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period 2; 115L, ‘Qx-115′ leaves; 115R, ‘Qx-115′ ray flowers; 115-1, ‘Qx-115′ anthers at period 1; 115-2: 
‘Qx-115′ anthers at period 2. (B) Transient expression of CmERF72-GFP and CmLOB27-GFP fusion 
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Figure 9. Verification of the expression of CmLOB27 and CmERF72 genes in chrysanthemum and tobacco.
(A) Expression analysis of CmERF72 and CmLOB27 in different tissues and at different developmental
stages in the chrysanthemum cultivars ‘Qx-097′ and ‘Qx-115′ by qRT-PCR. 97L, ‘Qx-097′ leaves; 97R,
‘Qx-097′ ray flowers; 97-1, ‘Qx-097′ anthers at period 1; 97-2, ‘Qx-097′ anthers at period 2; 115L, ‘Qx-115′

leaves; 115R, ‘Qx-115′ ray flowers; 115-1, ‘Qx-115′ anthers at period 1; 115-2: ‘Qx-115′ anthers at period
2. (B) Transient expression of CmERF72-GFP and CmLOB27-GFP fusion proteins in tobacco leaves.
(C) Changes in pectinase and galacturonic acid contents in tobacco leaves transiently transformed
with pCAMBIA1300-CmERF72, pCAMBIA1300-CmLOB27, and pCAMBIA1300 (empty vector control).
Data represent mean ± SD (n = 9). ‘**’ indicates significant differences (p < 0.05, Duncan’s test).

2.10. Transient Expression of CmERF72 and CmLOB27 in Tobacco Leaves

The fluorescence signals of CmERF72-GFP and CmLOB27-GFP fusion proteins were detected
in tobacco leaves, indicating the expression of CmERF72 and CmLOB27 genes (Figure 9B).
Moreover, the pectinase and galacturonic acid contents of tobacco leaves transiently transformed with
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CmERF72-GFP and CmLOB27-GFP constructs were significantly higher than those of control leaves
(Figure 9C).

3. Discussion

Although abundant pollen is essential for the cross and haplotype breeding of chrysanthemum,
it also causes pollen contamination, which significantly reduces the ornamental value, quickly shortens
the vase life, and also elicits severe allergic reactions for some people, harmful to human health [2,3].
On the other hand, plants without pollen grains can also avoid artificial emasculation in cross breeding
and prevent gene flow from transgenic plants [18]. Therefore, it is important to breed male sterile lines
with anther indehiscence or pollen abortion to reduce or eliminate pollen contamination.

RNA-Seq is a revolutionary tool for transcriptomics, as this high-throughput sequencing
technology provides an efficient and reliable platform for molecular biology research [19]. In this
study, we applied Illumina RNA-Seq technology to study the molecular basis of anther dehiscence
in chrysanthemum. Through the analysis of DEGs by GO and KEGG enrichment, we found that the
majority of the GO-annotated unigenes belonged to the ‘metabolic process’, ‘binding’, and ‘catalytic
activity’, and the majority of the KEGG-annotated DEGs belonged to ‘global and overview maps’,
‘carbobolism metabolism’, and ‘folding, sorting and degradation’ pathways. This result is consistent
with the biological processes involved in the anther dehiscence process, such as lignin deposition in
the endothecium, pectin degradation in anther cell wall, cell dehydration, plant hormone regulation,
and TF regulation (Figure S1) [6].

Uniform deposition of lignin in the endothecium of anthers promotes their dehiscence [20–23].
Early study has reported that U-shaped secondary thickening of endothecium cells is the
necessary development process of anthers for dehiscence [24]. The U-shaped thickening of
endothecium cells has been reported to play an important role in the anther development in
Nivenioideae, Iridoideae-Sisyrinchieae [25], Pyrus ussuriensis Maxim [26], and Brachypodium distachyon [27].
Extensive experimental evidence now confirms that such a uniform deposition of lignin in the
endothecium provides sufficient cracking force to drive anther dehiscence [28,29]. Furthermore, several
mutants defective in lignin deposition exhibit abnormal phenotypes such as indehiscent anthers and
defective pollen grains [20,30,31]. In our study, the contents of lignin and lignin synthase in anthers
showed similar increases in ‘Qx-097′ and ‘Qx-115′ cultivars during anther development (Table 2). At
the late stage of anther development, lignin deposition occurred in both ‘Qx-097′ and ‘Qx-115′ anthers.
Then, we observed the anthers of ‘Qx-097′ and ‘Qx-115′ with a transmission electron microscope and
found that the anthers of ‘Qx-097′ were characterized by uniform U-shaped lignin deposition, whereas
those of ‘Qx-115′ showed uneven lignin deposition (Figure 1E,F). This suggests that non-uniform
deposition of lignin in the endothecium of anthers in the ‘Qx-115′ cultivar is responsible for its
indehiscent phenotype.

In addition, the enzymatic hydrolysis of the stomium region is also important for promotion
of anther dehiscence. Degradation of the stomium region involves pectinase hydrolysis and
programmed cell death [16] and is regulated by many enzymes, such as pectinase (PG, PL, PME),
EXP, and CP [12,32,33]. In our chrysanthemum transcriptome data, several PL, PME, PG, CP, and
EXP genes showed differential expression between ‘Qx-097′ and ‘Qx-115′ cultivars. Genes including
CmCP (CL262.Contig4_All) and CmPL6 (CL11721.Contig1_All) were up-regulated in Qx-097-2 compared
with Qx-097-1 but were not expressed in the leaves, ray flowers, or anthers of the indehiscent cultivar,
‘Qx-115′ (Figure 7). The differential expression of pectinase-related genes during anther development in
‘Qx-097′ and ‘Qx-115′ cultivars caught our attention (Figure 4C); therefore, we determined the levels of
galacturonic acid and pectinase in the Qx-097-1, Qx-097-2, Qx-115-1, and Qx-115-2 samples. The results
revealed the galacturonic acid content of Qx-097-2 decreased significantly with developmental
progression; however, no difference was detected in ‘Qx-115′ anthers at different developmental
stages (Table 2). The pectinase content of ‘Qx-097′ anthers significantly exceeded that of ‘Qx-115′

anthers at both developmental stages (period 1 and period 2) (Table 2). Immunofluorescence results
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indicated the absence of esterified and de-esterified forms of pectin in the stomium region cells of
Qx-097-2 anthers and abundance of both forms of pectin in the stomium region cells of ‘Qx-115′

anthers (Figure 8). Together, these results suggest that the anthers of ‘Qx-115′ contained more pectin,
which might contribute to the maintenance of the intact anther wall, thus inhibiting anther dehiscence.

In several South African resurrection plants, pectin enrichment increases cell wall plasticity and
flexibility, allowing the plants to withstand long periods of desiccation [34]. Other studies have shown
that PG and EXP proteins are involved in the degradation of the polysaccharide network in the cell
wall of tomato (Solanum lycopersium) fruit during the maturation process [33,35]. Several reports have
shown how pectin degradation is related to fruit softening and ripening [36,37]. Pectin is critical for the
maintenance of cell structure, and studies have shown that specific changes in the pectin composition
of anthers are necessary for anther dehiscence [38]. This implies that the process of anther dehiscence
has a similar mechanism as the process of fruit softening and ripening.

Studies have shown that many TFs are involved in the degradation of pectin. To explore the role
of TFs in pectin metabolism and their association with anther dehiscence, we screened DEGs, of which
122 encoded TFs (Figure 5). The CmLOB27 (CL23417.Contig2_All) and CmERF72 (CL1784.Contig3_All)
genes showed significant differences in expression between ‘Qx-097′ and ‘Qx-115′ anthers. In the model
plant species Arabidopsis thaliana, in which the expression of LOB (short for lateral organ boundaries)
genes has been demonstrated at the boundaries of lateral organs during vegetative and reproductive
development, is a member of the DUF TF family [39]. In recent years, the function of LOB genes in
lateral organ development, plant regeneration, photomorphogenesis, and pathogen response, along
with specific developmental functions, has also been demonstrated in non-model plant species [40].
The MaLBD1–MaLBD3 genes of banana (Musa acuminata) (DUF TF family genes) regulate fruit ripening
via the activation of EXP genes [41]. Another study reported the involvement of DUF642 protein
in pectin-associated disruption of cell wall structure and thickness [42]. However, the role of LOB
genes in anther dehiscence has not yet been reported. The ERF (short for ethylene response factor)
genes are involved in ethylene signaling, promoting fruit softening and dehiscence [43]. RhERF1
and RhERF4 proteins bind to the promoter of the pectin metabolism gene β-GALACTOSIDASE1
(RhBGLA1) and suppress its expression, thus inhibiting the degradation of pectin and delaying petal
abscission in Rosa hybrida [44]. In our study, CmLOB27 was highly expressed in the anthers of
‘Qx-097′ and was up-regulated during anther development in this cultivar; however, the expression of
CmLOB27 was negligible in the leaves and ray flowers of ‘Qx-097′ and in all four tissues of ‘Qx-115′

(Figure 9A). CmERF72 was expressed in the leaves, ray flowers, and anthers both of ‘Qx-097′ and
‘Qx-115′; importantly, this gene was up-regulated in ‘Qx-097′ and down-regulated in ‘Qx-115′ during
anther development (Figure 9A). Moreover, tobacco leaves overexpressing CmLOB27 or CmERF72
contained higher levels of pectinase than control leaves. Collectively, our results suggest that CmERF72
and CmLOB27 directly or indirectly promote the synthesis of pectinase, which would degrade pectin.
Nevertheless, further studies are required to elucidate the specific regulatory network that regulates
pectin metabolism. We suspect that this network facilitates anther dehiscence in chrysanthemum,
although further evidence is needed to prove this suspicion.

4. Materials and Methods

4.1. Plant Materials and Growth Conditions

Chrysanthemum cultivars, ‘Qx-097′ (dehiscent phenotype) and ‘Qx-115′ (indehiscent phenotype)
were grown in the greenhouse of the Chrysanthemum Germplasm Resource Preserving Centre,
Nanjing Agricultural University, China (32◦95′ N, 118◦85′ E). More than 50 plants of each cultivar were
grown in the greenhouse, ensuring that we could obtain enough materials (over 1000 inflorescences)
for the following experiments. Field managements such as watering, fertilizing, weeding, and pests
and diseases control were carried out normally. Seeds of Nicotiana benthamiana were planted in a sterile
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rooting mixture and cultured under controlled conditions (22 ◦C day/16 ◦C night cycle; 16-h light/8-h
dark photoperiod).

Inflorescences were collected from 30 individual plants in November 2016. Tubular flowers
of chrysanthemum are shown in Figure S4. For this experiment, anthers were divided into
three developmental stages, going from the inside of the inflorescence to the outside: Period 1
(indehiscent period); period 2 (crucial period of anther dehiscence); period 3 (dehiscent period).
A single anther was removed from a selected tubular flower and placed on a slide. To verify its
dehiscence phenotype, a water droplet was slowly dispensed onto the anther, and dehiscence was
observed under a microscope (Figure S3). Since the cultivar ‘Qx-115′ produces indehiscent anthers,
tubular flowers of ‘Qx-115′ were selected according to developmental stages of the dehiscent cultivar,
‘Qx-097′. Anthers at period 1 and period 2 were collected from each cultivar, immediately frozen in
liquid nitrogen, and stored at −80 ◦C until needed for RNA-Seq analysis. Anther samples of cultivar
‘Qx-115′ at period 1 and period 2 are hereafter referred to as Qx-115-1 and Qx-115-2, respectively;
similarly, anther samples of cultivar ‘Qx-097′ at period 1 and period 2 are hereafter referred to as
Qx-097-1 and Qx-097-2, respectively. We repeated sampling three times for each period of each cultivar,
and the mass of each biological replicate sample was greater than 0.3 g. We used over 3000 tubular
flowers in total for the 12 samples, i.e., 97-1a, 97-1b, 97-1c; 97-2a, 97-2b, 97-2c; 115-1a, 115-1b, 115-1c;
115-2a, 115-2b, 115-2c.

4.2. Cytological Analysis of Anther Dehiscence

Tubular flowers with anthers at period 1 and period 2 were collected from both cultivars and
fixed in FAA (formalin–acetic acid–alcohol) solution at room temperature for 48 h. The fixed samples
were subjected to alcohol dehydration, followed by dimethyl infiltration, and then embedded in
paraffin, as described previously [45,46]. Then, the paraffin-embedded samples were sliced and stained,
as described previously [13], with slight modifications. The samples were then observed under a
microscope (Olympus BX41, Olympus Corporation, Tokyo, Japan).

4.3. Transmission Electron Microscopy Analysis of Anther Dehiscence

Fresh and intact anthers at different development stages were peeled and fixed in 2.5%
glutaraldehyde solution. The fixed anthers were vacuum infiltrated and then subjected to a series of
PHEM buffers (60 mmol of PIPES; 25 mmol of HEPES; 10 mmol of EGTA; 2 mmol of MgCl2; pH = 7.0),
osmium tetroxide, and alcohol. The embedded samples were then sectioned, stained, and observed
under a transmission electron microscope (Hitachi Limited, Tokyo, Japan) at 80 kV.

4.4. Total RNA Extraction

Total RNA was extracted from Qx-097-1, Qx-097-2, Qx-115-1, and Qx-115-2 samples using
the TRIzol Reagent (Takara Bio Inc., Otsu, Japan), according to the manufacturer’s instructions.
The integrity and purity of total RNA were determined using the Agilent 2100 system (Agilent
Technologies, Santa Clara, CA, USA) and by electrophoresis on 1% agarose gel.

4.5. cDNA Library Construction, Illumina Sequencing, and Data Analysis

DNase I (Takara Bio Inc., Otsu, Japan) treated total RNA samples were mixed with the
fragmentation buffer and fragmented. Then, mRNA was isolated from total RNA using Oligo(dT)
primers and used as the template to synthesize cDNA. Short fragments were purified and resolved
with EB buffer for end reparation and single nucleotide A (adenine) addition. Then, short fragments
were connected using adapters. Suitable fragments were selected by PCR amplification. The quantity
and quality of cDNA libraries were verified using Agilent 2100 Bioanaylzer and ABI StepOnePlus
Real-Time PCR System.

The libraries were sequenced at the Beijing Genomics Institute (BGI) (Shenzhen, China,
http://www.genomics.cn/index.php) using the Illumina HiSeqTM 4000 platform (Illumina, San Diego,

http://www.genomics.cn/index.php
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CA, USA), according to the manufacturer’s instructions. The datasets generated for this study can
be found in the National Center of Biotechnology Information (NCBI) database under the accession
number PRJNA530082 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA530082).

Low quality reads (<15%) and reads containing adaptor sequences and long stretches of unknown
bases (Ns) were removed from the raw data. The clean reads from all samples were stored in FASTQ
format [47].

4.6. De Novo Assembly, Sequence Clustering, Unigene TF Prediction, and Gene Function Annotation

After trimming and filtering, Trinity (v2.0.6; http://trinityrnaseq.github.io/) tool was used for
de novo assembly. Trinity combined three independent modules, including Inchworm, Chrysalis,
and Butterfly, which were applied sequentially to process large volumes of reads [48]. To acquire
non-redundant unigenes, these assembled unigenes were taken into further processing of sequence
splicing and redundancy removing with Tgicl program (v2.0; http://sourceforge.net/projects/tgicl) [49].
This was followed by the detection of simple sequence repeats (SSRs) and heterozygous single
nucleotide polymorphisms (SNPs) and the analysis of unigene expression. We used getorf
(EMBOSS:6.5.7.0; http://genome.csdb.cn/cgi-bin/emboss/help/getorf) [50] to find ORF of each unigene,
then aligned ORF to TF domains (form PlntfDB) using hmmsearch (v3.0; http://hmmer.org) [51],
and identified TF according to the regulations described here (form PlantfDB). To annotate the
function of unigenes, the unigenes were aligned to the NT, NR, COG, KEGG, and Swiss-Prot
databases using BLAST (v2.2.23; http://blast.ncbi.nlm.nih.gov/Blast.cgi) [52]. Blast2GO (v2.5.0;
https://www.blast2go.com) [53] was used with the NR annotation to obtain GO annotation,
and InterProScan5 (v5.11-51.0; https://code.google.com/p/interproscan/wiki/Introduction) [54] was
used to obtain the InterPro annotation.

4.7. Expression Analysis of Unigenes

After filtering out low-quality, adaptor-polluted and high content of unknown base(N) reads
from raw reads, we got the clean reads. In order to filter out transcriptional artifacts, misassembled
transcripts, and poorly supported transcripts, the clean reads were mapped to unigenes using Bowtie2
(v2.2.5; http://bowtie-bio.sourceforge.net/Bowtie2/index.shtml) [55], and gene expression levels were
calculated with RSEM (v1.2.12; http://deweylab.biostat.wisc.edu/) [56]. PCA of all samples was
performed using princomp, a function of R. DEGs were identified using NOIseq, based on the noisy
distribution model [57], according to the following parameters: Fold Change ≥2.00 and probability
≥0.8. GO and gene function enrichment analysis, COG functional classification, and KEGG metabolic
pathway analysis were performed on all DEGs.

4.8. Validation of Gene Expression Using Quantitative Real-Time PCR (qRT-PCR)

Total RNA was extracted from the leaves, ray flowers, and anthers (periods 1 and 2) of both
cultivars using the TRIzol Reagent (Takara Bio Inc., Otsu, Japan), according to the manufacturer’s
protocol. The expression of selected genes was verified by qRT-PCR, as described previously [58],
using sequence-specific primers (Table S5) designed with Primer Express (v3.0.1, Thermo Fisher
Scientific, Waltham, MA, USA). The Elongation Factor 1α (EF1α) gene served as the reference sequence
(Table S5). Relative gene expression levels were calculated using the 2−∆∆CT method.

4.9. Screening of Differentially Expressed TFs

To further identify DEGs, we used Venn diagrams (http://bioinformatics.psb.ugent.be/webtools/
Venn) to plot transcription factor-encoding genes with different expression levels between ‘Qx-097’
and ‘Qx-115’ anthers according to the following parameters: Fold Change ≥7.00 and probability
≥0.8. The transcriptome genes were divided into seven groups: Up-regulated during ‘Qx-097’
anther development (97UP), down-regulated (97DOWN), without significant differential expression
(97N), up-regulated during ‘Qx-115’ anther development (115UP), down-regulated (115DOWN),
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without significant differential expression (115N); the genes that were not differentially expressed
during the anther development of ‘Qx-097’ or ‘Qx-115’, but differentially expressed when ‘Qx-097’
compared with ‘Qx-115’ (97 vs. 115). The comparison scheme was as follows: 115N ∩ (97UP ∪
97DOWN) ∩ TF, 115UP ∩ (97N ∪ 97DOWN) ∩ TF, 115DOWN ∩ (97UP ∪ 97N) ∩ TF, 97 vs. 115 ∩ TF.

4.10. Determination of Galacturonic Acid, Pectinase, Lignin, and Lignin Synthase

According to the sampling method of 2.1, samples of Qx-097-1, Qx-097-2, Qx-115-1, and Qx-115-2
were placed in liquid nitrogen. These reproductive subsamples were weighed and then homogenized
in a fixed amount of phosphate-buffered saline (PBS; pH 7.4). The samples were centrifuged at
2000–3000 rpm for 20 min, and the supernatant was carefully collected from each sample. The contents
of galacturonic acid, pectinase, lignin, and lignin synthase in anthers were determined using the
enzyme-linked immunosorbent assay (ELISA) kit (MLBio, Shanghai, China, http://www.mlbio.cn/).
Data were analyzed using the SPSS v19.0 software (SPSS Inc., Chicago, IL, USA).

4.11. Immunohistochemical Analysis

The paraffin sections were dewaxed, rehydrated, washed three times (5 min per wash) with PBS,
and blocked with 0.2% bovine serum albumin (BSA) in PBS for 30 min. These sections were washed again
with PBS three times and then incubated with 1:10 dilutions of monoclonal antibodies, LM19 (specific to
de-esterified homogalacturonan) and LM20 (specific to esterified homogalacturonan), in PBS containing
0.2% BSA for 2 h. The paraffin sections were then washed three times with PBS and incubated with
1:50 dilution of goat anti-rat IgG fluorescein isothiocyanate conjugate (secondary antibody) in PBS
containing 0.2% BSA for 1 h at 37 ◦C in the dark. These sections were thoroughly washed with PBS
three times and air-dried at room temperature in the dark. The fluorescence signal was examined
under a laser scanning confocal microscope (LSM800, Zeiss, Oberkochen, Germany). Samples treated
with only the secondary antibody served as the control.

4.12. Isolation of CmERF72 and CmLOB27 and Construction of Expression Vectors

The open reading frames (ORFs) of CmERF72 and CmLOB27 were PCR amplified from the cDNA
of Qx-097-2 sample using primers containing two restriction sites, XbaI and KpnI (Table S6). The PCR
products were then cloned into the pMD18-T vector (TaKaRa, Japan) for sequencing. Then, the ORFs of
CmERF72 and CmLOB27 were inserted into the pCAMBIA1300 vector at the XbaI and KpnI restriction
sites to generate a fusion with the green fluorescent protein (GFP) gene under the control of the cauliflower
mosaic virus (CaMV) 35S promoter.

4.13. Transient Expression Analysis of CmERF72 and CmLOB27

The recombinant plasmids pCAMBIA1300-CmERF72 and pCAMBIA1300-CmLOB27 were
electroporated into Agrobacterium tumefaciens (strain GV3101), and the transformed leaves were used to
infect tobacco leaves [59]. Prior to infiltration, a dilution of A. tumefaciens suspension was incubated at
25 ◦C for 3 h. One-half of a leaf was infiltrated with A. tumefaciens containing pCAMBIA1300-CmERF72
or pCAMBIA1300-CmLOB27, while the other half was infiltrated with equal amount of A. tumefaciens
containing the empty pCambia1300 vector (negative control). Infected tobacco plants were grown for
48 h at 22 ◦C under a 24-h light/12-h dark cycle. To detect GFP fluorescence, the infiltrated leaves
were viewed under a laser scanning confocal microscope (LSM800, Zeiss, Oberkochen, Germany).
The contents of galacturonic acid and plant pectinase in infected leaves were also determined,
as described above, with leaves infected with the empty vector serving as the negative control.
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5. Conclusions

Our data suggest the involvement of several genes in anther dehiscence in chrysanthemum,
including genes involved in anther dehydration, lignin deposition in the endothecium, and cell wall
degradation in the stomium region (Figure 4). Analysis of transcriptome data and physiological
indices of ‘Qx-097′ and ‘Qx-115′ revealed two important points. First, lignin deposition occurs in
the endothecium of both dehiscent and indehiscent anthers, unlike earlier studies presuming the
lack of lignin deposition as key for anther indehiscence [9,15]. We hypothesize that the uniformity of
lignin deposition in the endothecium of anthers is one of the main reasons affecting anther dehiscence.
Second, degradation of stomium region cells may directly affect anther dehiscence, as shown by the
‘Qx-097′ cultivar. CmLOB27 and CmERF72 regulate pectin metabolism and might contribute to anther
dehiscence (Figure 10). The function of these two genes in the process of anther dehiscence therefore
merits further investigation. Thus, the results of the current study provide a strong foundation for
further research on anther dehiscence in chrysanthemum and the development of new cultivars with
indehiscent anthers to mitigate pollen pollution.
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