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Chinese gut microbiota and its associations with staple food
type, ethnicity, and urbanization
Jing Lu 1,2,9, Li Zhang 3,9, Qixiao Zhai1,2,4, Jianxin Zhao1,2,4, Hao Zhang1,2,4, Yuan-Kun Lee 5,6, Wenwei Lu 1,2,4,5✉,
Mingkun Li 3,7,8✉ and Wei Chen 1,2,4,5✉

The gut microbiota could affect human health and disease. Although disease-associated microbiota alteration has been extensively
investigated in the Chinese population, a nationwide Chinese gut microbiota baseline is still lacking. Here we performed 16 S rRNA
gene sequencing on fecal samples from 2678 healthy Chinese individuals, who belonged to eight ethnic groups and resided in 63
counties/cities of 28 provinces. We identified four enterotypes, three of which were enriched for Prevotella, Bacteroides, and
Escherichia, respectively, whereas the fourth one had no dominant genus. By assessing the association between the gut microbiota
and 20 variables belonging to six categories, geography, demography, diet, urbanization, lifestyle, and sampling month, we
revealed that geography explained the largest microbiota variation, and clarified the distinct patterns in the associations with staple
food type, ethnicity, and urban/rural residence. Specifically, the gut microbiota of Han Chinese and ethnic minority groups from the
same sites was more alike than that of the same ethnic minority groups from different sites. Individuals consuming wheat as staple
food were predicted to have more microbial genes involving in glucan 1,3-beta-glucosidase and S-adenosyl-L-methionine
biosynthesis than those who consumed rice, based on functional prediction. Besides, an appreciable effect of urbanization on
decreased intra-individual diversity, increased inter-individual diversity, and increased proportion of the Bacteroides enterotype was
observed. Collectively, our study provided a nationwide gut microbiota baseline of the Chinese population and knowledge on
important covariates, which are fundamental to translational microbiota research.
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INTRODUCTION
The human intestine harbors a special diverse microbial ecosys-
tem, with an estimated 150–400 bacterial species reside in our
gut1. The gut microbiota provides substantial benefits to our
health by forming a barrier against pathogens, producing
bioactive metabolites, and regulating immunological functions.
The homeostasis of the gut ecosystem is maintained by some core
species that are generally shared among different individuals, and
the gut microbiota in healthy adults is relatively stable in the
absence of strong influencing factors (e.g., dietary changes or
antibiotic treatment)2,3.
The imbalance of the gut microbiota (i.e., dysbiosis) is

associated with many diseases, e.g., inflammatory bowel disease,
obesity, allergies, and autoimmune diseases4. Plenty of microbial
components have been revealed to involve in a series of
pathologies by extensive disease-targeted microbiota researches,
and can thus, in theory, serve as biomarkers. For example, fecal
microbial markers for screening colorectal cancer have been
widely studied5. However, the translation of microbiota research
into clinical practice is still limited by multiple challenges,
especially the difficulty in the precise classification of “healthy”
microbiota, which requires comprehensive knowledge of the
microbiota variation and covariates of an average, healthy
population. A study based on 7009 individuals from 14 geographic
districts in one province of China demonstrated that microbiota-
based metabolic disease models developed in one location could

not be extrapolated to other locations, and the efficiency of
interpolated models decreased as geographic scale increased6.
This emphasized the influence of geography on gut microbiota
composition and disease model application, whereas the micro-
biota variation on a larger geographic scale across China is yet to
be explored.
Besides geography, many gut microbiota covariates have been

uncovered, including diet, lifestyle, ethnicity, socioeconomic
status, medication, and genetics7,8. For example, stratification of
the gut microbiota (termed enterotypes) has been associated with
diet, especially the intake of fibers and carbohydrates9; urbaniza-
tion has been associated with increased inter-individual variation
and loss of species with high potential for fiber degradation10;
taxa that were differentially abundant across ethnicities have been
proposed to be associated with chronic diseases11,12. To date,
most population-level studies investigating gut microbiota covari-
ates have focused on the western population (Europe and the
USA) and a few in Israel, Japan, and China13, but rarely in Africa,
South America, and other regions of Asia.
There are various food styles in China, and people living in

different regions show great varieties in their diet. Moreover, there
are 56 ethnic groups in China, which have distinct characteristics
in diet, lifestyle, custom, and culture. Therefore, the diversified gut
microbiota is expected in the Chinese population. Meanwhile, as a
result of an unprecedented speed and scale of urbanization,
Chinese is undergoing rapid change in lifestyle, and the dietary
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habit is shifting towards a western-style diet. Specifically, more
high-fat and high-protein foods are consumed while fewer grains
are taken, which might significantly change the gut microbiota as
observed in other developing countries. Although a couple of
studies have been conducted to investigate the gut microbiota
characteristics in China, these studies either focused on limited
regions or recruited a small number of participants, and a
nationwide gut microbiota survey is still missing6,14,15.
To characterize the gut microbiota diversity in the Chinese

population and investigate microbiota-associated variables, we
collected feces of 2678 individuals without apparent diseases
(referred to as “healthy”), which underwent 16 S ribosomal RNA
(rRNA) gene sequencing (V3–4 region). A questionnaire including
information on demography, diet, and lifestyle was carried out,
which enables an in-depth analysis of factors associated with the
Chinese gut microbiota.

RESULTS
Overview of cohort and data
We recruited 2678 healthy volunteers (male 1144, female 973)
from 63 counties/cities of 28 provinces, including 2167 Han
Chinese (1755 with age over 3 and 412 with age under 3), 487
individuals from seven ethnic minority groups (Tibetan, 156; Hui,
107; Miao, 73; Uygur, 70; Naxi, 46; Mongolian, 41; Bai, 18), and 24
individuals without ethnicity information (Fig. 1a, b). Fecal samples
were collected following a standardized procedure (see Methods
for details). Meanwhile, 20 phenotypical and environmental
variables were collected via questionnaires or national annals,
and classified into six categories: geography, demography, diet,
urbanization, lifestyle, and sampling month (Supplementary Data
1). The gut microbiota was profiled by sequencing the variable
region 3–4 (V3–4) of 16 S rRNA gene, with a median read number
of 27,638 per sample (range 10,000–236,350). The reads were
clustered into 14,364 zero-radius operational taxonomic units
(ZOTUs), and 56.64% of these ZOTUs (accounting for 86.48% of
the total reads) were assigned to 444 genera belonging to 24
phyla.
It is known that a stable gut microbiota resembling that of

adults is established at age 316. In our data, we observed a strong
positive correlation between the alpha diversity and age in
children under age 3 (Shannon index, R2= 0.37, observed ZOTUs,
R2= 0.31, Faith’s phylogenetic diversity (Faith’s PD), R2= 0.35, p <
2.2e-16), but not in other age groups (age 3–17, 18–65 or 66–112,
p > 0.05, Supplementary Fig. 1). Thus, only 2266 individuals with
ages 3–112 (median 46) were included in the following analyses.

The gut microbiota composition of the Chinese population
and associated covariates
Firmicutes, Bacteroidetes, Proteobatcteria, and Actinobacteria
were the four most abundant bacterial phyla in all samples (Fig.
2a, b). A total of 24 genera were observed in >90% of samples
with average relative abundances >0.1% (the core microbiota, Fig.
2b). Eighteen of these genera overlapped with the core gut
microbiota of 2008 healthy Chinese individuals who resided in
Guangdong province6 (Supplementary Data 2); seven of them
overlapped with the top nine most abundant fecal genera in
another Chinese cohort, which included 314 healthy individuals
from nine provinces14; ten of them overlapped with the top 20
fecal genera discovered by the Human Microbiome Project17. We
further stratified the microbiota into four enterotypes using the
clustering method described by Arumugam et al. 18. We identified
driving genera by random forest algorithm (area under the curve
(AUC) for receiver operating characteristic (ROC) curve: 0.99,
Supplementary Fig. 2a), obtaining Prevotella enterotype (E1, n=
443), Bacteroides enterotype (E2, n= 732), Escherichia enterotype
(E3, n= 251), and mixture enterotype (E4, n= 840) (Fig. 2c, d). E1

and E2 are two well-recognized enterotypes, whereas unlike
Firmicutes (most prominently Ruminococcus) being the third
enterotype in most previous studies19, E3 was distinguished by
an overrepresentation of Escherichia (a genus belonging to family
Enterobacteriacease, phylum Proteobacteria), which has rarely
been reported20. Besides, E4 showed no dominant genus but a
mixture of a few relatively abundant genera, including Bifidobac-
terium and Blautia etc.
Covariates associated with the alpha diversity of gut microbiota

were first investigated with simple linear regressions. Faith’s PD
and Observed ZOTUs were significantly correlated with geogra-
phical zone (including ten zones differing in climate, topography,
etc., Supplementary Fig. 2b), altitude, staple food type, urban/rural
residence, ethnicity, and sampling month (adjusted R2 > 0.01, p <
0.0001, Fig. 2e). The correlations were validated in multiple linear
models incorporating all six covariates, except that with altitude
(Supplementary Data 3). This reflected the dependence of altitude,
which was different among ethnic groups (Supplementary Data 1).
In addition, a simple linear model using only Han individuals did
not support the correlation between alpha diversity and altitude
either.
Meanwhile, the gut microbial community structure (beta

diversity, estimated by Jensen-Shannon divergence (JSD)) was
significantly correlated with 17 covariates as evaluated by envfit21

(p.adj < 0.05, Fig. 2f). Geographic factors (sampling site, province,
latitude, and geographical zone) explained the largest variance,
followed by age, sampling month, ethnicity, staple food type,
urbanization, and other geographic factors (Supplementary Fig.
2c, d for Bray–Curtis and unweighted UniFrac distances). To
further explore the correlation between geographic location and
the gut microbiota, we applied the Mantel test on the microbial
JSD matrix and geographic distance matrix, and found a
significant correlation between them (p= 0.03, Supplementary
Fig. 2e), suggesting that the gut microbiota change gradually in
proximal locations. Detailed analysis of these associations was
conducted in the following sections.

Association between staple food type and the gut microbiota
Samples were assigned into three groups according to the
dominant staple food regularly taken, i.e., rice (white rice), wheat
(white flour of common wheat), and rice & wheat. Owing to the
requirements in temperature, precipitation, and sunshine duration
for different grain crops, wheat was mainly grown in northern
China, whereas rice was cultivated more widely22. Consumption of
the two grains also showed similar geographic distribution (Fig.
3a). Intriguingly, the alpha diversity indices including Faith’s PD,
Shannon index and Observed ZOTUs were significantly higher in
individuals/regions consuming more rice (p < 0.01, Fig. 3a,
Supplementary Fig. 3a–c).
Bacterial genera differing between each two groups were

identified using DESeq2 analysis with adjustment for age and
gender (p.adj < 0.05, Fig. 3b). Bifidobacterium and Catenibacterium
were enriched in individuals consuming wheat and wheat & rice
when comparing to individuals consuming rice. The abundances
of these two genera decreased gradiently in the three groups,
indicating that there might be a dose-effect associated with wheat
intake. The association between Bifidobacterium and wheat intake
is consistent with previous observations that the abundance of
Bifidobacterium was decreased when taking diets with low wheat
content, e.g., gluten-free diet, low-gluten diet, and low FODMAP
(fermentable oligosaccharides, disaccharides, monosaccharides,
and polyols) diet23–28. Twelve genera were enriched in individuals
consuming rice and rice & wheat when comparing to individuals
consuming wheat, of which Bacteroides, Parabacteroides, a
butyrate producer Clostridium XIVa and an opportunistic pathogen
Fusobacterium were the most significant ones (log2FC > 1, p.adj <
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1e-10). However, no difference was observed in the enterotype
composition among the three groups.
To explore the metabolism capacity of gut microbiota affected

by distinct staple foods, enzyme commission (EC) numbers and

MetaCyc pathways were inferred with PICRUSt229. Considering
that common wheat flour contains more dietary fiber than white
rice (2–3% vs. 0.7–2% of dry matter) and the fiber components
differ significantly between the two grains30,31, we specifically
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Fig. 2 The gut microbiota composition of the Chinese population and associated covariates. a Relative abundances of the top six phyla at
each sampling site. b Relative abundances of the 24 core genera, which presented in >90% of individuals with an average relative abundance
>0.1%. The pie chart shows the phylum-level microbial composition of the cohort. LAB: lactic acid bacteria. c PCoA plot showing four
enterotypes. d Relative abundances of representative genera of enterotypes. e Covariates associated with microbiota alpha diversity.
Covariates having adjusted R2 > 0.01 and ****p < 0.0001 (simple linear regression) with at least one alpha index were shown. f Covariates
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adj < 0.05 were shown. The number of samples was indicated in brackets following each covariate. In boxplots, the center line represents the
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placed on the upper part of the plot. Pathways related to L-methionine and S-adenosyl-L-methionine biosynthesis were highlighted in red.
Pathways with log2FC > 0.1 and p.adj < 1e-10 from Mann–Whitney tests were shown. In boxplots, the center line represents the median, box
limits represent upper and lower quartiles and whiskers represent 1.5× interquartile range. Rice: n= 417, Wheat: n= 549, Rice & Wheat: n=
277. See also Figure S3.
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focused on 69 ECs belonging to glycosidase (EC 3.2.1). The
abundances of 19 glycosidases differed between the Wheat and
Rice group (log2FC > 0.5, p.adj < 0.05, Fig. 3c). The Wheat group
showed dramatically higher glucan 1,3-beta-glucosidase (EC
3.2.1.58), in line with the fact that beta-glucan containing beta-
(1->3)-linkages exists in wheat but not rice. A total of 53 pathways
differed moderately between the Wheat and Rice group (log2FC >
0.1, p.adj < 1e-10, Fig. 3d). First, the Wheat group was distin-
guished by the higher potential of a few carbohydrate degrada-
tion pathways, as well as glycolysis, pentose phosphate pathway,
and lactate/acetate fermentation. Second, the Wheat group
showed increased capacity for biosynthesis of amino acids
including L-methionine, S-adenosyl-L-methionine (SAM) and L-
arginine etc. Of note, SAM is widely adopted as a therapy for liver
disease, depression, and osteoarthritis32,33. Besides, the Wheat
group was associated with a higher potential of housekeeping
functions including cell structure biosynthesis and nucleic acid
processing. These findings indicate that the staple food type and
possibly related dietary habits may alter the metabolism capacity
of gut microbiota.

Association between ethnicity and the gut microbiota
Among eight ethnic groups included in this study, Tibetan had the
highest alpha diversity, whereas Bai had the lowest alpha diversity
(Supplementary Fig. 4a). In addition, the gut microbial community
structure differed between ethnic groups (R2= 4.00%, p < 0.001,
permutational multivariate analysis of variance (PERMANOVA)
based on JSD, supplementary Fig. 4b). However, as some ethnic
groups reside in specific geographic locations, it was hard to
partial out the geographic effect. In our study, four ethnic minority
groups, namely, Uygur, Hui, Mongolian, and Tibetan, each had not
only samples collected from different sites, but also accompanying
Han Chinese samples collected from the same sites, which
enabled us to distinguish the effect of ethnicity on microbiota
from that of geography. The gut microbiota richness (Observed
ZOTUs) differed between samples belonging to the same ethnic
groups but from different sites (at least 200 km apart) for all four
ethnic minority groups. In contrast, the microbiota richness of
different ethnic groups from the same sites did not show
significant differences except that between Uygur and Han (p.
adj < 0.05, Fig. 4a, supplementary Fig. 4c, d for Shannon index and
Faith’s PD). As to microbiota beta diversity, clustering by sampling
site and ethnic group were both distinguishable on the principal
coordinate analysis (PCoA) plot (p < 0.05 except for Tibetan vs. Han
from the same site, PERMANOVA based on JSD, Fig. 4b). The inter-
site distance for samples belonging to the same ethnic groups was
greater than the inter-ethnicity distance for samples from the
same sites (p < 0.0001 for Uygur, Hui, and Mongolian), and
correspondingly, the sampling site explained larger variance in
the gut microbiota than the ethnic group (R2 of PERMANOVA:
Uygur, 7.70% vs 6.14%; Hui, 10.08% vs 3.81%; Mongolian, 9.33% vs
4.63%; Tibetan, 14.44% vs 4.88%) (Fig. 4b). These observations
indicated that both geography and ethnicity could affect the gut
microbiota, but the former is likely to have a stronger effect.
The genus-level microbiota profile of each ethnic group showed

a distinct pattern in relative abundances, and we were able to
distinguish different ethnic groups using the random forest model
(AUC of the model, 0.88; Miao, 0.94; Uygur, 0.93; Bai, 0.93; Tibetan,
0.92; Naxi, 0.91; Hui, 0.82; Han 0.80; Mongolian, 0.80; Fig. 4c,
Supplementary Fig. 4e). Catenibacterium contributed the most
power to the classification, and the representative genera of
enterotypes, Bacteroides (E2), Escherichia (E3), and Prevotella (E1),
ranked 5th, 8th, and 9th of the contributing genera, respectively.
Correspondingly, the enterotype composition differed among
ethnic groups (Fig. 4d). Comparing to Han, Miao, Naxi, and Tibetan
had higher proportions of E1; Miao, Naxi, Uygur, Hui, and Tibetan
had lower proportions of E2; Miao had higher proportions while

Tibetan had lower proportions of E3; all ethnic minority groups
except Naxi had higher proportions of E4 (p < 0.05, Fisher’s exact
test). We further applied DESeq2 models to detect ethnicity-
specific genera by comparing one ethnic group to the rest, with
adjustment for the confounding factor sampling site; for Uygur,
Hui, Mongolian, and Tibetan, we also compared each of them to
their accompanying Han samples from the same sampling sites.
Differential genera (p.adj < 0.05) detected by both models
included a lower level of Clostridium XVIII in Uygur, lower levels
of Prevotella, Fecalibacterium, and Alistipes, whereas a higher level
of Romboutsia in Hui, and higher levels of Holdemanella and
Enterococcus whereas a lower level of Escherichia in Mongolian
(Fig. 4c). Of note, the one-versus-rest comparison could be
affected by the uneven sample size across ethnic groups.

Association between urbanization and the gut microbiota
By comparing the gut microbiota of 1530 residents from 38 rural
sites of 24 provinces and 637 residents from 22 urban sites of 18
provinces, we found that Faith’s PD of rural residents was higher
than that of urban residents, but Observed ZOTUs and Shannon
index did not differ (Fig. 5a, Supplementary Fig. 5a–c). It suggested
that urbanization might not affect the non-phylogenetic richness
and evenness of the gut microbiota, but instead decrease its
phylogenetic richness. Meanwhile, the overall gut microbiota
composition differed between rural and urban residents (PERMA-
NOVA based on JSD, R2= 1.63, p < 0.01). Of note, the intra-group
microbiota dissimilarity evaluated by JSD was higher in the urban
residents (p < 0.001, Fig. 5b).
The microbiota communities were compared using DESeq2

analysis to determine genera segregating urban and rural
populations (p.adj < 0.05, Fig. 5c). Of the 33 differential genera,
the top two most abundant (mean relative abundance >4.6%)
ones were Bacteroides that were enriched in the urban population,
and Prevotella that was enriched in the rural population. Besides, a
few low-abundant genera (relative abundance <0.8%) showed
more significant differences between the two groups (log2FC >
1.5, p.adj < 1e-20), including Erysipelotrichaceae incertae sedis and
Parasutterella that were higher in the urban population, as well as
Alloprevotella and Catenibacterium that were higher in the rural
population.
Besides differences in the microbial composition mentioned

above, we wonder if microbial interactions were also altered by
urbanization, and thus constructed co-occurrence networks by
SparCC for urban and rural populations separately (Fig. 5d). The
rural population showed a larger network than the urban
population (27 nodes with 36 edges vs 23 nodes with 23 edges),
and random subsampling of the rural group to the equal number
of samples in the urban group confirmed such a difference.
Eighteen of the nodes were shared by the two networks, but only
ten of the edges were shared, suggesting that correlations
between the same microbial pairs were different between the
two populations. Hub nodes also differed between the two
networks. In the urban population network, two short-chain fatty
acids (SCFA) producers, Roseburia and Faecalibacterium34, as well
as Escherichia connected with more edges, whereas the other
three SCFA producers, Blautia, Anaerostipes, and Dorea34,35, as well
as Clostridium XVIII connected with more edges in the rural
population network, suggesting different ecological assemblies
supporting SCFA production in the gut ecosystem of the two
populations.

DISCUSSION
We have conducted a study on Chinese gut microbiota with a
large cohort covering by far the greatest diversity of the healthy
population. We found that a series of factors belonging to five
categories, i.e., geography, demography, diet, urbanization, and
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sampling month, explained a substantial proportion of the gut
microbiota variation, although the effect sizes of some factors
(e.g., ethnicity) were likely under-estimated owing to the uneven
number of samples in some subgroups. First, geographic factors
showed the strongest signals, including sampling site,

geographical zone, altitude etc. Specifically, the gut microbiota
of Han Chinese and ethnic minority groups from the same
sampling sites was more alike than that of the same ethnic
minority groups from different sampling sites, underscoring the
importance of considering the geographic location in case-control
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studies. Although gut microbiota has been widely reported to vary
across geography36, it is hard to dissect the effect, as geography
reflects a mixed effect of lifestyle, long-term diets etc. As to this
cohort, we were not able to clarify patterns related to
geographical zones, and the effect of altitude was likely linked
to minority ethnic groups living in a plateau. Second, we focused
on the ethnic group, which represents a highly diverse
demographic character of the Chinese population. The Han
Chinese and seven ethnic minority groups showed distinct gut
microbiota profiles, with some of the variation being attributed to
geography and a considerable part remaining significantly
explained by the ethnic group. Larger cohorts and targeted
design are required to understand the effect of covariates
underlying ethnicity (e.g., genetics, custom) on the gut microbiota,
and to what extent were these effects homogenized by, for
example, co-residing with Han Chinese. Furthermore, our finding
highlighted that urbanization was associated with decreased intra-
individual diversity and increased inter-individual diversity of the
gut microbiota. Previous studies based on one or two provinces of
China have shown a similar pattern in the bacterial, fungal, and
viral components15,37,38, whereas our study based on 28 provinces
further validated the vast effect of urbanization on the gut
microbiota across China. In addition, although sampling month
appeared to be a notable signal, we did not find any specific
seasonal pattern in alpha or beta diversity. In contrast, the
seasonal rhythm of gut microbiota and its CAZYome diversity has
been shown in hunter-gatherers39. We speculate that the lack of
association between the gut microbiota and season in this cohort
is because lifestyle, especially diet, is much less affected by season
in the modernized population.
It is well acknowledged that diet alters gut microbial composi-

tion and metabolism, but the study on the long-term effect of
staple food type on gut microbiome at the population level is still
missing27,40. The Chinese population mainly consumes two
distinct types of staple food, wheat (products made from white
flour of common wheat) and rice (boiled white rice). In this study,
the wheat-consuming population was predicted to have a
remarkably higher level of microbial genes encoding glucan 1,3-
beta-glucosidase, the substrate of which only exists in wheat but
not rice. This confirmed the validity of not only differences in the
amount of wheat intake acquired by questionnaires, but also
functional prediction based on 16 S rRNA gene profiles. Further,
the predicted increase in the microbial biosynthesis capacity of L-
methionine and its major downstream product SAM in the Wheat
group is of special interest, owing to the broad involvement of
SAM in cognitive and metabolic health32. Notably, the alteration of
microbial L-methionine biosynthesis as well as the archaeal
conversion of SAM has been shown in an intervention study with
gliadin (one of the protein fractions of wheat) in mice, which was
based on urinary metabolome with ultra performance liquid
chromatography-mass spectrometry41. Therefore, the possible
effect of staple food on SAM biosynthesis may be narrowed
down to the effect of the protein component of wheat, gluten,

which could trigger celiac disease in 0.06% of the Chinese
population42. Thus, we speculate that gluten may modulate the
health of gluten-tolerant individuals by regulating the gut
microbiota, the validity, and mechanism of which warrant further
investigation. In addition, since wheat is more popular in north
China than in south China, the observed effect of staple food type
on gut microbiota could be confounded by geographic locations.
We identified specific components of the microbiota that were

significantly affected by the above factors. The three representa-
tive genera of enterotypes, Bacteroides, Prevotella, and Escherichia
drove the diversification of the gut microbiota of the Chinese
population (Fig. 6). Abundances of the three genera varied in
subpopulations consuming different staple food, in different
ethnic groups, and in urban vs rural residents. It is likely due to
that dietary habits might be the shared covariate underlying these
factors, and the close relation between Bacteroides/ Prevotella and
dietary habits especially fiber, protein, and animal fat has been
widely shown19. Another remarkable genus is Catenibacterium,
which was found to be more abundant in the population resided
in rural areas, and the population consuming wheat as a staple
food in this study. It was also the most differential genus among
eight ethnic groups in this cohort. Catenibacterium was detected
in 41% of the population with an average relative abundance of
0.6%. Limited studies on this genus have associated it with diet,
but with conflicting results. A few studies showed its association
with the Mediterranean diet and low risk of cardiovascular
disease43,44, whereas the others showed its association with a
high-fat, high-sugar diet45. These findings address the need for
further investigation of Catenibacterium in relation to diet and
human health. In addition, Bifidobacterium was associated with
wheat intake, and it also contributed significantly to the
differentiation of enterotypes and the eight ethnic groups. Of
note, the overall abundance of Bifidobacterium in our cohort was
considerably higher than that in the AGP cohort and other
western cohorts17,46, which may further strengthen its effect on
health in specific subgroups of the Chinese population.
This study is limited by the absence of comprehensive

physiological indices and detailed dietary information. Such
information is essential in understanding factors responsible for
or affected by the singular gut microbiota characteristics
uncovered here, e.g., the enterotype Escherichia that was rarely
reported in other cohorts, Catenibacterium that was enriched in
specific subsets of the Chinese population, microbial SAM
biosynthesis that possibly exerts an influence on human health.
Nevertheless, the obtained profiles have constructed the Chinese
gut microbiota baseline, providing information on the microbiota
variation, covariates, and the effect size of covariates, which are
essential for calculating sample size and statistical power for
biomedical studies47,48. Moreover, this study has raised attention
to considering differences in the microbiota background and
confounding factors, including those generally applicable or
specific to the Chinese population, in microbiota researches and
clinical translations.

Fig. 4 Gut microbiota characteristics of different ethnic groups. a Observed ZOTUs of different ethnic groups per sampling site. The labels
of x axis indicate ethnic groups followed by sampling sites. *p.adj < 0.05, **p.adj < 0.01, ***p.adj < 0.001, Mann–Whitney test. b PCoA plot
based on JSD. Inserted boxplots show the inter-site distance for samples belonging to the same ethnic groups, and inter-ethnicity distance for
samples from the same sampling sites; ****p < 0.0001, Mann–Whitney test. Corresponding R2 and p values from PERMANOVA tests were also
shown. c Differences in the abundances of predominant genera between ethnicity groups. Genera were ordered by mean decrease in Gini
from random forest models classifying ethnic groups. Genera with average relative abundance >1% and presence in >50% of the samples in
at least one ethnic group were shown. Asterisks represent p.adj values from DEseq2 models; the gray ones indicate comparisons between one
ethnic group and the rest groups (and adjusted for sampling sites), while the black ones indicate comparisons between each of the ethnic
minority groups (Hui, Mongolian, Tibetan, and Uygur) and their accompanying Han samples from the same sampling sites; **p.adj < 0.01, ***p.
adj < 0.001. d Percentage of enterotypes in each ethnic group. *p < 0.05, **p < 0.01, ***p < 0.001, Fisher’s exact test comparing ethnicity
minority groups to Han. In boxplots, the center line represents the median, box limits represent upper and lower quartiles and whiskers
represent 1.5× interquartile range. c–d Han: n= 1755, Bai: n= 16, Miao: n= 70, Naxi_ n= 46, Uygur: n= 69, Hui: n= 87, Mongolian: n= 40,
Tibetan: n= 154. See also Figure S4.
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adj < 0.05 were shown. d Co-occurrence network of genera. SparCC correlations with r > 0.35 and p < 0.01 were shown. Each node represents a
genus; the size of the node is proportional to the median relative abundance of the corresponding genus; the green, red, and blue colors
represent the shared genus, rural-specific genus, and urban-specific genus, respectively. The solid and dotted lines represent positive and
negative correlations, respectively, and the thickness of the edge is proportional to the r value. Red and blue asterisks indicate differential
genera shown in c, ***p.adj < 0.001. Urban: n= 637, rural: n= 1530. See also Figure S5.
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METHODS
The cohort and ethics
The 2678 Chinese participants had no self-reported gastrointestinal tract
disorder or any other acute/chronic/recurrent medical conditions (referred
to as “healthy”), and they had not taken any antibiotics for at least
3 months prior to participation. All recruited rural or pastoral residents
lived a typical farming or pastoral lifestyle away from the metropolitan
areas. Fecal samples were collected following a standardized procedure:
the participants were informed of detailed instructions, collected samples
by themselves, and stored samples in home freezers or iceboxes; samples
were transported to the freezer at each sampling site within a day, and
further to the research laboratory with cold-chain within 3 days; samples
were then well homogenized, aliquoted, and stored at −80 °C until further
analyses. The metadata (Supplementary Data 1) was collected via
questionnaire, including demographic information (age, gender, ethnicity,
BMI, BMI z scores), dietary information (staple food type, intake of lactic
acid bacteria (LAB)), and lifestyle (defecate frequency, sleep quality, alcohol
intake, smoking). Specifically, the ethnic information was confirmed
through participants’ Resident Identity cards. BMI z scores were calculated
for individuals younger than 18 years old using the Zanthro function of
STATA package v15.0, based on the World Health Organization Child
Growth Standards 2007. Urbanization information (urban/rural/pastoral
residence, population density, GDP) was collected from the National
Bureau of Statistics of China and China Statistical Yearbook (2017 and
2018). Geographic information (sampling site, province, geographical zone,
altitude, latitude, longitude) and sampling month were collected in the
meantime. Geographic distances between sampling sites were repre-
sented by Vincenty distances, which were computed using the geosphere
R package v1.5-1049.
The study was approved by the Ethical Committee of Jiangnan

University. Written informed consents were obtained from all participants
or their legal representatives for minors.

16 S rRNA gene sequencing
Microbial DNA was extracted from feces using the MP FastDNA Spin Kit for
Feces (MP Biomedicals, Santa Ana, CA, USA) following the manufacturer’s
instructions. The V3–4 region of 16 S rRNA gene was amplified by the
primers 314 F (CCTAYGGGRBGCASCAG) and 806 R

(GGACTACNNGGGTATCTAAT) jointed with a seven-base-pair barcode.
The PCR product was purified by the QIAquick Gel Extraction Kit (Qiagen,
Hilden, Germany), and sequenced on the Illumina Miseq platform with the
Miseq Reagent Kit V3 (Illumina, San Diego, CA, USA, PE300 mode).

Microbiota data analysis
Paired-end sequencing reads were merged using USEARCH v11.0.66750.
The reads were de-multiplexed, and barcode and primer sequences were
removed with Cutadapt v2.1151. All sequences were subjected to quality
filtering with a cutoff of maxee 1.0 and de-replicated, and unique
sequences with more than seven replicates were clustered to ZOTUs using
USEARCH. Taxonomy of ZOTU representative sequences was assigned
using the SINTAX algorithm of USEARCH and the adjusted Ribosomal
Database Project (RDP) training set v16 (https://github.com/Li-Zhang/
rdp_16s_v16_sp_ManualAdjustment) with a cutoff of 0.8. The phylogenetic
tree was constructed by inserting ZOTU representative sequences into the
99% Greengenes 13_8 reference tree using the SEPP algorithm52 with
QIIME2 v2018.1053. The functional potential was predicted based on ZOTUs
using PICRUSt229, generating EC number and MetaCyc pathway
abundances.
For analyzing the microbiota alpha and beta diversity, the ZOTU table

was rarefied to 10,000 reads, and observed ZOTUs, Faith’s PD, Shannon
index, Bray–Curtis distance, and unweighted UniFrac distance were
estimated using QIIME2, whereas JSD was estimated using the phyloseq
R package v1.32.054. The microbiota variation explained by environmental
variables was evaluated with envfit function of the vegan R package
v2.5–621, and the differential clustering of microbial communities was
assessed using PERMANOVA with adonis function of vegan. The
Correlation between geographic distances and microbial JSD was
estimated by Mantel statistic based on Spearman’s rank correlation, using
mantel function of vegan.
For the rest of the analyses, total sum scaling was applied to normalize

the microbiome data unless otherwise specified. Enterotype analysis was
done based on the method described by Arumugam et al.14. Samples were
clustered with the pam function of the cluster R package v2.1.055. The
optimal number of clusters was four according to the Calinski–Harabasz
Index, giving an average silhouette coefficient of 0.14. The clustering was
visualized on PCoA using the ade4 R package v1.7-1555. To identify the
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driving genera of each enterotype, random forest analysis with ten-time
fivefold cross-validation was performed using the randomForest R package
v4.6-1456. The representative genus Escherichia/Shigella was referred to as
Escherichia, considering that all subjects had no symptoms of Shigella
infection at the time of sampling.
Random forest models with ten times fivefold cross-validation was

applied to identify genera distinguishing the eight ethnic groups using the
scikit-learn Python package v0.23.157. To even out the number of
individuals in each ethnic group, the Han Chinese were randomly
downsampled to 6% of the full data set 1000 times. Accordingly, the
Mean Decrease in Gini, AUC, sensitivity, specificity, and precision were
calculated as the average value from 1000 random forest models.
To examine the microbiota co-occurrence network, correlation analysis

was performed on genera (data rarefied to 10,000 reads) using SparCC58,
and visualized using Cytoscape v3.5.159. Differential genera were detected
using the DESeq2 R package v1.29.1460, with adjustment for age and
gender unless otherwise specified. Genera with mean relative abundance
>0.1% and presence in >50% of the samples in at least one group were
used for the above analyses unless otherwise specified.

Statistical analysis
Two-tailed Mann–Whitney test and Fisher’s exact test were used to
compare continuous variables and categorical variables, respectively.
Multiple comparisons were corrected using the Benjamini–Hochberg false
discovery rate algorithm61 with a significance level of 0.05 (p.adj value).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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