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A B S T R A C T   

Prognostic models play a crucial role in providing personalised risk assessment, guiding treatment 
decisions, and facilitating the counselling of patients with cancer. However, previous imaging- 
based artificial intelligence models of epithelial ovarian cancer lacked interpretability. In this 
study, we aimed to develop an interpretable machine-learning model to predict progression-free 
survival in patients with epithelial ovarian cancer using clinical variables and radiomics features. 
A total of 102 patients with epithelial ovarian cancer who underwent contrast-enhanced 
computed tomography scans were enrolled in this retrospective study. Pre-surgery clinical 
data, including age, performance status, body mass index, tumour stage, venous blood cancer 
antigen-125 (CA125) level, white blood cell count, neutrophil count, red blood cell count, hae
moglobin level, and platelet count, were obtained from medical records. The volume of interest 
for each tumour was manually delineated slice-by-slice along the boundary. A total of 2074 
radiomic features were extracted from the pre- and post-contrast computed tomography images. 
Optimal radiomic features were selected using the Least Absolute Shrinkage and Selection 
Operator logistic regression. Multivariate Cox analysis was performed to identify independent 
predictors of three-year progression-free survival. The random forest algorithm developed 
radiomic and combined models using four-fold cross-validation. Finally, the Shapley additive 
explanation algorithm was applied to interpret the predictions of the combined model. Multi
variate Cox analysis identified CA-125 levels (P = 0.015), tumour stage (P = 0.019), and Radscore 
(P < 0.001) as independent predictors of progression-free survival. The combined model based on 
these factors achieved an area under the curve of 0.812 (95 % confidence interval: 0.802–0.822) 
in the training cohort and 0.772 (95 % confidence interval: 0.727–0.817) in the validation cohort. 
The most impactful features on the model output were Radscore, followed by tumour stage and 
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CA-125. In conclusion, the Shapley additive explanation-based interpretation of the prognostic 
model enables clinicians to understand the reasoning behind predictions better.   

1. Introduction 

Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer-related deaths in women [1]. Despite advancements in treat
ment strategies, the prognosis of EOC remains challenging, primarily due to late-stage diagnosis and high rates of recurrence [2]. Thus, 
there is an urgent need for accurate prognostic tools that can aid treatment planning and improve patient outcomes. 

Preoperative medical imaging is pivotal in EOC management and offers valuable insight beyond human visual interpretation [3]. 
Radiomics, a rapidly evolving field of medical imaging, holds great promise for cancer research [4]. Radiomics involves 
high-throughput extraction of quantitative imaging features from medical images, enabling the conversion of medical images into 
mineable data [5]. These features capture the heterogeneity and spatial characteristics of tumours and provide valuable information on 
tumour biology and behaviour [6]. Recently, radiomics has gained significant attention in multiple clinical scenarios of EOC, including 
precise diagnosis, pathological classification, targeted biopsy guidance, and prognostic prediction [7]. Radiomics has the potential to 
identify hidden prognostic markers and facilitate personalised treatment strategies by extracting numerous quantitative features from 
imaging modalities, such as contrast-enhanced computed tomography (CECT), magnetic resonance imaging (MRI), and positron 
emission tomography (PET), radiomics has the potential to uncover hidden prognostic markers and facilitate personalised treatment 
strategies. 

The primary purpose of our study was to investigate the utility of imaging-based radiomics in predicting survival outcomes in 
patients with EOC. By leveraging the rich information embedded in medical images, we developed a radiomics-based model that can 
accurately stratify patients based on their survival outcomes. Such a machine-learning model could serve as a valuable tool for cli
nicians in risk assessment, treatment planning, and monitoring disease progression. Moreover, we explored the potential synergistic 
effects of combining radiomics features with clinical data. By integrating radiomic features with traditional clinical factors, the pre
dictive power of our machine-learning model can be enhanced. The integration of radiomics into EOC research has the potential to 
revolutionise prognostic assessment and improve patient outcomes. By unlocking hidden information within medical images, radio
mics can provide valuable insights into tumour behaviour and facilitate personalised treatment strategies. Additionally, a Shapley 
additive explanation (SHAP) technique was used to explain the predictions generated by the clinical radiomic model [8]. This study 
contributes to the growing body of evidence supporting using interpretable radiomics-based machine learning models in EOC survival 
prediction, ultimately paving the way for more effective and individualised patient care. 

2. Materials and methods 

2.1. Patients 

This retrospective study was approved by the Institutional Ethics Review Board (approval number: 202475), which waived the 
requirement for informed consent. Consecutive patients with EOC who underwent surgery in our cancer-specialised hospital between 
June 1, 2013 and December 31, 2015 were reviewed. The cutofff date for survival data statistics was August 31, 2021. The inclusion 
criteria were as follows [1]: histologically confirmed EOC [2], available pretreatment CECT images [3], no prior anticancer treatment 
received before baseline CECT, and [4] patients who underwent surgical cytoreduction. Patients who had incomplete clinical data did 

Fig. 1. The flowchart of patients’ enrollment.  
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not undergo preoperative computed tomography (CT) scans, lacked CECT images, or had no available pathological information were 
excluded. Finally, 102 patients were included in this study. Fig. 1 illustrates the pathways for patient inclusion and exclusion. Clinical 
data, including age, body mass index (BMI), International Federation of Gynecology and Obstetrics (FIGO) stage, white blood cell 
count, neutrophil count, red blood count, haemoglobin level, platelet count, venous blood cancer antigen 125 (CA125) level, whole 
blood CA125 level, and treatment regimens were retrieved from electronic medical records. The missing values were imputed using the 
random forest (RF) imputation method [9]. The endpoint was progression-free survival (PFS), the interval from the treatment date to 
disease progression or death. 

2.2. Radiomic analysis pipeline 

2.2.1. CT image acquisitions 
Fig. 2a–d illustrates the overall study design. CT scans were performed using a 64-row CT scanner (Somatom definition AS large- 

aperture, Siemens Healthcare). The scanning parameters were as follows: tube voltage of 120-kVp, tube current of 252-mAs; field of 
view, 384 × 384 mm2; detector width, 38.4 mm, gantry rotation time, 0.5 s, beam pitch 0.6, and slice thickness, 5 mm. Iohexol (350 mg 
I/ml) was administered via the elbow vein at a rate of 2.5–3.0 ml/s. 

2.2.2. Tumor segmentation 
The CT images (Fig. 3a and b) were manually segmented using open-source software ITK-SNAP 3.6.0 (www.itksnap.org). Seg

mentation of the images was performed separately for each phase (pre- and post-contrast) by a radiologist specialising in gynaeco
logical oncology with six years of experience. The segmentation results were reviewed by a board-certified radiologist with more than 
10 years of experience. All readers or assessors were blinded to patients’ clinical information and pathological results. If there were any 
discrepancies during image reading or tumor segmentation, a group discussion was conducted to achieve a consensus. 

Fig. 2. The overall design of this study. The main steps include (a) data acquisition; (b) feature selection; (c) predictive model development; (d) 
model interpretation. 
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2.2.3. Feature extraction 
The AK 3.2.0 (Workbench2014, GE Healthcare) was used to extract quantitative radiomic features. This software tool complies 

with the standards established by the Image Biomarker Standardization Initiative (IBSI) [10]. A total of 2074 radiomic features were 
extracted from the pre- and post-contrast CT images. These features comprise first-order features, shape, grey-level run-length matrix 
(GLRLM), grey-level size-zone matrix (GLSZM), grey-level co-occurrence matrix (GLCM), grey-level dependence matrix (GLDM), and 
neighbourhood grey difference matrix (NGTDM). The image transformation employed logarithmic transformation, parameter Sigma 
selection 2.0 and 3.0; wavelet transformation, Level 1; local binary mode, Level 2, Radius 1.0, Subdivision select 1. 

2.2.4. Feature selection 
To ensure that the extracted features are in a consistent and comparable format and facilitate the development of robust and 

generalisable radiomics models, standardisation of radiomic features is an essential step before feature selection [11]. In this study, we 
used z-score normalisation to standardise the radiomic features. Subsequently, we leveraged the Least Absolute Shrinkage and Se
lection Operator (LASSO) algorithm [12] to select a subset of radiomic features that were most informative for predicting PFS from the 
2074 pre- and post-contrast CT radiomic features. This algorithm solves an optimisation problem that minimises the sum of the 
mean-squared errors of the model predictions and a penalty term proportional to the sum of the absolute values of the regression 
coefficients. The penalty term is controlled by a tuning parameter, denoted as λ (lambda), which determines the amount of shrinkage 
applied to the coefficients. By varying the value of λ, the LASSO performs a feature selection process, where features with non-zero 
coefficients are selected as the most relevant ones. 

2.2.5. Prognostic model construction 
Univariate and multivariate Cox analyses were conducted using stepwise regression to identify independent prognostic indicators. 

Variables with P < 0.05 in both univariate and multivariate analyses were included in the predictive models. The RF algorithm [13] 
was employed to develop the radiomic and combined models based on the filtered features using four-fold cross-validation, in which 
three folds (training a stratified four-fold cross-set) were iteratively used to train a model that was subsequently tested on the left-out 
fold (validation set). The performances of the predictive models were evaluated using metrics such as discrimination, calibration, and 
clinical validity. The discrimination power was assessed using receiver operating characteristic (ROC) curves. Calibration curves were 
constructed to assess the goodness of fit between the probabilities predicted by the combined model and the observed event pro
portions [14]. Clinical validity was evaluated using decision curve analysis (DCA), which quantitatively measures the net benefit of 
using a particular model in clinical decision-making [15]. 

Fig. 3. Two representative cases of pre- and post-contrast CT images. (a) A 41-year-old female patient presented with a complaint of abdominal 
distension persisting for over 10 days. Her CA125 level was measured at 650 U/mL, and the tumor was classified as stage IIIC. (b) A 70-year-old 
female patient presented with a complaint of abdominal distension persisting for over one year. Her CA125 level was measured at 457 U/mL, and 
the tumor was classified as stage III. 
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2.2.6. Model interpretation and feature importance 
The SHAP technique was employed to enhance the interpretability of the combined models at global and local levels, which are 

typically considered opaque black boxes [16]. SHAP is based on the concept of Shapley values derived from the cooperative game 
theory. It assigns a value to each feature based on its contribution to prediction when combined with other features. These values 
represent the average marginal contributions of a feature across all possible feature combinations. Using SHAP values, individual 
predictions can be explained by attributing the prediction outcome to specific features. The sum of the SHAP values for all features 
allowed for the decomposition of the model’s prediction, enabling a better understanding of the impact of each feature. 

2.3. Statistical analysis 

When considering sample size for a COX model, it is generally recommended to have at least 10–20 samples per predictor variable. 
Comparison of clinicopathological features between the training and validation cohorts was performed using a chi-square test or 
Fisher’s exact test (categorical variables), t-test or Rank sum test (for continuous variables), where appropriate. The balanced area 
under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were computed for 
the training cohort using the cutoff corresponding to the Youden Index. Since there is no universally accepted criterion for identifying 
overfitting models, in this analysis, we considered a decrease in performance from the training cohort to the validation cohort of 
greater than 30 % to be indicative of model overfitting. The Python package (v 3.7.6) was used for all the statistical analyses. A P <
0.05 was taken as statistically significant. 

3. Results 

3.1. Patient characteristics 

A total of 102 patients (mean age, 51.6 years ± 10.1) with EOC were included for analysis. Table 1 shows the patient characteristics 
stratified into the training and validation cohorts. There were no significant differences in clinical variables between the two cohorts 
(all p > 0.05). 

3.2. Predictive performance of the radiomic and combined models 

After feature selection, one pre-contrast CT feature (original_shape_Sphericity) and three post-contrast CT features (i.e., wave
letHLH_glszm_LargeAreaLowGrayLevelEmphasis, waveletLHL_ ngtdm_Busyness, and waveletLLH_gldm_DependenceVariance) were 
identified using an optimal λ of 0.105 (Fig. 4a and b). The relative feature importance results revealed that waveletHLH_glszm 
_LargeAreaLowGrayLevelEmphasis and waveletLHL_ngtdm_Busyness were significantly more important than wave
letLLH_gldm_DependenceVariance and original_shape_sphericity with relative importance coefficients of 1.000, 0.834, 0.412, and 
0.349, respectively. Therefore, we selected the top two radiomic features to construct the radiomic models. 

The radiomic model yielded an AUC of 0.762 (95%CI: 0.754–0.770), sensitivity of 0.747 (95%CI: 0.707–0.787), specificity of 0.703 
(95%CI: 0.661–0.745), PPV of 0.733 (95%CI: 0.714–0.752), and NPV of 0.735 (95%CI: 0.713–0.757) in the training cohort, and an 
AUC of 0.713 (95%CI: 0.656–0.770), sensitivity of 0.702 (95%CI: 0.613–0.791), specificity of 0.714 (95%CI: 0.608–0.820), PPV of 
0.576 (95%CI: 0.547–0.605), and NPV of 0.639 (95%CI: 0.581–0.697) in the validation cohort. 

Multivariate Cox analysis identified venous blood CA125 level (P = 0.015), stage III (P = 0.019), and Radscore (P < 0.001) as 
independent predictors of PFS (Table 2). Fig. 5a and b shows the predictive performance of the combined model, with a C-index of 

Table 1 
Patient characteristics in the training and validation cohorts.  

Characteristics Training cohort (n = 77) Validation cohort (n = 25) P-value 

Age (years) 52.0 ± 9.9 50.3 ± 10.9 0.476 
BMI (kg/m2) 23.0 ± 3.0 22.2 ± 3.6 0.265 
FIGO stage   0.838 

I 12 (15.6) 5 (20.0)  
II 10 (13.0) 4 (16.0)  
III 48 (62.3) 13 (52.0)  
IV 7 (9.1) 3 (12.0)  

WBC (mm3) 9.0 ± 4.0 10.2 ± 4.7 0.195 
NEU (mm3) 6.9 ± 4.1 8.2 ± 4.6 0.205 
RBC (mm3) 4.0 ± 0.6 4.0 ± 0.7 0.686 
HGB (g/L) 114.9 ± 17.1 108.5 ± 17.4 0.110 
PLT (mm3) 303.6 ± 113.5 326.7 ± 146.7 0.414 
Venous blood CA125 (U/mL) 1302.2 ± 1871.1 1291.4 ± 2674.3 0.982 
Whole boold CA125 (U/mL) 383.1 ± 290.0 470.4 ± 467.6 0.269 
Median PFS (months) 41.1 ± 26.9 45.6 ± 31.8 0.489 

Abbreviations: BMI, Body mass index; WBC, White blood cells; NEU, Neutrophil; RBC, Red blood cells; HGB, Hemoglobin; CA125, Carbohydrate 
antigen 125; PFS, Progression-free survival. 

L. Jian et al.                                                                                                                                                                                                            



Heliyon 10 (2024) e35344

6

0.745 (95%CI: 0.678–0.812). For predicting 3-year PFS, the combined model achieved an AUC of 0.812 (95%CI: 0.802–0.822), 
sensitivity of 0.803 (95%CI: 0.766–0.840), specificity of 0.703 (95%CI: 0.659–0.747), PPV of 0.768 (95%CI: 0.744–0.792), and NPV of 
0.769 (95%CI: 0.751–0.787) in the training cohort and an AUC of 0.772 (95%CI: 0.732–0.812), sensitivity of 0.734 (95%CI: 
0.657–0.811), specificity of 0.688 (95%CI: 0.666–0.710), PPV of 0.609 (95%CI: 0.574–0.644), and NPV of 0.690 (95%CI: 
0.615–0.765) in the validation cohort. 

The calibration curves (Fig. 5c) exhibited a high concordance level between the predicted and actual observed probabilities 
(Hosmer–Lemeshow test, P = 0.179). DCA (Fig. 5d) showed high clinical applicability for the combined model with a wide range of 
threshold probabilities (5–85 %). 

Fig. 4. Radiomics feature selection with the least absolute shrinkage and selection operator (LASSO) binary logistic regression model. (a) Tuning 
parameter (l) selection in the LASSO model used four-fold cross-validation with minimum criteria. Left vertical lines indicate the optimal value of 
the LASSO tuning parameter (λ). (b) LASSO coefficient profile plot with different log (λ). Vertical dashed lines represent four radiomic features with 
nonzero coefficients selected with the optimal λ value. 

Table 2 
Multivariate Cox proportional hazards analysis of clinical variables and radiomic signature.  

Predictors Estimate Standard error Z P-value Hazard Ratio Lower Upper 

Age 0.007 0.014 0.465 0.642 1.007 0.979 1.036 
BMI 0.017 0.051 0.326 0.744 1.017 0.92 1.124 
Tumor stage 
Stage I Ref. 
Stage II 1.337 0.735 1.82 0.069 3.809 0.902 16.079 
Stage III 1.553 0.665 2.336 0.019 4.724 1.284 17.375 
Stage IV 1.449 0.771 1.879 0.060 4.259 0.940 19.306 
WBC − 0.067 0.206 − 0.325 0.745 0.935 0.624 1.401 
NEU 0.123 0.218 0.565 0.572 1.131 0.738 1.735 
RBC 0.17 0.469 0.363 0.717 1.185 0.473 2.970 
HGB − 0.001 0.016 − 0.034 0.973 0.999 0.969 1.031 
Platelet 0.002 0.001 1.447 0.148 1.002 0.999 1.005 
Venous blood CA125 − 0.002 0.001 − 2.437 0.015 0.998 0.997 1 
Whole boold CA125 0 0 0.538 0.590 1 1 1 
Radscore 0.116 0.032 3.573 <0.001 1.123 1.054 1.197 

Abbreviations: BMI, Body mass index; WBC, White blood cells; NEU, Neutrophil; RBC, Red blood cells; HGB, Hemoglobin; CA125, Carbohydrate 
antigen 125. 
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3.3. Interpretability of the combined model 

The SHAP feature importance plots revealed that the Radscore had the highest importance in the combined model, followed by 
tumour stage and venous blood CA125. The plots show the distribution of the Shapley values for each feature, suggesting their impact 
on the model output. A higher SHAP value for a feature indicated a greater probability of disease progression. The summary plot 
demonstrates the relationship between a feature’s SHAP value and its influence on the model prediction. Fig. 6a–d shows the SHAP 
explanatory force plots for the two representative cases, illustrating how the features push the model’s output away from the baseline. 

4. Discussion 

In this study, we developed a radiomics model to predict EOC prognosis based on quantitative radiomics features and clinical 
information using the RF algorithm. The results demonstrated that the Radscore could significantly increase the accuracy of clinical 
variables (such as the FIGO stage and venous blood CA125). In addition, we leverage the SHAP method to display the relative 
importance of significant features and attribute the contribution of each feature to the final prediction. This approach allows users to 
gain insight into the decision-making process and build trust in the model’s predictions. 

EOC is a prevalent and highly lethal disease characterised by high mortality rates [17]. It is of the utmost importance to develop 
accurate prognostic tools and personalised therapeutic strategies to enhance patient outcomes. In our study, we focused on utilising 
high-dimensional radiomic features extracted from the entire tumour volume, as opposed to a single slice, to better capture the 

Fig. 5. Predictive performance of the combined model. (a–b) Receiver operator characteristic curve in the training and validation cohorts; (c) 
Calibration curve; (d) Clinical decision curve. 
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intrinsic characteristics of EOC. Feature selection is also a crucial step in radiomics analysis as it helps identify the most relevant and 
informative features for predicting outcomes. During the building of the radiomic signature, the LASSO method was applied to remove 
highly correlated radiomic features, including those that exhibited high correlations with the volume/voxel [18]. After feature se
lection, four radiomic features were identified: one shape and three wavelet-transformed texture features. Unlike previous studies, our 
study further ranked the relative importance of the selected features within the RF model. Two wavelet features with the most sig
nificant impact on model prediction were identified. These two features measure the variation in grey-level intensity within the voxel 
neighbourhood in the image and the distribution of large homogeneous areas based on their size and grey-level intensity, respectively 
[19]. Wavelet-transformed features can capture variations in texture patterns at various scales and orientations, providing valuable 
information about tumour heterogeneity, which dictates the treatment response and prognosis. 

To enhance the accuracy of survival prediction, clinical factors were incorporated into the radiomics signature to develop a 
comprehensive model. The clinical radiomics model showed acceptable discrimination. Notably, the radiomic signature provides 
additional value beyond the traditional FIGO staging system. Thus, the combined model can be considered a reliable tool for estimating 
the postoperative survival of patients with EOC. Although multiple previous studies [20–27] have been developed to predict the 
survival outcomes of patients with EOC, their models lacked interpretability, which limited clinical transformation. In this study, the 
SHAP algorithm was used to identify the most important features contributing to the model’s predictive performance. The results 
showed that Radsocre was the most important feature, followed by FIGO stage and venous blood CA125 levels. The SHAP algorithm 
provides a transparent and interpretable method for communicating the model’s predictions to clinicians and patients. It generates 
feature importance plots that visually represent the contribution of each radiomic feature to the model’s predictions [28]. This en
hances the trust and acceptance of the model in clinical settings because clinicians can easily grasp the underlying rationale behind the 
predictions. 

This study had some limitations. First, the retrospective design introduces inherent limitations, such as reliance on existing medical 
records and the potential for incomplete or missing data. This may have affected the accuracy and reliability of our findings. Addi
tionally, the retrospective nature of the study may introduce a selection bias, as the study population was based on patients who had 
already been diagnosed with EOC and underwent CT scans. This may limit the generalisability of our results to other populations and 
settings. Second, the relatively small sample size may limit the generalisability of the findings, which has been a challenge in previous 
studies. However, a held-out validation was performed to mitigate bias and obtain more robust results. Third, our radiomics features 
were extracted from CT images; features from other modalities, such as MRI, may provide different information regarding tumour 
heterogeneity. Fifth, the biological interpretation of radiomic features remains a challenging issue and requires further investigation 
[29,30]. Exploring associations with digital pathology features, conducting radiology-pathology co-registration, and assessing bio
logical pathways or genomic correlations can provide valuable insights into the underlying biology and mechanisms driving the 
observed radiomic patterns [31]. Finally, an external validation of the acquired data is necessary to confirm the reliability and 
reproducibility of the findings. Future studies should aim to validate these results using independent datasets to ensure the general
isability of radiomic models. 

Fig. 6. Global and individual interpretation of the combined model using SHAP method. (a–b) SHAP feature importance and summary plots; (b–d) 
The SHAP local force plots for two representative cases. 
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5. Conclusions 

Our study demonstrated that the RF model can potentially assess prognostic risk in patients with EOC. The radiomics-based model, 
which includes the FIGO stage, venous blood CA125 level, and Radscore, offers a noninvasive approach to predicting survival out
comes. This model can potentially contribute to the field of precision medicine for EOC, fulfilling the ultimate goal of personalised 
treatment of patients. 
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