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Abstract

Metastasis is the most devastating aspect of cancer, however we know very little about the
mechanisms of local invasion, the earliest step of metastasis. During tumor growth
CD11b*Gr1* cells, known also as MDSCs, have been shown to promote tumor progression
by a wide spectrum of effects that suppress the anti-tumor immune response. In addition to
immunosuppression, CD11b*Gr1™ cells promote metastasis by mechanisms that are cur-
rently unknown. CD11b*Gr1* cells localize near fibroblasts, which remodel the ECM and
leave tracks for collective cell migration of carcinoma cells. In this study we discovered that
CD11b*Gr1* cells promote invasion of mammary carcinoma cells by increasing fibroblast
migration. This effect was directed by secreted factors derived from CD11b*Gr1* cells. We
have identified several CD11b*Gr1* cell secreted proteins that activate fibroblast migration,
including CXCL11, CXCL15, FGF2, IGF-I, IL1Ra, Resistin, and Shh. The combination of
CXCL11 and FGF2 had the strongest effect on fibroblast migration that is associated with
Akt1 and ERK1/2 phosphorylation. Analysis of subsets of CD11b*Gr1™* cells identified that
CD11b*Ly6CM9"Ly6G"°" cells increase fibroblast migration more than other myeloid cell
populations. Additionally, tumor-derived CD11b*Gr1* cells promote fibroblast migration
more than splenic CD11b*Gr1* cells of tumor-bearing mice. While TGF signaling in fibro-
blasts does not regulate their migration toward CD11b*Gr1* cells, however deletion of
TGFR receptor Il on CD11b*Gr1* cells downregulates CXCL11, Shh, IGF1 and FGF2 re-
sulting in reduced fibroblast migration. These studies show that TGF signaling in
CD11b*Gr1* cells promotes fibroblast directed carcinoma invasion and suggests that peri-
vascular CD11b*Ly6C"9"Ly6G'°" cells may be the stimulus for localized invasion leading
to metastasis.
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Introduction

Metastasis is a key problem in cancer. Approximately 90% of patients die directly or indirectly
because of the spread of cancer [1]. In breast cancer, approximately 5% of patients are diag-
nosed with Stage IV (SEER 1975-2008); thus 95% of patients are diagnosed with cancer that
has no clinical evidence of metastasis. After treatment of their primary cancer, 11% of women
will have recurrence within 5 years of treatment and 20% of women will have recurrent cancer
within 10 years of treatment [2]. Treatment of these women with metastasis inhibitor drugs
could prevent cancer recurrence; however, preventative therapies are limited because of lack of
basic knowledge on the earliest steps of metastasis.

Intravital imaging has shown that very few cells within a tumor are motile. Motile cells lo-
calize to perivascular areas that are enriched in tumor-associated macrophages (TAM) and ex-
tracellular matrix (ECM) [3]. Stromal cells within the tumor microenvironment enhance
cancer migration by secretion of chemokines and acting as leader cells for single cell or collec-
tive migration [4]. TAMs enhance breast cancer cell migration using EGF and M-CSF para-
crine signaling [5,6]. Fibroblasts lead squamous cell carcinoma collective migration in tracks
created by force and protease-mediated ECM remodeling [7,8]. CD11b and Gr1 cell surface
markers delineate immature myeloid cells, which during tumor progression may differentiate
into macrophages, dendritic cells or granulocytes. CD11b*Gr1™ double positive cells, known as
myeloid derived suppressor cells (MDSCs), accumulate in pathological conditions, including
infection, trauma, and tumors [9]. In tumors, MDSCs suppress T cell activity, modulate the in-
flammatory cytokine production of macrophages, promote angiogenesis, and enhance metasta-
sis [9]. The mechanism of their promotion of metastasis has not been elucidated, but the cells
accumulate in the invasive edges of tumors [10] and populate the lung prior to growth of lung
metastatic breast cancer cells [11]. Orthotopic tumors composed of tumors cells and
CD11b*Grl" cells increase the lung metastasis of breast cancer cells [10]. In patients, myeloid
cells expressing MDSC markers are increased in cancer patients, increase with cancer stage and
increase with the degree of metastasis [12].

The role of TGF signaling in tumorigenesis and metastatic progression is controversial. At
early stages, TGFp inhibits tumor initiation and progression by inducing cell cycle arrest and
apoptosis, but at later stages of epithelial tumorigenesis it is thought to promote malignancy
[13,14,15]. In our laboratory, we have shown that conditional deletion of TGFp receptor type II
(TBRII) in mammary epithelial cells resulted in shortened tumor latency and increased lung
metastases [16]. In the pancreas, epithelial specific deletion of TBRII in combination with
knockin of an activated Kras results in the development of much more aggressive pancreatic
ductal adenocarcinomas than activated Kras alone [17]. Deletion of one allele of the type II
TGEFR receptor gene, Tgfbr2, in fibroblasts promotes metastasis in MMTV-PyMT mammary
tumors and the mechanism is dependent on CXCL12 and CCL2 chemokines [18]. A number
of experiments have demonstrated the importance of TGFp signaling in immune cells, the re-
sults of which are strongly dependent on the type of cell from which TGFf was deleted. For in-
stance, loss of TGFp signaling in T cells results in an autoimmune disease with early postnatal
lethality [19], while selective loss of Smad4-dependent signaling in T cells leads to spontaneous
gastrointestinal cancers [20]. Mice with a conditional knockout of TBRII in myeloid cells
(LysM™) that were generated in our laboratory, showed a reduced suppressive function of
CD11b"Grl" cells, increased antigen-presenting properties of dendritic cells and increased
anti-tumorigenic properties of tumor associated macrophages (TAMs); and these changes
were reflected in reduced tumor growth [21]. Subsequently, Pang at al. used the same mouse
model and showed that TGFp signaling in myeloid cells is indeed essential for tumor metastasis
by regulating the production of type II cytokines, TGFp1, arginase 1, and iNOS [22]. We
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recently showed that TGF signaling regulates expression of CD73 on mature myeloid cells
which limits adenosine production and decreased metastasis in MMTV-PyMT mice associated
with decrease tumor angiogenesis in parallel with increased T cell activation [23].

We hypothesized that TGF signaling in CD11b"Gr1" cells would enhance the migration/
invasion of cancer cells by acting on fibroblasts. We have shown that the inflammatory
CD11b"Gr1" cells promote invasion of breast carcinoma cells by directing the invasion of
“leader” fibroblasts. A specific subset of CD11b*Gr1* cells, the monocytic subtype (Ly6C""),
secrete CXCL11, FGF2, IGF-I and Shh that promote fibroblast migration. Abrogation of
TGF03B2 signaling in these myeloid cells significantly decreased fibroblast migration. This
identifies a new mechanism of breast cancer local invasion and suggests new targets for metas-
tasis prevention therapeutics.

Materials and Methods
Cells

Generation of Tgfbr2™" mice has been described previously [24]. Immortalized Tgtbr2
Tgfbr2"PX fibroblasts were generated from adult mouse mammary glands as described [25].
Briefly, tumors were minced and placed in a culture flask with DMEM containing 10% FBS.
After cells reached confluence, fibroblasts were differentially trypsinized from carcinoma cells
using TrypLE (Life Technologies, Grand Island, NY) exposure for 30 seconds. Rapidly de-
tached cells were re-plated to flasks. Primary fibroblasts were verified by morphology and

fl/fl fspWT

or

qRT-PCR: fibroblasts are spindle shaped and express vimentin, smooth muscle actin and FSP1;
and do not express E-cadherin or EpCAM. Immortalized PMTB6-2 mammary carcinoma
cells were generated from MMTV-PyMT mouse mammary gland tumors as described previ-
ously [26]. Fibroblasts were maintained in DMEM containing 10% adult bovine serum and
PMTB6-2 carcinoma cells were maintained in DMEM/F12 containing 5% adult bovine serum.
4T1 and LLC mouse tumor cell lines were obtained from American Type Culture Collection
(Manassas, VA, USA) and maintained following the manufacturer’s protocols.

Animals and orthotopic grafts

Orthotopic grafts were prepared by suspending 500,000 4T1 cells in 25 mkl of neutralized rat
tail collagen. Grafts were placed in inguinal fatpads of female Balb/c mice. Spleens and tumors
were collected 3-5 weeks after tumor palpation or graft implantation. LLC cells (5x10 cells)
were injected s.c. into the right flank of ¢57bl/6 mice. TGFBRIM K and TGFBRIM*WT mice,
on a C57BL6 background, were established and maintained as described [21]. Naive Balb/c and
¢57bl/6 mice were ordered from The Jackson Laboratory (Bar Harbor, ME, USA).

All mice were housed in the Department of Animal Care at Vanderbilt University Medical
Center following the Association for the Assessment and Accreditation of Laboratory Animal
Care and Institutional Animal Care and Use Committee guidelines. The studies were approved
by IACUC at Vanderbilt University Medical Center protocol #M/07/331 regulating animal
welfare to ameliorate any unnecessary suffering. Animals were sacrificed using
CO2 asphyxiation.

Magnetic Separation of CD11b*Gr1™ cells

Splenocytes were isolated by passage of dissected spleen through 70 um nylon cell strainers.
Pellets were incubated in ACK buffer (0.15M NH,CI, 10mM KHCO3, 0.1mM EDTA) for

5 minutes to lyse erythrocytes. Gr1™ splenocytes were collected using MACS magnetic
microbead separation (Miltenyi Biotech, Auburn, CA). Cleared splenocytes were incubated
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with biotinylated anti-Gr1 antibody (BD Biosciences, San Jose, CA 553125) and Streptavidin
microbeads (Miltenyi Biotec) according to manufacturer instructions. CD11b*Gr1™ cells were
collected from MACS LS Columns and the indicated cell numbers were cultured for 16-18
hours in RPMI 1640 containing 55 um 2-mercaptoethanol and 10% FBS. Conditioned medium
(CM) was generated by culturing 2.5 million cells for 16-18 hour and centrifuging culture me-
dium at 1500 g and passing supernatant through a 0.22 um filter.

Migration assay

6.5 mm Transwell polycarbonate inserts with 8 um pores (Corning, Lowell, MA, cat #3422)
were coated with 1 mg/ml fibronectin containing 0.1% gelatin. Cells, CM or medium was
placed in the lower chamber and the insert was replaced. Fibroblasts were cultured in serum-
free DMEM for 12 hours. 50,000 fibroblasts were placed on the Transwell insert and cells were
allowed to migrate for 5 hours. Cells were fixed in 10% neutral buffered formalin and stained
with Mayer’s hematoxylin solution. Non-migrated cells were removed from the top of the
Transwell filter using a cotton swab. Filters were cut out and mounted on microscope slides.
Migrated cells were counted by imaging 10 random fields of view and cells were counted using
Image] 1.43u (NIH).

Fluorescent invasion assay

6.5 mm Transwell inserts were coated with 1 mg/ml Growth Factor Reduced Matrigel (BD Bio-
sciences). Cells, CM or medium was placed in the lower chamber and the insert was replaced.
Cells were cultured in serum-free DMEM for 12 hours. Fibroblasts were labeled with
1,1’-dioctadecyl-6,6'-di(4-sulfophenyl)-3,3,3’,3'-tetramethylindocarbocyanine (Life Technolo-
gies, Grand Island, NY) according to manufacturer instructions. PMTB6-2 carcinoma cells
were labeled with 1,1’-dioctadecyl-6,6’-di(4-sulfophenyl)-3,3,3',3'-tetramethylindocarbocya-
nine (Life Technologies) according to manufacturer instructions. 50,000 fibroblasts and/or
50,000 carcinoma cells were placed on the Transwell insert and cells were allowed to migrate
for 16 hours. Cells were fixed in 1% paraformaldehyde and counterstained with DAPI. Non-
invaded cells were removed from the top of the filter using a cotton swab. Filters were cut out
and mounted on microscope slides. Invaded cells were counted by imaging 10 random fields of
view using Texas Red and FITC fluorescent microscope filters. Cells of each fluorescent color
were overlaid with DAPI and counted manually. Migration assays with purified recombinant
proteins were treated in RPMI 1640 containing 0.1% FBS with the midpoint of the EDs of the
listed dose according to manufacturer specifications (R&D Systems, Minneapolis, MN). EDs,
doses: 10ng/ml CXCL11, 50ng/ml CXCL15, 1ng/ml FGF2, 1ng/ml IGF-I, 10ng/ml IGF-II,
60ng/ml IL-1ra, 2 pg/ml Resistin, 0.5 pg/ml Shh, 0.5 ug/ml VEGF-D, 20ng/ml VEGFRI.

Western immunoblots and quantitation

10 cm dishes were coated with 1mg/ml fibronectin containing 0.1% gelatin and 7 million cells
in DMEM containing 10% adult bovine serum. After 24 hours, medium was replaced with
serum-free DMEM. Serum-starved cells were then treated with RPMI 1640 containing 55 um
2-mercaptoethanol and 10% FBS (untreated) or CD11b"Gr1" cells CM. Lysates were collected
in TNE buffer (10mM Tris, 0.2M NaCl, ImM EDTA, pH 7.4) containing protease inhibitor
cocktail and phosphatase inhibitor cocktail 3 (Sigma-Aldrich, St. Louis, MO). Protein was
quantitated using Bradford assay and 30 ug of total protein was separated by SDS-PAGE. Pro-
tein was transferred to nitrocellulose membranes and blocked with 5% BSA or 5% nonfat dry
milk diluted in TBST. Proteins were immunoblotted using the following antibodies: Erk1/2
(Santa Cruz, Santa Cruz, CA sc-94), p-Erk1/2 (Santa Cruz sc-7383), p38 (Cell Signaling,
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Boston, MA 9212), p-p38 (Cell Signaling 9211), c-Src (Santa Cruz sc-18), p-cSrc (Life Technolo-
gies 44-660G), Akt1 (Cell Signaling 2967), p-Akt1 (Cell Signaling 9271), JNK (Cell Signaling
9258), p-JNK (Cell Signaling9255), PI3K p85 (Cell Signaling 4257), p-PI3K p85 (Cell Signaling
4228), FAK (Cell Signaling 3285), p-FAK Y397 (Cell Signaling 3283) and secondaries ant-
rabbit-HRP or anti-mouse-HRP (Jackson ImmunoResearch, West Grove, PA). Proteins were
detected by enhanced chemiluminescence (Pierce, Rockford, IL) and captured on photographic
film. Films were scanned on HP flatbed scanner and densitometry was completed using Image].

Antibody array (CM)

Untreated medium consists of RPMI 1640 containing 55 um 2-mercaptoethanol and 10% FBS.
Three million freshly isolated CD11b"Gr1" cells were cultured for 16 hours in the same medi-
um. Serum-starved immortalized Tgfbr2™P"" fibroblasts were cultured in the same medium
for 16 hours. Serum-starved immortalized Tgfbr2™P"" fibroblasts were cultured in 16 hour
CD11b"Gr1" cells CM for 16 hours. Conditioned medium was collected and centrifuged at
1500g for 5 minutes. Supernatants were passed through 0.22 um filters. Samples were exposed
to RayBiotech Mouse Cytokine Antibody Array C Series 2000 (Norcross, GA) according to
manufacturer instructions. Films were scanned on HP flatbed scanner and densitometry was
completed on Image]. All protein optical densities were normalized to positive controls on
each membrane.

gPCR (primers)

RNA was isolated using RNeasy mini kit (Qiagen, Valencia, CA) with on-column DNase diges-
tion. Total RNA (1 ug) was reverse transcribed to generate cDNA using M-MLV reverse tran-
scriptase (Life Technologies). Relative mRNA quantity was determined by real-time RT-PCR
using iCycler instrumentation and software (BioRad, Hercules, CA). Primer sequences are
available by request.

Flow cytometry

Splenocytes were prepared as described above. 4T1 tumor explants were finely chopped and di-
gested in 1mg/ml collagenase I (Sigma C0130) and 1mg/ml Dispase II (Roche 11629200) for
45 minutes at 37C. 10 uU/ml DNase (Calbiochem 260913) was added and incubated for 5 min-
utes. Tumor cells were gently pushed through a 70 um cell strainer and gently washed several
times in cold PBS. Cells were blocked with Fc block (BD Biosciences). Cells were labeled with
antibodies specific for: CD45-APC (Biolegend, San Diego, CA 103111), CD45-PE/Cy7 (Biole-
gend 103113), CD11b-FITC (BD Biosciences 553310), CD11b-APC (Biolegend 101211), Gr1-
PE (Biolegend 108407), Ly6C-FITC (BD Biosciences 553104), Ly6G-PE (Biolegend 127607),
CD3-FITC (Biolegend 100203), CD19-PE (Biolegend 115507) and counterstained with DAPI.
CD11b"Grl" cells, Ly6C, Ly6G, monocytes, B cells and T cells were collected by FACS using
BD FACSAria III instrumentation (BD Biosciences). Flow cytometry experiments were per-
formed in the VUMC Flow Cytometry Shared Resource. The VUMC Flow Cytometry Shared
Resource is supported by the Vanderbilt-Ingram Cancer Center (P30 CA68485) and the Van-
derbilt Digestive Disease Research Center (DK058404). CM was generated as described above
using 1 million cells/ml.

Statistical analysis

Data were analyzed using the GraphPad Prism 5.02 software (GraphPad Software Inc., San
Diego, CA) and presented as mean + SEM. Comparisons between treatment groups and
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control untreated groups were performed using one-way ANOV A followed by Dunnett’s post-
tests. Comparisons between two groups were performed using two-tailed unpaired t tests. A P
value < .05 was considered significant.

Results
CD11b*Gr1* cells secretions promote fibroblast migration

We isolated CD11b*Gr1" cells from spleens of mice bearing orthotopic 4T1 mammary gland
tumors using Gr1 antibody targeted magnetic separation. CD11b"Gr1" cells can be isolated
using a single antibody since all Gr1™ cells in the spleen are also CD11b" (Fig. 1A). Freshly iso-
lated CD11b"Gr1" cells were used as the attractant for fibroblasts migrating through a fibro-
nectin matrix (Fig. 1B). CD11b"Gr1™ cells promote migration of immortalized mouse
mammary gland fibroblasts in direct response the number of CD11b*Gr1" cells (Fig. 1C).
Since CD11b"Gr1" cells secrete TGF ligand [10], we wanted to determine if TGFf responsive-
ness in fibroblasts is required for this induced migration. Immortalized fibroblasts that lack
TGFBRII, and do not respond to TGFp ligand, were placed in a migration chamber with differ-
ent numbers of live CD11b"Gr1" cells. CD11b*Gr1™ cells increase migration of TGFBRII-
deficient fibroblasts, indicating that TGFf signaling is not required for CD11b*Gr1" cells stim-
ulation of fibroblast migration (Fig. 1D). To determine if CD11b*Gr1" cells secrete products
that promote fibroblast migration, we prepared conditioned medium (CM) from CD11b"Gr1*
cells cultured for 16-18 hours. Fibroblasts exposed to live CD11b"Gr1" cells or CD11b"Gr1™
cells CM increased migration equally, indicating that secretions from CD11b*Gr1" cells drive
fibroblast migration (Fig. 1E). Immortalized fibroblasts may have an altered migration re-
sponse, so we examined primary fibroblast migration and found the same response (data not
shown).

Our migration assay was converted into an invasion assay by providing a thick layer of
Matrigel basement membrane for cells to invade through (Fig. 1F). Fibroblasts and carcinoma
cells were labeled by different fluorochrome dyes (M&M section). Immortalized mouse mam-
mary fibroblasts invade through Matrigel when attracted by CD11b*Gr1" cells CM (Fig. 1G).
Interestingly, CM from CD11b"Gr1" cells does not stimulate invasion of mouse mammary car-
cinoma cells (Fig. 1H) unless they are co-cultured with fibroblasts (Fig. 11).

To understand the mechanism of communication between CD11b"Gr1" cells and fibro-
blasts, we examined induced signal transduction pathways in fibroblasts treated with
CD11b"Grl" cells CM. We examined phosphorylation of p38 MAPK, c-Src, JNK, PI3K p85,
FAK and found no alterations (data not shown). We did find increased phosphorylation of
ERK1/2 and Aktl. ERK1/2 was rapidly phosphorylated after five minutes of CD11b"Gr1" cells
CM treatment and returned to basal levels after 2 hours (Fig. 1]). Aktl was phosphorylated at
5 minutes of CD11b"Gr1™ cells CM treatment and continued to rise over time (Fig. 1]).

Identification of proteins secreted by CD11b*Gr1™ cells

To identify the CD11b*Gr1™ cells cytokines that mediate fibroblast invasion, we analyzed con-
ditioned medium from CD11b*Gr1" cells using an antibody array of 144 secreted proteins. We
compared cytokines from CD11b"Gr1" cells and fibroblasts and identified 27 cytokines from
CD11b"Gr1" cells that are not secreted by fibroblasts (Fig. 2A). These include proteins regulat-
ing cell growth, immune cell recruitment, and immunogenic function. Comparison of fibro-
blasts and CD11b*Gr1" cells showed that 7 proteins are predominantly expressed in
CD11b*Gr1" cells. These proteins include CXCL11, CXCL15, IGF-1, IL1ra, Resistin, VEGF-D
and VEGFRI.
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CD11b*Gr1* cells.
doi:10.1371/journal.pone.0117908.9001

To identify specific factors responsible for CD11b"Gr1" cells enhancement of fibroblast mi-
gration, we treated fibroblasts with purified proteins that were identified above. We tested 10
recombinant proteins and found that 8 increased fibroblast migration (Fig. 2B). CXCL11,
CXCL15, FGF2, IGF-I and Shh further increased fibroblast migration in a dose dependent
manner (data not shown). Combining CXCL11 and FGF2 increased fibroblast migration above
CXCLI11 or FGF2 alone (Fig. 2C). Because FGF2 had a more promising effect in stimulation of
fibroblast migration, alone or in combination with CXCL11, we used an FGFR3 inhibitor
(PD173074) to determine if pharmaceutical inhibition can decrease migration of fibroblasts to-
ward CD11b"Gr1* cells. We found that the FGFR3 inhibitor can completely abolish the stimu-
lated effect of CD11b*Gr1™ cells on fibroblast migration (Fig. 2D).
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CD11b*Ly6C""Ly6G'*" cells are the primary mediator of fibroblast
migration and it is dependent on TGFf signaling

CD11b*Gr1" cells are composed of different subsets of myeloid cells [27]. We collected
CD11b*, Ly6G'Ly6C"&" cells (Ly6C, M-MDSC), CD11b*Ly6G™€"Ly6C'" cells
CD11b*Gr1" cells (Ly6G, G-MDSC), and CD11b*Ly6G Ly6C" (macrophages) from the spleen
of 4T1 tumor-bearing mice (Fig. 3A). We also collected B cells (CD19%) and T cells (CD3™)
from the spleens of the same mice (Fig. 3B). From tumor tissue (4T1), we collected
CD11b"Gr1" cells and CD11b*Grl- cells (Fig. 3C). The cells were cultured for 16-18 hours
and conditioned medium was collected. We examined fibroblast migration to immune cell CM
and found that spleen Ly6C, tumor CD11b*Gr1" cells and tumor macrophages increased fibro-
blast migration (Fig. 3D). Confirming our chemokine profile, analysis of gene expression in
Ly6C and Ly6G cells showed that CD11b*Ly6C™"Ly6G'™ cells (Ly6C) have increased expres-
sion of CXCL11, FGF2, IGF-I and Shh relative to CD11b*Ly6G"**Ly6G™®" cells (Ly6G)

(Fig. 3E).
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showing collection of CD11b*Gr1* cells and macrophages (CD11b*Gr1*) from 4T1 tumor tissue. The plot was gated for CD45" cells. (D) Fibroblast migration
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tumor-derived CD11b*Gr1* cells and tumor macrophages induce the most fibroblast migration. * — p<0.05 compared to control. (E) gRT-PCR analysis of
cytokines/chemokines in splenic Ly6G (CD11b*Ly6G""Ly6C'*") and Ly6C (CD11b*Ly6CM"Ly6G'") cells. (F) gRT-PCR analysis of cytokines/chemokines
in splenic CD11b*Gr1* cells stimulated by TGFB1 (1 ng/ml) for 18hr. with and without SB431542 (10 uM) * — p<0.05 compared with untreated cells,

** _p<0.05 compared with TGFB treated cells, # — p<0.05 compared with WT cells. (G) CD11b*Gr1™ cells (4x10°) isolated from spleen of LLC tumor
bearing mice were incubated 18hr in presence of TGFB (1ng/ml) and TGFB and SB431542 (10uM). Level of FGFb was measured by ELISA (R&D System,
Minneapolis, MN). (H) CD11b*Gr1* cells (3x10°) isolated from spleen of LLC tumor bearing mice with deleted TGFBRII decrease migration of fibroblasts
compared with CD11b*Gr1* cells with intact TGFB signaling. “” control — negative control, DMEM without serum, * —p<0.01. TGFB1 (1 ng/ml), SB431542
(10 uM).

doi:10.1371/journal.pone.0117908.g003

We reported previously that a significant number of cytokines/chemokines expression by
myeloid cells are regulated by TGFp signaling [21] as well as adenosine production [23]. Fur-
ther examination of chemokine expression revealed an enrichment of CXCL11, FGF2, IGF-1
and Shh in CD11b"Gr1" cells isolated from spleen of LLC tumor bearing transgenic mice that
lack TGFBRII only on myeloid cells (LysM"). Basal levels of CXCL11, IGF-1 and Shh expres-
sion was dramatically decreased in CD11b"Gr1*/TBRII-KO cells vs. CD11b"Gr1™ WT cells
and not changed by TGFp stimulation (Fig. 3F). Basal expression of FGF2 in KO cells was de-
creased 3 fold but highly upregulated by TGFf on WT cells compared to other cytokines. Add-
ing the TGF signaling inhibitor, SB431542, to WT cells inhibits only FGF2 expression in
CD11b*Gr1" cells. By ELISA we found similar effect of SB431542 on TGFp stimulated secre-
tion of FGFb by CD11b"Gr1" cells (Fig. 3G). In a migration assay we found that TGFf can
stimulate the ability of CD11b*Gr1" cells to increase migration of fibroblasts and adding
SB431542 decreases this effect. However, KO cells still have lower ability to stimulate fibroblast
migration vs. using TGFp signaling inhibitor (Fig. 3H) probably due to an incompleted inhibi-
tion of canonical and noncanonical TGF signaling pathways.

Discussion

The significant finding in this study is that TGFp signaling in monocytic MDSCs (CD11b*Ly6-
ChePLy6G'") stimulates the migration of fibroblasts within tumors and that this increases the
invasion of carcinoma cells. Our data integrate with two previously observed findings—first;
the increased number of MDSC correlates with metastasis in human cancer patients [28] and
second; myeloid cells from patients with advanced-stage cancer have increased TGFBRII ex-
pression [22]. We discovered that FGF2 together with CXCL11, IGF-I and Shh secreted by
CD11b"Gr1" cells mediates fibroblast migration. This points to a novel role for CD11b"Gr1*
cells in metastasis by directing local invasion.

Metastasis requires several steps. 1) Angiogenesis — blood vessels grow into a tumor from
nearby vessels; 2) The next step, which we know very little about is the invasion of cancer cells
through their microenvironment toward newly developed blood vessels; 3) Intravasation —
cancer cells become able to traverse the vascular wall to enter a blood vessel; 4) Once cancer
cells enter the vascular compartment, they are continually assaulted with immunosuppressive
cells, lack of adhesion and sheer force and some cells activate survival mechanisms; 5) Extrava-
sation - surviving cancer cells can become arrested in micro-capillaries and exit the blood ves-
sel; 6) Extravasated cancer cells may find a hospitable microenvironment in their new locale
and begin to grow to form a secondary micro-metastatic tumor. 7) Finally, the secondary
tumor stimulates angiogenesis to provide nutrients and dispose of waste to form a clinically de-
tectable metastatic tumor [29]. The current state of anti-metastasis therapy is to treat with an-
giogenesis inhibitors. Vascular Endothelial Growth Factor (VEGF) is one of many proteins
that stimulate angiogenesis. A monoclonal antibody that blocks the effects of VEGF, Bevacizu-
mab/Avastin, is currently being used as therapy in several types of cancer [30]. However, the
FDA recently withdrew Avastin from breast cancer treatment as it was shown that the drug
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was ineffective and unsafe [31]. Aside from anti-angiogenesis therapies, we have no other op-
tions to prevent breast cancer metastasis in patients with localized breast cancer. Blockade of
local invasion could be used as a secondary mechanism to prevent metastasis.

CD11b*Gr1" cells secrete many cytokines, chemokines, growth factors and proteases. We
have identified a set of proteins that activate migration and chemotaxis of fibroblasts. We sug-
gest that FGF2, especially in combination with CXCL11, has a primary effect on fibroblast mi-
gration. FGF2 is expressed in luminal and myoepithelial cells of the normal mammary gland,
but is lost in breast cancer [32]. Re-expression of FGF2 in motile MDA MB 231 breast cancer
cells results in activation of focal adhesion and loss of motility [33]. FGF2 stimulates the prolif-
eration and migration of fibroblasts during wound healing and activates angiogenesis [34].
Since cell adhesion is maintained in collectively migrating cancer cells [35], FGF2 secreted by
CD11b"Gr1" cells may induce adhesion of cancer cells and migration of fibroblasts to enhance
collective migration of breast cancer cells.

CXCL11, also known as Interferon-inducible T-cell alpha chemoattractant, acts on target
cells by activation of CXCR3 and has the highest affinity for the receptor compared with its
other ligands [36]. CXCR3 has been associated with invasion of several different types of can-
cer, including breast cancer and is expressed in all human breast cancer cell lines. Antagonism
of CXCR3 with the small molecule AMG487 in mice bearing syngeneic subcutaneous breast tu-
mors resulted in decreased lung metastasis, but did not affect growth of the primary tumor
[37]. CD11b*Gr1" secretion of CXCL11 may mediate effects on fibroblasts as well as
tumor cells.

IGF-1 is over-expressed in breast cancer [38]. IGF-1 mediates cancer cell migration, inva-
sion and angiogenesis and mediates its intracellular signal by activation of IGF1R-PI3K-Akt
signaling pathway [39]. In breast cancers treated with EGFR inhibitors, IGF1R can replace
EGFR in heterodimers to confer resistance [40]. This suggests that IGF1R may play a role in
the EGF-MCSF cancer cell-TAM paracrine invasion pathway. Inhibitors of IGF1R activity are
being strongly pursued for anti-cancer therapeutics [41,42].

Breast cancer local invasion is moderated by the tumor microenvironment. This is the first
observation of paracrine communication between myeloid cells (CD11b"Gr1") and fibroblasts
in mediating mammary carcinoma cell invasion by TGFp regulation of the secretion of pro-
invasive cytokines/chemokines. Future studies should examine interactions between cells in
the tumor microenvironment in mediating tumor progression with a focus on myeloid cell-
specific TGF signaling.
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