
The status of digital pathology and associated infrastructure
within Alzheimer’s Disease Centers

Rebeca Scalco, DVM, MS,1 Yamah Hamsafar, BS,1 Charles L. White, III, MD,2 Julie A. Schneider, MD, MS,3

Robert Ross Reichard, MD,4 Stefan Prokop, MD,5 Richard J. Perrin, MD, PhD,6,7,8 Peter T. Nelson, MD, PhD,9

Sean Mooney, PhD,10 Andrew P. Lieberman, MD, PhD,11 Walter A. Kukull, PhD,10 Julia Kofler, MD,12

Christopher Dirk Keene, MD, PhD,13 Alifiya Kapasi, PhD,3 David J. Irwin, MD,14 David A. Gutman, MD,15

Margaret E. Flanagan, MD,16,17 John F. Crary, MD, PhD,18,19,20 Kwun C. Chan, PhD,10 Melissa E. Murray, PhD,21

Brittany N. Dugger , PhD1*
1Department of Pathology and Laboratory Medicine, University of California-Davis, Sacramento, California, USA

2Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
3Rush Alzheimer’s Disease Center, Chicago, Illinois, USA

4Mayo Clinic, Rochester, Minnesota, USA
5Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida, USA

6Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
7Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri, USA

8Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, Saint Louis, Missouri, USA
9University of Kentucky, Lexington, Kentucky, USA

10Institute for Medical Data Science and Department of Biomedical Informatics and Medical Education, University of Washington, Seattle,
Washington, USA

11Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
12Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

13Department Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
14Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA

15Departments of Neurology, Psychiatry, and Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, USA
16Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA

17Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
18Department of Pathology, Ronald M. Loeb Center for Alzheimer’s Disease, Friedman Brain Institute, Neuropathology Brain Bank & Research

CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
19Department of Neuroscience, Ronald M. Loeb Center for Alzheimer’s Disease, Friedman Brain Institute, Neuropathology Brain Bank & Research

CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
20Department of Artificial Intelligence & Human Health, Ronald M. Loeb Center for Alzheimer’s Disease, Friedman Brain Institute,

Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
21Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA

*Send correspondence to: Brittany N. Dugger, PhD, Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, 4645 2nd Ave., 3400A
Research Building III, Sacramento, CA 95817, USA; E-mail: bndugger@ucdavis.edu

A B S T R A C T

Digital pathology (DP) has transformative potential, especially for Alzheimer disease and related disorders. However, infrastructure barriers
may limit adoption. To provide benchmarks and insights into implementation barriers, a survey was conducted in 2019 within National Insti-
tutes of Health’s Alzheimer’s Disease Centers (ADCs). Questions covered infrastructure, funding sources, and data management related to dig-
ital pathology. Of the 35 ADCs to which the survey was sent, 33 responded. Most respondents (81%) stated that their ADC had digital slide
scanner access, with the most frequent brand being Aperio/Leica (62.9%). Approximately a third of respondents stated there were fees to uti-
lize the scanner. For DP and machine learning (ML) resources, 41% of respondents stated none was supported by their ADC. For scanner
purchasing and operations, 50% of respondents stated they received institutional support. Some were unsure of the file size of scanned digital
images (37%) and total amount of storage space files occupied (50%). Most (76%) were aware of other departments at their institution work-
ing with ML; a similar (76%) percentage were unaware of multiuniversity or industry partnerships. These results demonstrate many ADCs
have access to a digital slide scanner; additional investigations are needed to further understand hurdles to implement DP and ML workflows.
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Slide scanner

VC The Author(s) 2023. Published by Oxford University Press on behalf of American Association of Neuropathologists, Inc.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com

Journal of Neuropathology & Experimental Neurology, 2023, 82, 202–211
https://doi.org/10.1093/jnen/nlac127
Advance access publication 24 January 2023

Original Article

https://orcid.org/0000-0003-2141-8855


I N T R O D U C T I O N

Pathology practice has been profoundly transformed (1–3) by
the advent of microscope slide scanners and the introduction
of whole slide imaging (WSI) technologies more than 2 deca-
des ago (Fig. 1—timeline) (3–14). Although there are extra
steps within the workflow (Fig. 2) when incorporating digital
pathology (DP), there are significant advantages given the
rapid transferability and portability of the resulting digital
image files (15, 16). In addition, computer-based interfaces
(17) make WSIs accessible to multiple individuals, and this
can be simultaneous, even from different geographic locations,
thereby enhancing opportunities for education, collaboration,
and consultation between persons, particularly in areas in
which pathologists are not readily available (15, 18–20). Com-
bining DP with quantitative assessment tools, such as machine
learning (ML) algorithms, can bring about paradigm shifts in
assessing neuropathology through deeper phenotyping of
brain tissue, enabling scalable and more in-depth objective
analyses, and enhancing harmonized shareable workflows (21,
22). Publicly available programs such as ImageJ, QuPath, and
machine learning algorithms, and software associated with
slide scanners, have been used to provide deeper understand-
ing of neuropathology processes associated with Alzheimer
disease (AD) and related disorders (ADRDs) (17, 23–28).

Globally, AD is one of the most prevalent neurodegenera-
tive brain diseases and is often associated with other neurode-
generative and vascular features that lead to cognitive
impairment and dementia (29). This devastating disease poses
a substantial social and economic burden to healthcare world-
wide (21, 30). The number of Americans aged 65 years or
older who suffer from AD is estimated to be at least 6 million.
It is anticipated by 2050, this number will more than double.
According to a projection, the cost of managing ADRDs in
2022 will be $325 billion annually. By 2050, these costs could
reach nearly $1 trillion (31). Postmortem histopathological
evaluation of the brain is the gold standard for definitively
diagnosing ADRDs (22). AD is neuropathologically character-
ized by the presence of extracellular aggregated amyloid b
(Ab) protein in the form of Ab plaques and aggregated hyper-
phosphorylated tau protein in the form of neurofibrillary tan-
gles and dystrophic neurites (for review see [32]). Established
criteria to assess AD pathological hallmarks are predominantly
based on semiquantitative scoring schematics with consider-
ably high interrater variability (33–37). These pathologic fea-
tures are thought to begin as much as 20 years prior onset of
cognitive symptoms. Further they may interact, synergistically
or antagonistically to influence onset and progression of the
cognitive syndrome (38). Determining how all this may occur
and develop is part of the current challenge facing ADRD
neuropathology-based investigations. In the past we have
focused on persons expressing the cognitive syndrome as
“dementia” and then characterizing the pathologic features
present. With DP, we will also have a better window through
which to observe similar pathologic features among individuals
without cognitive symptoms; further we aim to be able to link
back these findings to prior clinical and biomarker data col-
lected during life. It would be beneficial to develop tools to

provide more objective quantitative measures, facilitating
deeper phenotypes that will aid clinical correlations (22, 34,
39). Hence, there is an intensive global research effort to lever-
age innovative technologies with the overarching goal of better
comprehending the mechanisms and heterogeneity of ADRDs
and developing solutions for early detection and progression
prevention.

Since 1985, the National Institute on Aging (NIA) has vari-
ably funded over 33 Alzheimer’s Disease Centers (ADCs)
within the United States. The mission of the ADCs is to pro-
vide individuals with comprehensive clinical evaluations, edu-
cational outreach and infrastructure to support cutting-edge
research to better address the diagnosis, treatment, and pre-
vention of ADRDs and therefore contribute to a deeper under-
standing of this devastating disease (40). In the spring of 2019,
talks began amongst individuals within the ADC realm, and an
email was sent to all ADC Neuropathology Core leaders
searching for persons interested in forming a Digital Pathology
Working Group. In June of 2019, the first of what became
monthly meetings was held, where the overall goals of the
group were to: (1) assess the needs and potential uses of digi-
tal pathology within ADCs, (2) evaluate feasibility of imple-
mentation of technology across ADCs, and (3) develop
recommendations for the use of DP by ADC Neuropathology
Cores. Although there are established recommendations for
adopting WSI systems in pathology departments (41–44),
implementation of DP and machine learning workflows can be
particularly challenging. Hence, to aid in the goals of the ADC
Digital Pathology Working Group to gain a deeper under-
standing of the current benchmarks in DP and ML across
ADCs, a survey was developed, refined, and distributed to
ADC directors and Neuropathology Core leaders. The current
paper presents the results of the survey and provides a brief
discussion of their implications.

M A T E R I A L S A N D M E T H O D S

The ADC Digital Pathology Working Group, with the aid of
the National Alzheimer’s Coordinating Center, produced and
disseminated a survey to ADC directors and/or Neuropathol-
ogy Core leaders in the fall of 2019 to collect baseline data on
awareness and use of DP and ML procedures among ADRCs.
It is important to note the terminology to define ADCs can
also include Alzheimer’s Disease Research Centers (ADRC);
to maintain the language previously used in the survey the
ADC term will be used. The survey assessed topics such as:
(1) infrastructure (such as type of digital slide scanners uti-
lized), (2) data management and storage of WSI data (such as
size of digital files), (3) knowledge and access to ML work-
flows, and (4) associated costs/funding. The survey was con-
verted to a digital version using SurveyMonkey.com
(Momentive.ai, San Mateo, CA) to facilitate collection of
responses (see Supplementary Document for the full survey).

The link to the survey was electronically distributed via
email to 35 past and current ADC Neuropathology Core lead-
ers and/or ADC directors in the fall of 2019, and survey
responses were compiled in the spring of 2020. Participation
was voluntary, responses contained no personally identifiable
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information, and results were anonymized. Categorical data
are presented as frequencies and percentages. Figures were
created using BioRender (BioRender.com).

R E S U L T S
Survey respondents

A response rate of 94.3% was achieved (33/35 centers), with
32 centers completing all responses. Most of those who com-
pleted the survey (75%) were Neuropathology Core leaders,
followed by 12.5% who were ADC coinvestigators, 1 (3.1%)
ADC director, and 9.3% selected other.

Infrastructure and associated costs/funding
Most respondents (81.2%) reported their ADC had access to
a digital slide scanner, with Aperio/Leica being the most com-
mon brand (62.9%) and Keyence being the least (3.7%);
responses were not mutually exclusive (Fig. 3). The most com-
mon file type of scanned slides was SVS (52%), followed by

TIFF (16%), CZI (12%), QPTiff (8%), VSI (4%), ISyntax Phi-
lips proprietary file (4%) with 28% unsure, 16% reporting
other, and no one selected JPEG. Half of respondents (50%)
reported there were no fees for service for their ADC to utilize
the digital slide scanner, 34.6%. stated yes, and 15.4% were
unsure. The 2 most common uses of digital slide scanners
were by the ADC (30.7%) and researchers (other than those
in the ADC) (38.4%) while clinical (other than those in the
ADC) was 23.0%, education (other than those in the ADC)
was 3.8%, and 3.8% did not know. Half of the participants
stated they had received institutional support to cover the pur-
chase and operation cost of the slide scanner, followed by phi-
lanthropic support (15.4%) and NIA funding (11.5%) no
respondent listed National Institute of Neurological Diseases
and Stroke (NINDS) funding; approximately one-third of
respondents (26.9%) were uncertain of the origin of the fund-
ing used to purchase the equipment; responses were not mutu-
ally exclusive (Fig. 4). Of type of slides scanned for ADC
cases, 61.5% were immunohistochemistry-stained slides,

Figure 1. Timeline of select events in the field of digital pathology and artificial intelligence leading to advancement, regulation, and
commercialization of WSI systems. AD, Alzheimer disease; AI, Artificial intelligence; FDA, Food and Drug Administration; WSI, whole slide
imaging.
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followed by project-specific stains (57.7%) and hematoxylin
and eosin (H&E) slides (50%), special stains (such as silver)
(26.9%), and 3.8% were unsure. According to 15/24 (62.5%)
respondents, less than 10% of their ADC slide inventory was
scanned, 6/24 (25%) respondents listed 11%–25%, 2/24
(8.3%) listed 26%–50%, 4.2% were unsure and no respondents
listed any number greater than 51% of their current slide
inventory had already been digitized. A large percentage
(95.6%) of those surveyed responded their ADC and affiliated
personnel utilize the scanner to digitalize human tissue, fol-
lowed by mouse tissue (56.5%) and nonhuman primates
(17.4%), dogs (8.7%), other species (4.3%), and no respond-
ents selected rat; responses were not mutually exclusive.

Data management and storage of whole slide imaging
Most respondents (37.0%) were unsure about the average
scanned file size after compression, 29.6% denoted the file size
to be greater than 1 GB but less than 4 GB, 3.7% reported the

file size to be greater than 4 GB, and also 3.7% for both 100
MB or less, 101–500 MB, and 501 MB to 1 GB. Of respond-
ents, 50% did not know the total amount of storage space all
compression files occupy, 8.3% reported greater than 1 TB but
less than 10 TB, and 4.2% for both greater than 10 TB but less
than 20 TB and greater than 20TB but less than 30 TB, 8.3%
reported greater than 30 TB but less than 40 TB, and 16.7%
reported great than 40 TB. In 34.8% of cases, digital slide stor-
age was maintained locally (on premise) and directly by the
ADC; 30.4% of responses denoted onsite storage was handled
by an entity other than the ADC; 26.1% denoted slides were
saved on an offsite server shared with other departments,
17.4% stated offsite storage directly controlled by a depart-
ment (i.e. shared departmental server), 17.4% other, and 4.3%
reported offsite cloud storage provided by a third-party ven-
dor; responses were not mutually exclusive. With respect to
sharing of digital slide files, 50% noted digital slide files were
shared outside of the institution; with 28.1% reporting their

Figure 2. A landscape of the main differences in the workflows of analog and digital histopathology. From whole slide imaging (WSI), image
files can be used for various purposes such as diagnosis and annotation, development of tools such as machine learning (ML) algorithms, to
assess select features within the image (pathologies, anatomic areas etc.). Experts may use these measures to augment select portions of their
annotations/evaluations.
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ADC had discussions of digital pathology and related topics
with respect to material transfer agreements (MTAs), collabo-
rative agreements and/or IRB within the past year. When shar-
ing slides in the past year, 18.2% reported there were MTA
and/or collaborative agreements in place, 21.2% reporting no,
9.1% being unsure, and 54.5% stated the question was not
applicable (N/A). Furthermore, with respect to sharing the
main methods listed that were used, were web portals (such as

eSlide Manager) at 28.1%, file sharing such as Google drive, or
box at 12.5%, external hard drives at 12.5%, and 3.1% were
unsure.

Slightly over half of respondents (53.1%) agreed a central-
ized scanner service would benefit the ADC, indicating they
would be open to sending slides to one site for scanning. With
respect to digital pathology (DP) and/or machine learning
(ML) resources supported in any way by the ADC, over

Figure 3. Prevalence of the use of digital scanner brands indicated by ADRCs during the period of the survey (2019) Responses were not
mutually exclusive.

Figure 4. Type of funding utilized by the ADRCs to cover the purchase of WSI systems. Responses were not mutually exclusive. NIA,
National Institute of Aging; NCI, National Cancer Institute.

206 � Journal of Neuropathology & Experimental Neurology, 2023, Vol. 82, No. 3



one-third (40.6%) reported there was no resource support,
while 31.2% stated there was slide scanner support, 15.6%
service contracts for DP equipment, 25% personnel to manage
DP infrastructure, 12.5% for GPUs, and 3.1% were unsure.
Furthermore, within the past year when asked about the esti-
mated percentage of their ADC budget allocated to DP and/
or ML, 46.9% of responders stated none, 28.13% less than 5%,
6.2% between 5% and 10%, 3.1% between 11% and 25%. No
respondents reported greater than 25% of their ADC budget
was allocated to DP and/or ML while 9.4% were unsure.

Details on information printed on glass slides for identifica-
tion within the ADRC neuropathology core as well as what
information is included in the file name of ADC digitized
slides are in Table.

Awareness of digital pathology and machine learning/
artificial intelligence

Most respondents (75.8%) were aware of other departments
within their institutions working with DP and ML/artificial
intelligence (AI). Most respondents (72.7%) were unaware of
the existence of multiuniversity partnerships in the field of DP
and ML within their organization, and over 80% did not know
of any existing collaborations between their institution and
industry.

D I S C U S S I O N

Implementing a DP system can enhance workflow efficiency,
provide more reliable and consistent data for analysis, and ena-
ble the sharing of resources and information worldwide,
thereby contributing to a better collective outcome (22, 24,
45–50). The ADC Digital Pathology Working Group is part of
an NIA initiative to update the guidance on best practices and
resources for new ADCs and centers undertaking new research
areas. The purpose of the survey was to provide benchmark
data for DP and ML across ADCs.

Despite the increased availability of slide scanners over the
past 2 decades, a lagging regulatory process for commercial
WSI devices in the United States posed a potential significant
hurdle to the widespread adoption of DP in clinical settings
(43, 51, 52). Initially, the Food and Drug Administration
(FDA) classified WSI systems as class III medical devices,
which are deemed “highest risk” medical devices (43). As a
result of the collaboration between the Digital Pathology Asso-
ciation task force and the FDA, WSI systems have more
recently been cleared for commercialization and reclassified as
class II devices, providing manufacturers with a more straight-
forward route to FDA approval (42). Currently, there are 2
DP solutions available for primary diagnosis approved by the
FDA: the Philips IntelliSite Pathology Solution (PIPS)—
(approved April 12, 2017)—and the Leica Aperio AT2 DX
System—(approved May 29, 2019) (13, 53). Most of the sur-
veyed ADCs reported to have access to Leica/Aperio systems
(62.96%), with very few denoting Phillips (11.11%). The rea-
sons for this were not addressed by this survey but are most
likely multifactorial and may include items associated with
when systems were available, resources needed for implemen-

tation (costs), lower image quality, or less flexibility for
research applications.

To determine which specific system is likely to be most suit-
able for one’s work/institution, a thorough evaluation of
potential stakeholders within the organization/unit should be
conducted to correctly inform the decision-making process. A
collaborative purchase effort can be initiated by amassing mul-
tiple entities (such as departments and/or centers) within the
institution (for example, Cancer, Neuroscience, Pathology,
Dermatology, Gastroenterology, and/or Telehealth) who
would benefit from the resources in addition to contributing
to the initial cost and/or service contract, operations, and
maintenance. Most polled ADCs indicated they received insti-
tutional support for purchasing the WSI system, indicating
institutional openness toward support of this technology. The
acquisition of imaging equipment involves a substantial initial
expense, and additional costs need to be considered, such as
the purchase, installation, and maintenance of a file sharing/
file storage system; personnel expenses (e.g. a technician
assisting with slide scanning and management); an uninter-
rupted power supply; and adequate space for the equipment.
The necessary resources to purchase and set up infrastructure
for a digital scanner may be accomplished through a variety of
means, including using funding from federal grants (e.g. NIA,
NINDS, NCI) in the form of administrative supplements,
and/or departmental funds for recruitment, and/or
philanthropy.

When choosing a WSI digital slide scanner, the ADC Digital
Pathology Working Group recommends compiling a list of
potential users/uses to better understanding the scanner fea-
tures needed to support those purposes. It should be noted
each brand may offer a different model and there is no clear
indication of which slide scanner is “best” (54). Some details
on scanner features to consider should include: (1) load
capacity (i.e. how many slides can be loaded and continuously
run at a time unattended); (2) brightfield versus immunofluor-
escent capabilities (scanning of H&E, histochemical, and
immunohistochemical stains at a reported 1.0–4.0 minutes/
slide [standard size] based on tissue area and objective); (3)
compatible objectives (most microscope objectives range from
5� to 40�); (4) slide size (standard slide size supported by
all slide scanners is 26 mm�77 mm, with a glass/glass cover
thickness of 0.9–1.2 mm in depth); and (5) image file format
(i.e. TIFF, JPEG, SVS).

Regarding file-size and storage, some responses indicated
they were unsure of average slide file size after compression
and about the total space that files occupy. A digital slide
derived from one human formalin fixed paraffin embedded
5mm brain section typically ranges between 1.0 and 4.0 GB in
size (depending on compression), and if an institution is scan-
ning multiple cases with multiple slides, large amounts of data
can be generated quickly. Although scanning onto a com-
puter’s internal hard drive (HDD) or onto an external HDD
may seem appealing and easy, a long-term storage plan, and a
dedicated approach for data management, is highly recom-
mended. Having files directly scanned onto the internal HDD
may cause the computer to crash (overburdening local mem-
ory), ultimately causing data loss. If the ADC work is internal,

ADRC resources for digital pathology • 207



the ADC digital pathology working group recommends con-
sulting with the institution’s IT department and/or data core
personnel about setting up an on-site server. A server/file shar-
ing platform may be a reasonable alternative if the ADC is
expanding its collaborative efforts (17). Whenever data trans-
fer is contemplated, it should be noted most slide scanners
have a minimum requirement for connectivity (such as 10–
100 MB/s) to ensure optimal results. It is critical to verify
which specific file-sharing options are permitted at your insti-
tution, especially if you are working in a healthcare setting
and/or if your slides contain any protected health information.
Furthermore, support in advance of and during the initial set-
up may be required, including ensuring reliable network con-
nectivity (i.e. network speed and manageable firewall rules). A
specific recommendation for one service over another cannot
be made, but backup power and storage and reliable archiving,
along with data loss prevention features, are essential and need
to be considered. Overall, involving the IT team in all discus-
sions during the scanner purchase and implementation process
is essential, as they have a thorough understanding of the insti-
tution’s specific system requirements, risk assessments, and
limitations.

As slide scanners are adopted more widely, a paradigm shift
is occurring in the field of pathology, not merely because of
increased efficiency and collaborative opportunities provided
by WSI technology (Fig. 2). The digitalization of pathology
slides is quickly becoming a major source of big data in medi-
cine, allowing for the development of a vast diversity of image
analysis applications based on AI and/or ML processes (55).
As the name implies, AI refers to a machine or computer’s abil-
ity to mimic or imitate human intelligent behaviors and per-
form tasks in a similar manner to those done by humans (56).
ML is an application of AI that enables computers to learn
from data without being explicitly programmed or aided by
domain expertise (57).

Integration of digital pathology and AI/ML processes can
have tremendous potential for neuropathology, particularly the
diagnosis and research on ADRDs (22, 50). Our survey results
emphasize certain opportunities in AI/ML processes within
ADCs. Although most respondents were aware AI/ML work-
flows in other departments in their institutions, less than a
third acknowledge multiuniversity partnerships. Even fewer
knew of industry partnerships related to AI/ML with their
institution. Of utmost importance, nearly half of those sur-
veyed reported none of their current ADC budget was allo-

cated to AI/ML technology within ADCs. The lack of existing
AI/ML specific budget allocations highlights an important
opportunity and niche for continuous education and research
in this area.

Differences between pathologists’ diagnoses commonly
occur in clinical practice. In many pathology subspecialties, sig-
nificant inter and intraobserver variability has been reported
(58–60). In addition, most of the world is experiencing a
shortage of pathologists, despite the increased demand for his-
topathological routine diagnostics (61, 62). The results of a
recent global survey involving pathologists from 59 countries
indicate that most professionals believe integration of AI tools
with human input can improve workflow efficiency and signifi-
cantly reduce human error and rater variability. A noteworthy
finding, when questioned about the possibility of AI eventually
replacing pathologists, most respondents believed that AI tools
might increase the demand for professionals in the future
(63).

A significant barrier to the implementation of ML work-
flows into pathology practice and research is the requirement
for a vast quantity of high-quality WSI data in order to develop
and train algorithms (64). Many histological materials, such as
those collected within ADC neuropathology cores, have been
collected over time. Many centers may have their own specific
sampling/staining protocols based on the intended use of the
sample and sampling guidelines for specific diseases. Further-
more, there have been changes in diagnostic criteria over time,
which can lead to changes in staining and sampling proce-
dures. This heterogeneity may be advantageous to take more
ML approaches, but also may be problematic due to inad-
equate standardization. In this regard, harmonizing or imple-
menting standardized protocols especially in a research setting
can be challenging because of differences in slide preparation
(sectioning, fixation, staining, and mounting), scoring algo-
rithms, and inherent variability among raters (65–67). Slide
preparation can also generate artifacts (over- or under-staining,
air bubbles, folded tissue, etc.) that if not adequately repre-
sented in datasets used to train, validate, and test ML algo-
rithms can produce inaccuracy in resulting ML algorithms
(68). When multiple centers collaborate on an ML project,
understanding similarities and differences in procedures and
quality control methods should be acknowledged as these can
be potential sources of adverse results. A single noise element
in large pathology datasets can lead to misclassification and
alter slide analysis and prediction, which may possibly result in

Table. Frequencies of information on glass slides and included in digitized file names (responses are not mutually exclusive)

Information included
on glass slides

Information included
in the digitized file name

Globally Unique Identifier (GUID) 0% 0%
Unique deidentified autopsy number 90.32% 24.14%
Barcode 48.39% 12.79%
Patient ID 29.03% 10.34%
Stain 70.97% 17.24%
Date of staining 38.71% 6.90%
Anatomic area 25.81% 13.79%
Unique code corresponding to an anatomic area (e.g. 9¼ amygdala) 12.90% 10.34%

208 � Journal of Neuropathology & Experimental Neurology, 2023, Vol. 82, No. 3



a substantial number of false positives or negatives (68). Fur-
ther discussions as to what meta-data to include in whole slide
image databases and reporting in published manuscripts, as
well as harmonization strategies for historical samples, are
imperative.

It is important to note the current neuropathologic diagnos-
tic and staging criteria for ADRDs are based on microscopic
assessments of characteristic neuropathologic brain lesions.
After the presence of a specific brain lesion is identified micro-
scopically, the lesion may be further scored based on intrinsic
properties or its distribution throughout the brain. This is typi-
cally performed using a combination of semiquantitative
assessments (e.g. CERAD neuritic plaque density) and
regional distribution assessments (e.g. Braak neurofibrillary
tangle staging) (33–36). Application of the various diagnostic
neuropathologic criteria like the ones described above, can be
a laborious process. This can be especially challenging when
evaluating multiple pathologies and nuances within the same
slide/case, in which the application of ML pipelines can be sig-
nificantly beneficial and many have ventured into algorithm
development and validation (24, 45, 47, 48, 69–71). Using
supervised ML algorithms based on previously expert-trained
models can offer significant improvements and remarkable
success in traditional pathology tasks, achieving performance
comparable to pathologists especially in the cancer realm (72–
75). This innovative methodology is particularly promising to
the research field of ADRDs, as ML models can augment the
ability of experts, aid standardization, and accelerate quantita-
tive tasks. This ultimately facilitates diagnoses, enhances tissue
biomarker analytics, and improves therapeutics development.

C O N C L U S I O N

This survey intended to establish current benchmarks of DP
and AI/ML availability within ADCs. Our findings indicate
most ADCs have access to a digital slide scanner, predomi-
nantly acquired through institutional funding. Most ADCs
were unaware of the specifics of file size and storage. Although
most respondents were aware of digital pathology and/or AI/
ML work at their institution, a significant percentage reported
having few resources for supporting research or diagnostic
activities. Additional research is needed to better comprehend
hurdles and challenges associated with implementing DP and
ML workflows within ADCs.
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