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Background. Human immunodeficiency virus (HIV)–infected immunological nonresponders (INRs) fail to reconstitute their 
CD4+ T-cell pool after initiation of antiretroviral therapy, and their prognosis is inferior to that of immunological responders (IRs). 
A prevailing hypothesis is that the INR phenotype is caused by a persistently disrupted mucosal barrier, but assessments of gut mu-
cosal immunology in different anatomical compartments are scarce.

Methods. We investigated circulating markers of mucosal dysfunction, immune activation, mucosal Th17 and Th22 cells, and 
mucosa-adherent microbiota signatures in gut mucosal specimens from sigmoid colon and terminal ileum of 19 INRs and 20 IRs in 
addition to 20 HIV-negative individuals.

Results. INRs had higher blood levels of the enterocyte damage marker intestinal fatty acid–binding protein than IRs. In gut 
mucosal biopsies, INRs had lower fractions of CD4+ T cells, higher fractions of interleukin 22, and a tendency to higher fractions of 
interleukin 17–producing CD4+ T cells. These findings were all restricted to the colon and correlated to circulating markers of enter-
ocyte damage. There were no observed differences in gut microbial composition between INRs and IRs.

Conclusions. Restricted to the colon, enterocyte damage and mucosal immune dysfunction play a role for insufficient immune 
reconstitution in HIV infection independent of the gut microbiota.

Keywords.  HIV; immunological nonresponders; mucosal immunology; gut microbiota.

A compromised mucosal barrier with damaged enterocytes ac-
companies the depletion of gut mucosal CD4+ T-cell subsets 
T-helper (Th) 17 and Th22 in untreated human immunode-
ficiency virus (HIV) infection [1–3]. The damaged epithelial 
barrier allows luminal contents to enter the lamina propria 
in a process often referred to as microbial translocation [4]. 
Microbial translocation induces focal gut inflammation and 
is associated with systemic inflammation [5, 6], which predis-
poses to non-AIDS morbidity and mortality [7–9].

In parallel with the disruption of the gut mucosal barrier, 
there is a shift to an HIV-associated dysbiotic composition of 
the gut microbiota [10]. This dysbiosis is characterized by a 
lower microbial diversity, lower abundance of beneficial short 
chain fatty acid–producing bacteria, and higher abundance of 
Gammaproteobacteria with proinflammatory potential [10, 
11]. The dysbiosis is associated with gut mucosal and systemic 
immune activation, inflammation, and metabolic syndrome 
and negatively associated with gut mucosal interleukin (IL) 17 
and IL-22 secretion [11, 12].

In most patients, antiretroviral therapy (ART) stops disease 
progression and the circulating CD4+ T-cell pool reconstitutes. 
Data indicate that ART does not fully reverse gut dysbiosis [12]. 
Still, gut mucosal CD4+ T-cell populations, including the Th17 
and Th22 subsets, are to a large extent restored and microbial 
translocation and systemic inflammation reduced [2, 4, 11, 
13–15]

In 12%–30% of ART-treated people with HIV (PWH), the 
circulating CD4+ T cells do not recover despite full viral sup-
pression [16–19]. These patients, commonly termed immuno-
logical nonresponders (INRs), have increased risk of chronic 
inflammation, immune activation, immune failure, non-AIDS 
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morbidity, and mortality [20–26]. The etiology of their in-
complete immune recovery has remained enigmatic [27, 28]. 
Studies on mucosal barrier function have indicated an associ-
ation between INR phenotype and alterations in tight junction 
proteins and intestinal epithelial cell turnover [6, 29]. However, 
there is a lack of studies on gut specimens designed to target the 
hypothesis that INRs have a dysfunctional mucosal immunity 
compared with PWH immunological responders (IRs), inde-
pendent of factors known to predispose to their disease phe-
notype (ie, old age, long duration of HIV infection, and low 
nadir CD4 count) [27]. Increased understanding of the immune 
mechanisms behind the unfavorable prognosis of INR could 
identify potential therapeutic targets adjuvant to ART and im-
prove the health of PWH.

We collected mucosal biopsies from both the sigmoid colon 
and the terminal ileum from a cohort of INRs and compared 
them with IRs to assess mucosal CD4+ T-cell function fo-
cusing on IL-17 and IL-22 response. Furthermore, we assessed 
if alterations in mucosal T-cell function were associated with a 
mucosal-adherent gut microbial signature.

MATERIALS AND METHODS

Study Design and Participants

PWH were identified in the outpatient clinic of the Department 
of Infectious Diseases, Oslo University Hospital’s patient reg-
istry and checked for eligibility. Inclusion criteria were white 
males, aged 25–65  years, >4  years HIV seropositive, on con-
tinuous ART, and with HIV RNA <50 copies/mL continuously 

for >3.5 years. INRs were defined with CD4+ T-cell count <400 
cells/µL continuously for >3.5 years, and IRs were defined with 
CD4+ T-cell count >600 cells/µL continuously for >3.5  years. 
HIV-negative controls were recruited from males aged 
25–65  years referred to the Department of Gastroenterology 
outpatient colonoscopy service for control of polyps and who 
were confirmed HIV seronegative. All participants were age 
matched (± 5 years), and enrolled INRs and IRs were matched 
on nadir CD4+ T-cell count (± 20 cells/mL when INR nadir was 
<100 cells/mL, ± 50 cells/mL when INR nadir was >100 cells/
mL). See Supplementary Figure 1 for the recruitment procedure 
scheme and the Supplementary Methods for exclusion criteria. 
Nineteen INRs, 20 IRs, and 20 HIV-negative controls were in-
cluded in the analyses. Study participants’ key characteristics 
are presented in Table 1.

Lamina Propria Mononuclear Cell Preparation, Mitogen Stimulation, and 

Flow Cytometry

All study participants underwent colonoscopy with pinch biop-
sies. The biopsies were enzymatically digested with Collagenase 
blend type H (1  mg/mL final concentration, Sigma-Aldrich, 
Darmstadt, Germany) and DNase I  (20 U/mL final concen-
tration, Invitrogen, Carlsbad, California). Dissolved cells were 
frozen and stored at –150°C until use.

Thawed and rested lamina propria mononuclear cells were 
stimulated for 12 hours with phorbol 12-myristate 13-acetate 
(PMA) (Sigma-Aldrich, Saint Louis, Missouri) and ionomycin 
(Sigma-Aldrich) and after 1 hour in the presence of BD 
Golgiplug (BD Biosciences, San Jose, California). The cells 

Table 1. Characteristics of Study Participants

Characteristic
INR   
(n = 19)

IR   
(n = 20)

HIV Negative   
(n = 20) P Value

Age, y, median (IQR) 49.6 (43.9–58.9) 52.5 (48.2–59.3) 54.8 (50.7–59.2) .36a

.55b

Nadir CD4+ T-cell count, cells/µL, median (IQR) 90 (22–157) 101 (31–178) N/A .53b

BMI, kg/m2, median (IQR) 25.5 (23.5–27.1) 25.6 (23.2–27.2) 25.7 (24.5–27.4) .68a

.97b

Time since HIV seroconversion, y, median (IQR) 10.2 (7.3–21.8) 18.2 (11.8–24.9) N/A .054b

CD4+ T-cell count at enrollment, cells/µL, median (IQR) 327 (269–374) 777 (690–867) N/A <.001b

CD8+ T-cell count at enrollment, cells/µL, median (IQR) 574 (439–954) 781 (565–933) N/A .28b

CD4/CD8 ratio at enrollment, median (IQR) 0.48 (0.34–0.74) 1.00 (0.74–1.21) N/A <.001b

Risk group, frequency 16 MSM 18 MSM 20 unknown N/Ac

2 MSW 2 unknown

1 unknown

ART regimen at enrollment, frequency 2 INSTI 12 INSTI N/A N/Ac

11 NNRTI 5 NNRTI

5 PI 2 PI

1 PI + INSTI 1 PI + NNRTI

Abbreviations: ART, antiretroviral therapy; BMI, body mass index; HIV, human immunodeficiency virus; INR, immunological nonresponder; INSTI, integrase strand transfer inhibitor; IQR, 
interquartile range; IR, immunological responder; MSM, men who have sex with men; MSW, men who have sex with women; NA, Institute of Clinical Medicine; NNRTI, nonnucleoside 
reverse transcriptase inhibitor; PI, protease inhibitor; y, years.
aKruskal–Wallis test.
bMann–Whitney U test, INR vs IR.
cAssumptions for χ 2 test not met.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa714#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiaa714#supplementary-data


INR Colon-Restricted Immune Dysfunction • jid 2022:225 (15 February) • 663

were then stained and assessed on a BD FACSCanto II (BD 
Biosciences) flow cytometer. All flow cytometry data were ana-
lyzed with FlowJo Software (version 10.5.3, Ashland, Oregon). 
Th22, Th17, and Th1 cells were identified as CD45+live lymphoid 
singlets CD3+γδTCR–CD8–IL-22+/IL-17+/IFN-γ +, respectively.
The gate was set on the unstimulated control and applied on 
the stimulated sample for each study subject. The percentage of 
cytokine-positive cells was reported as net values with unstimu-
lated control values removed. See the Supplementary Methods 
for detailed description of procedures.

Lymphocyte Activation Assessments

Lamina propria mononuclear cells and peripheral blood mon-
onuclear cells (PBMCs) were thawed and rested as described in 
the Supplementary Methods. Next, 5.0 × 105 cells were stained 
with surface markers before acquisition on a BD LSR Fortessa 
(BD Biosciences) flow cytometer. See the Supplementary 
Methods for antibodies and fluorochromes applied and rep-
resentative flow cytometry gating for activation markers on 
PBMCs (Supplementary Figure 2) and lamina propria mono-
nuclear cells (Supplementary Figure 3).

Soluble Markers

Enzyme-linked immunosorbent assays were used for analysis 
of ethylenediaminetetraacetic acid plasma for CD14, lipopol-
ysaccharide binding protein, lipopolysaccharide, and regen-
erating islet-derived protein 3 alpha (REG3α), of serum for 
IL-6, C-reactive protein, CD163, Zonulin, IL-18, and intestinal 
fatty acid–binding protein (I-FABP), and citrated plasma for 
D-dimer. See the Supplementary Methods for details.

16S Ribosomal RNA Gene Sequencing

Libraries were generated by amplification of the V3–V4 region 
of the 16S ribosomal RNA gene of DNA extracted from gut mu-
cosal biopsies and from stool samples, and sequenced on the 
Illumina MiSeq platform (Illumina, San Diego, California). 
Reads were processed with Quantitative Insights Into Microbial 
Ecology (QIIME) 1.9.1 using SortMeRNA 2.0 and mapping to 
the Silva 128 database databases. For detailed description, see 
the Supplementary Methods.

Statistical Analysis

Data were assumed not to be normally distributed. According 
to the project’s protocol, analyses with 3 experimental groups 
were performed by Kruskal–Wallis test. Mann–Whitney U 
tests between INRs and IRs were performed in parallel and in-
dependent of the Kruskal–Wallis test, whereas no direct com-
parisons between INRs or IRs and HIV-negative controls were 
performed. Analyses of differences in relative abundance be-
tween phylogenetic phenotypes were performed in LEfSe [30]. 
Subsequent Benjamini–Hochberg calculation of false-discovery 
rate and permutational multivariate analysis of variance test for 
comparison of microbial β-diversity were done in R (https://

www.r-project.org/). All other statistical analyses were per-
formed using Prism 8 software (GraphPad, La Jolla, California). 
All test values are printed in relevant tables or figures.

Ethical Consideration

The study was approved by Regional Committee for Medical 
and Health Research Ethics (approval identifier 2015/2125) 
and Oslo University Hospital’s data protection officer and con-
ducted in accordance with the Declaration of Helsinki and 
International Conference on Harmonisation/Good Clinical 
Practice. All participants received verbal and written informa-
tion about the study and signed informed consent prior to 
enrollment.

RESULTS

Immunologic Nonresponders Have Signs of Enterocyte Damage, but No 

Evidence of Systemic Inflammation or T-Cell Activation

I-FABP levels were higher in INRs than IRs (2089 vs 1279 
pg/mL, P = .014; Figure  1A). In addition, levels of REG3α, 
a novel marker of enterocyte damage [31], tended to be 
higher in INRs than IRs (7196 vs 4811 pg/mL, P = .11; 
Figure  1B). Levels of I-FABP and REG3α correlated within 
PWH (r = 0.49, P < .01; Figure 1C), but not within the HIV-
negative controls (Figure 1D). Assessment of other markers 
of inflammation and microbial translocation did not reveal 
significant differences between INRs and IRs (Supplementary 
Table). Assessed by the flow cytometric expression of CD38 
and HLA-DR on PBMCs, this cohort of PWH showed no dif-
ferences in CD4+ or CD8+ T-cell activation between INRs and 
IRs (Supplementary Figure 4).

Mucosal T-Cell Fractions and Activation Is Altered in the Colon of 

Immunlogical Nonresponders

We next examined lamina propria mononuclear cells and evalu-
ated the fraction of CD4+ T cells of all mucosal T cells by flow 
cytometry. In the sigmoid colon, but not in the terminal ileum, 
INRs had a significantly lower fraction of mucosal CD4+ cells 
compared to the IRs (Figure  2A and 2B), indicating a colon-
specific difference between the 2 HIV-infected groups. This 
notion was supported by a significant correlation between 
mucosal CD4+ T-cell fractions in sigmoid colon and terminal 
ileum among the HIV-negative controls (r = 0.56, P = .021) 
that was not found in PWH (Figure 2C and 2D). Among INRs 
there were no positive correlations between blood CD4 count 
and mucosal CD4+ T-cell fractions (Supplementary Figure 5). 
Moreover, in the sigmoid colon of PWH, but not in the ter-
minal ileum, there was an inverse correlation between mucosal 
CD4+ T-cell fractions and I-FABP levels (r = –0.38, P = .023; 
Supplementary Figure 6).

In a separate flow cytometry analysis of lamina propria mon-
onuclear cells to determine if INRs had altered mucosal T-cell 
activation compared to IRs in sigmoid colon or terminal ileum, 
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we found that INRs had a higher fraction of mucosal CD38+ 
CD8+ T cells in sigmoid colon than IRs, but no difference in 
CD38+HLA-DR+CD8+ T cells (Supplementary Figure 7). In 
contrast, there were no difference in CD38+CD8+ T cells be-
tween INRs and IRs in terminal ileum. Within mucosal CD4+ 
T cells, there were no detectable differences in immune acti-
vation assessed by CD38 or CD38/HLA-DR double expres-
sion between INRs and IRs in either anatomical compartment 
(Supplementary Figure 7).

Mucosal Cytokine Responses Differ Between Immunological 

Nonresponders and Immunological Responders in Sigmoid Colon but Not 

in Terminal Ileum

We then assessed the mucosal T cells’ capacity to secrete IL-17 
and IL-22. Lamina propria mononuclear cells from sigmoid 

colon and terminal ileum were stimulated with PMA and 
ionomycin and analyzed by flow cytometry with regard to IL-17 
and IL-22 response (Figure 3A). In the sigmoid colon, the me-
dian fractions of IL-22+ and IL-17+ CD4+ T cells were about 
1.5 and 2 times higher in INRs compared to IRs, respectively 
(IL-22: 16.2% vs 10.3 %, P = .04; IL-17: 13.9% vs 6.8%, P = .06) 
(Figure 3B). There was no significant difference between INRs 
and IRs in interferon-gamma (IFN-γ) response, but both groups 
had lower median IFN-γ response than the HIV-negative con-
trols. Moreover, in the sigmoid colon of INRs, CD4+ T cells’ 
IL-17 and IL-22 responses correlated with the CD4+ T-cell frac-
tions (IL-17: r = 0.49, P = .058; IL-22: r = 0.58, P = .019). The 
same correlations were not observed in IRs (Figure 3C).

In the terminal ileum, there were no signs of a different re-
sponse between INRs and IRs with respect to IL-17, IL-22, or 
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IFN-γ (Figure  3B). In mucosal CD8+ T cells, the IL-17 and 
IL-22 responses were generally low and with no differences be-
tween INRs and IRs for any of the cytokines (data not shown).

Mucosa-Associated and Fecal Microbial Composition Is Similar in 

Immunological Nonresponders and Immunological Responders

We hypothesized that the gut microbiota may be linked to the 
observed enterocyte damage and altered CD4+ T-cell function 
in INRs. There were no differences between INRs and IRs in any 
of the compartments for either intra-individual (α-diversity) 
(Figure  4A) or global microbiota composition (β-diversity) 
(Figure  4B). Furthermore, there were no differences in rel-
ative abundance between INRs or IRs at the phylum, family 
(Figure 4C), or genus level (data not shown), in any of the an-
atomical compartments. However, both groups differed from 

the HIV-negative controls, as evaluated by β-diversity measures 
(Figure  4B). Within PWH, there were individuals who were 
characterized by enrichment of Brachyspiraceae (Spirochaetae 
phylum) in sigmoid colon, but there were no significant differ-
ences between INRs and IRs with regard to these taxonomic 
units (Figure 4C).

In Immunological Nonresponders, I-FABP Correlates Inversely With 

Sigmoid Colon CD4+ T-Cell Cytokine Response and Activation

As INRs were characterized by higher blood I-FABP levels and 
altered sigmoid colon mucosal T-cell function, we wanted to 
investigate if there was a connection between these findings 
(Figure 5A). Among INRs, but not among IRs, and restricted to the 
sigmoid colon, there was an inverse correlation between I-FABP 
and IL-17-response (r = –0.57, P = .02) and between I-FABP and 
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CD4+ T-cell activation (CD38+CD4+ T cells: r = –0.75, P < .001; 
HLA-DR+CD38+CD4+ T cells: r = –0.50, P = .03) (Figure 5B and 
5C). Moreover, within INRs’ sigmoid colon, the CD4+ T-cell IL-17 
response correlated positively with sigmoid colon CD38+CD4+ T 
cells (r = 0.63, P = .01) (Figure 5D).

DISCUSSION

We here present novel data demonstrating that INRs have higher 
levels of enterocyte damage, lower level of mucosal CD4+ T 
cells, higher level of mucosal CD8+ T-cell activation, and aug-
mented Th17 and Th22 responses in sigmoid colon compared 
to IRs. None of the observed differences could be detected in 
terminal ileum and they were not related to mucosa-associated 
microbiota.

IL-17 and IL-22 are important for the function of intes-
tinal epithelia cells as they induce tight junction protein ex-
pression, stimulate secretion of antimicrobial peptides and 
mucus production, regulate cell cycling, and enhance mu-
cosal inflammatory reaction against invading pathogens [32]. 
Th17 development is in part regulated by gut resident mi-
crobes whereas microbes’ relevance to Th22 function is less 
characterized [33]. We found a higher IL-22 response, and a 
strong trend toward a higher IL-17 response, in the sigmoid 
colon mucosa of INRs. IFN-γ response was included in the 
analysis to confirm the effectiveness of the PMA/ionomycin 
stimulation. Our finding of higher IL-22 and IL-17 cyto-
kine responses should be considered as cytokine specific and 
not an INR-related ubiquitous responsiveness to mitogen 
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stimulation, as there was no difference between INRs and 
IRs in IFN-γ response. The lower IFN-γ response in mucosal 
CD4+ T cells of PWH compared with HIV-negative controls 
could have accentuated the IL-22 and IL-17 responses in 
PWH as literature report inhibition by interferons on IL-17 

expression [34]. However, this interaction cannot explain 
the observed differences between INRs and IRs in IL-22 and 
IL-17 CD4+ T-cell responses.

Our hypothesis was that INR patients would have fewer 
IL-17– and IL-22–producing T cells, and that this would 
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contribute to an impaired mucosal barrier. In the colon, we 
observed that the INR individuals with the lowest IL-17 re-
sponse and the lowest fraction of CD4+ T cells had the highest 
level of enterocyte damage as measured by I-FABP levels. 
These results indicate that within INRs, IL-22+ and IL-17+ 
CD4+ T cells are indeed crucial for maintaining a healthy gut 
barrier. Moreover, our data are in line with previous reports 

demonstrating that gut mucosal IL-17– and IL-22–produ-
cing T cells are to a large extent restored in PWH with suc-
cessful immune reconstitution after ART initiation, and that 
restoring the function of these cells is crucial for mucosal in-
tegrity [2, 14]. Although no studies have previously assessed 
mucosal Th17 or Th22 in INRs, 2 recent articles report that 
INRs have higher fractions of Th17 cells in PBMCs [35, 36].
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A striking finding in this study was the anatomical 
compartment-specific differences. Differences between INRs 
and IRs in CD4+ T-cell fraction, CD4+ T-cell IL-22 response, 
and CD8+ T-cell activation was only observed in the colon, 
as were the inverse correlation between I-FABP and IL-17 re-
sponse and mucosal CD4+ T-cell activation. Basic mucosal 
immunology studies have hypothesized that, compared to the 
colon, a more pronounced immune regulation takes place in 

the terminal ileum with its greater epithelium–lumen interface 
area, higher density of lymphoid follicles, and higher concentra-
tion of dietary immune-regulating substances such as retinoic 
acid aryl hydrocarbon receptor ligands [37]. Our findings in-
dicate that the mucosal immunology of the distal colon may be 
clinically relevant in HIV infection.

Our analyses of the mucosal microbiota indicate that the 
sigmoid colon T-cell alterations in INRs are not driven by 
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microbial dysbiosis, as there were no overall differences be-
tween INRs and IRs in microbial composition, either in the 
sigmoid colon or in the terminal ileum and feces. This finding 

is supported by 2 recent reports comparing fecal samples 
from INRs and IRs. [38, 39]. A  previous study detected re-
duced fecal α-diversity in PWH with CD4 count <200 cells/µL 
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compared with patients with CD4 count >200 cells/µL [40]. 
We emphasize that our study included an analysis of mucosal 
specimens from 2 separate gut compartments and hence as-
sessed mucosa-associated microbes with intimate relation to 
the mucosal T cells. Most studies on gut microbiota in HIV 
infection have been performed on fecal samples [10], and the 
validity of fecal samples as a substitute for mucosa specimens 
in determining mucosa adherent microbiota has been ques-
tioned [41].

Although we did not detect a difference in microbial compo-
sition between INRs and IRs, analysis of β-diversity indicated 
a significant difference between both the PWH groups and the 
HIV-negative control individuals. First described by Noguera-
Julian et  al, sexual preference is a significant determinant of 
gut microbial composition [42]. Of the 39 INRs and IRs in our 
study, there were 5 individuals who were not men who have sex 
with men, and these 5 were evenly distributed between INRs 
and IRs. We therefore considered the gut microbiota compari-
sons between these 2 groups as valid. The results do not allow us 
to draw conclusions on PWH-specific gut microbial alterations 
as the sexual preferences of the HIV-negative controls were not 
recorded.

Analyses of soluble markers revealed that INRs had signif-
icantly higher levels of circulating I-FABP and recorded 1.5 
times higher median level of REG3α than IRs. The latter vari-
able was not significantly different between INRs and IRs, but 
correlated significantly with I-FABP. I-FABP is an established 
marker of enterocyte damage in many conditions, including 
HIV infection [8], while REG3α has emerged as a novel 
marker. A recent report found REG3α to be a relevant marker 
of intestinal damage in untreated HIV infection [31]. The 
other soluble markers of inflammation and microbial translo-
cation did not demonstrate relevant differences between INRs 
and IRs. Previous reports on these markers in INRs vary in 
conclusions, but many studies are, as ours, of limited statis-
tical power [24, 26, 29, 43]. The largest study reported higher 
levels of soluble CD14 and IL-6 in INRs [23]. Our study did 
not reproduce previous reports on increased immune activa-
tion in INRs [23, 26, 44–46]. Methodological differences in 
definitions of INRs and IRs between these reports and our 
study, along with the limited number of patients enrolled, are 
possible explanations as to why we did not replicate these re-
sults. With the exception of a subtle increase in CD38+CD8+ T 
cells in sigmoid colon of INRs compared with IRs, we detected 
no other significant alterations in CD38+ or HLA-DR+CD38+ 
T cells in either the terminal ileum or the sigmoid colon, 
indicating no grossly increased mucosal immune activation 
in INRs. To conclude, in our study, INRs display enterocyte 
damage as a more prominent feature than systemic inflamma-
tion and immune activation.

We believe the major strengths of this study are the 
well-defined, clinically valid, human study groups and the 

extensive mucosal sampling. The definition of immunological 
nonresponse in this study was <400 cells/µL. Throughout the 
history of HIV research, the CD4 cell counts defining immuno-
logical nonresponse have varied. As the CD4 count threshold 
for initiating ART has been raised over time, we argue that a 
CD4 count of 400 cells/µL has a high future validity for defining 
INRs. A  cutoff of 400 cells/µL is also reported to be the pre-
ferred value to separate INRs from IRs [47]. Compared with 
IRs, INRs in our study had a significantly lower CD4/CD8 ratio, 
which has emerged as a strong predictor of non-AIDS mor-
bidity [48]. We believe that our study sample group is repre-
sentative for PWH with an incomplete immune recovery and 
a clinical prognosis inferior to those with a complete immune 
response to ART. Finally, it should be pointed out that the INRs 
and IRs of our study were matched for age and nadir CD4 
count, suggesting that the mucosal differences found between 
the 2 groups should not be attributed to known confounders for 
the INRs phenotype.

The study has some limitations. The statistical power of the 
study is limited and some of the variables (eg, REG3α) did 
not reach statistical significance in analysis between INRs and 
IRs, even though the difference in median values were visually 
discernible. As the main objective of the study was to identify 
mucosal immunopathology that distinguished INRs from IRs, 
and due to the limited power, we decided to downplay statis-
tical tests between PWH subgroups and HIV negative controls 
that would require multiple-comparison corrections and risk of 
type II errors. Also, the applied methods did not allow us to de-
termine absolute numbers of lamina propria mononuclear cell 
populations. Pilot studies had demonstrated that weighing the 
biopsies was not feasible, so the flow cytometry counts could 
not be normalized to a fixed measure. A potential skewing of 
ART regimen between INRs and IRs could affect the results, 
but the scientific evidence supporting such a hypothesis is lim-
ited and inconsistent [49, 50]. Finally, as this is a cross-sectional 
study, we cannot conclude on causality or the mechanisms of 
the observed differences.

To conclude, this study supports the hypothesis that PWH 
with an incomplete immune recovery to ART have a disrupted 
mucosal function that is related to IL-17– and IL-22–produ-
cing CD4+ T cells. The study provides new knowledge of the 
mucosal disruption in INRs, which primarily takes place in 
the colon. Scientific studies that could eventually allow en-
hancement of Th17 and Th22 in HIV infection should be 
encouraged.
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