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Immunotherapy for the
treatment of multiple myeloma
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Despite advances in treatment for multiple myeloma, the majority of patients

ultimately develop relapsed disease marked by immune evasion and resistance

to standard therapy. Immunotherapy has emerged as a powerful tool for

tumor-directed cytotoxicity with the unique potential to induce immune

memory to reduce the risk of relapse. Understanding the specific

mechanisms of immune dysregulation and dysfunction in advanced

myeloma is critical to the development of further therapies that produce a

durable response. Adoptive cellular therapy, most strikingly CAR T cell therapy,

has demonstrated dramatic responses in the setting of refractory disease.

Understanding the factors that contribute to immune evasion and the

mechanisms of response and resistance to therapy will be critical to

developing the next generation of adoptive cellular therapies, informing

novel combination therapy, and determining the optimal time to incorporate

immune therapy in the treatment of myeloma.
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Introduction

Multiple myeloma (MM) is a plasma cell malignancy characterized by clonal

proliferation of terminally differentiated B cells in the context of an

immunosuppressive milieu that permits immune escape (1, 2). There have been

remarkable treatment advances for both front-line and relapsed and refractory (R/R)

disease that have dramatically improved survival in recent years, including the use of

ant i-CD38 monoclonal ant ibody therapy, proteasome inhibitors , and

immunomodulatory imide drugs. However, current therapies are not curative, with 5-

year survival less than 60%, and most patients ultimately relapse with resistant disease

(3–5). As such, a critical area of recent discovery lies in novel immunotherapeutic

approaches to target the malignant plasma cell clone and overcome the

immunosuppressive tumor microenvironment, which has the potential to treat
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previously refractory disease and create a more durable response

to therapy. Here, we will review mechanisms of immune

dysregulation in MM as well as current advances in immune

and cellular immunotherapy, including adoptive cell transfer, T

cell engagers, checkpoint inhibition, and vaccine therapy.
Immune dysregulation in myeloma

Immune dysfunction and evasion in myeloma is mediated by

multiple cytokine and cellular signaling pathways which decrease

immune effector cell function and create a suppressive bone

marrow microenvironment. Immune dysregulation in the bone

marrow is driven in part by soluble components such as

transforming growth factor (TGF)-b, interleukin (IL)-10, IL-6,

and prostaglandin E2, which are produced by the malignant

plasma cell and by other suppressive cell populations in the

tumor microenvironment, including regulatory T cells, myeloid

derived suppressor cells (MDSCs), and bone marrow stromal cells

(6). Additionally, upregulation of negative checkpoint pathways,

including the PD-1/PD-L1 pathway, contributes to impaired T cell

mediated killing of the malignant clone. PD-L1 is highly expressed

on myeloma cells, and PD-1 has been shown to be upregulated

on circulating T cells isolated from patients with advanced MM (7).

These and other pathways drive T cell dysfunction, including

impaired cytotoxic T lymphocyte activation, reduced CD4 T cells,

increased T regulatory cells, and hallmarks of T cell exhaustion,

which have been described even in monoclonal gammopathy of

undetermined significance (MGUS) (6, 8, 9). Critical aspects

underlying this process include T cell senescence and ineffective

antigen presentation by tumor and dendritic cells (DCs) (9–12).

Indeed, DCs isolated from MM patients are decreased in number

and profoundly dysfunctional (6, 13). Factors contributing to DC

dysfunction include IL-6–mediated inhibition, decreased expression

of human leukocyte antigen (HLA), high levels of PD-L1

expression, and decreased expression of co-stimulatory molecules

(6, 10, 11). Innate immunity is further impaired by suppression of

NK cell function by MM and tumor evasion of NK cell surveillance

(14). Corresponding changes in the surroundingmicroenvironment

include increased presence of immunosuppressive cells such as

regulatory T cells, regulatory B cells, MDSCs, tumor-associated

macrophages (TAMs), and mesenchymal stem cells (MSCs) (6, 15,

16). In particular, increased presence of MDSCs has been associated

with worse outcomes in MM (16–18).

As understanding of these complex interactions disrupting

immune equilibrium has expanded, immunotherapy has

emerged as a strategy to overcome the immunosuppressive

tumor microenvironment and promote host anti-tumor

immunity in myeloma (19). These efforts have focused on the

activation and expansion of effector cells which can target and

attack malignant cells as well as creation of a durable memory

response to confer long term remission and protection against

tumor relapse (20).
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Allogeneic stem cell transplant

The potential role of immunotherapy for MM was initially

established with the graft-versus-myeloma effect of allogeneic

hematopoietic cell transplantation (allo-SCT). Allo-SCT has

been shown to induce long-term remission and potential cure

in a subset of MM patients, which is thought to be due to anti-

myeloma activity of graft alloreactive lymphocytes (2, 21–23).

The efficacy of this approach was further underscored by success

of donor lymphocyte infusion (DLI) for patients who relapsed

after allo-SCT (24). However, significant toxicities including

infection, graft-versus-host disease (GVHD), and treatment-

related mortality have limited its use, particularly with the

introduction of newer induction and maintenance regimens in

MM leading to improved response rates (25). To reduce

treatment-related morbidity and mortality and increase the

pool of allo-SCT eligible patients, non-myeloablative or

reduced-intensity conditioning (RIC) allo-SCT has similarly

been used (25–27); however, this strategy has been associated

with increased risk of relapse, highlighting the importance of

initial high-dose cytotoxic conditioning for durable response

and remission (2, 25). High-dose chemotherapy with autologous

transplant followed by RIC allo-SCT has been evaluated to

potentially balance these two approaches, but studies have

demonstrated some late relapses as well as unclear efficacy or

reduced survival when compared with tandem autologous

transplantation (2, 23, 25). While allo-SCT may still have a

potentially curative role in a curated subset of patient (28), risks

related to infection and GVHD remain significant. Nonetheless,

the potency of the graft-versus-myeloma effect speaks to the

unique potential for the immune system to overcome resistance,

and fuels the field of immunotherapy which strives to more

specifically target the malignant plasma cell clone.
Adoptive cellular therapy

CAR T therapy

Chimeric antigen receptor (CAR) T cell therapy has

demonstrated dramatic response rates in patients with

advanced myeloma, resulting in the FDA approval of two

CAR T cell products for patients with R/R disease

(idecabtagene vicleucel and ciltacabtagene autoloeucel). CAR T

cells are generated by transducing autologous T cells with the

CAR construct, consisting of an antigen binding site, generally a

single variable chain targeting a tumor antigen expressed on the

malignant clone, a costimulatory domain, and the z-chain of the

T cell receptor (TCR) complex. Upon ligation, the receptor

signals through the z-chain of the TCR complex as well as a

costimulatory molecule, most commonly CD28 or 4-1BB, to

induce CAR T expansion and anti-tumor immunity through

targeted lysis of malignant cells (29, 30). The inflammatory
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potential, persistence, and toxicity of the CAR T construct are

impacted by choice of costimulatory signaling (29, 30).

Specifically, CD28 is associated with a terminal effector cell

phenotype with more rapid expansion, robust cytokine

production, and early-onset CRS, while 4-1BB pushes cells

toward a memory phenotype with slowed expansion, but with

increased persistence and reduced exhaustion (31–34). CAR T

toxicity can include on-target/off-tumor effects on non-

malignant cells expressing the antigen of interest. More

commonly, toxicity is driven by dysregulated immune

hyperactivation and cytokine production, including TNFa, IL-
6, and IL-1a, which lead to cytokine release syndrome (CRS), a

syndrome of systemic inflammation characteristically including

fever and capillary leak, as well as neurotoxicity (34).

In MM, CAR T cells were initially studied targeting a variety

of antigens, including CD19, CD138, light chains, NKG2D, and

the Lewis Y antigen, with mixed results (35–40). Specifically,

initial efforts to target a population of myeloma-propagating

cells using an anti-CD19 CAR T product concurrently with

autologous transplant significantly increased progression-free

survival (PFS) in a small subset of responders (35, 36).

However, the most robust and promising outcomes in patients

with R/R disease have been shown with CAR constructs

targeting B-cell maturation antigen (BCMA), with key trials

highlighted in Table 1. BCMA is a member of the tumor necrosis

factor superfamily expressed preferentially on mature B cells that

is crucial for survival of plasma cells and has limited expression

on hematopoietic stem cells or other tissues, making it an ideal

therapeutic target (47, 48). An initial trial of 16 patients with R/R

myeloma treated with an anti-BCMA CAR T clone using a

CD28 costimulatory domain showed an overall response (OR)

rate of 81%; however, this construct induced high rates of

toxicity, with 94% of patients developing CRS and 38% grade

3 or above (41). To reduce toxicity, idecabtagene vicleucel (ide-

cel) was developed with a 4-1BB costimulatory domain (42, 43).
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In a phase 2 study of 128 patients with R/R myeloma who had

received at least 3 prior therapies, patients treated with ide-cel

had an OR of 73%, complete response (CR) of 33%, and PFS of

8.8 months (43). While patients had high rates of CRS overall

(84%), only 5% developed grade 3 or above CRS, and 18% of

patients developed neurotoxicity including just 3% with grade 3

or higher reactions, suggesting a more tolerable toxicity profile.

Notably, CAR T clones persisted for at least 12 months in 36% of

patients, suggesting the potential for prolonged disease

control (43).

To increase avidity of the CAR T clone, ciltacabtagene

autoleucel (cilta-cel) was designed with two distinct BCMA-

targeting antibodies as well as a 4-1BB costimulatory domain

(44). In a multicenter phase 1/2 trial of 97 patients with R/R

myeloma, cilta-cel showed an OR of 97% and CR of 67%.

Significantly, 1-year overall survival (OS) was 89% and PFS

77%, with median duration of response not reached at median

follow up of 12.4 months; further studies are ongoing for long

term outcomes. The toxicity profile was similar to ide-cel, with

high incidence of CRS (95%) but low rates of severe disease (4%),

and similar rates of neurotoxicity (21% overall, 9% severe) (44).

Finally, other targets have been identified including G-protein

coupled receptor, class C group 5 member D (GPCR5D), a hair

follicle protein that is upregulated in myeloma cells with a

similar distribution to BCMA (49). Preliminary results from

an ongoing phase 1 study of an anti-GPRC5D CAR OriCAR-017

(NCT05016778) were recently presented in 9 patients with R/R

myeloma, including patients previously treated with anti-BCMA

CAR T therapies. Initial data showed a 100% OR rate, with 100%

incidence of CRS but 0 grade 3 events (45).

Despite their transformational role in treatment of R/R

disease and the potential for durable remission, emergence of

CAR T resistance remains a significant challenge. Multiple

mechanisms of CAR T resistance have been described,

including emergence of antigen-negative clones, immune
TABLE 1 Selected published and ongoing clinical trials of CAR T cells in myeloma.

Phase Pts CAR construct Clinical Response Toxicity (overall, severe) Ref.

1 16 BCMA, CD28 OR: 81%; VGPR/CR: 63%; median EFS: 31 wks CRS: 94%, 38%
Neuro: 0%

(41)

1 33 Ide-cel (bb2121);
BCMA, 4-1BB

OR: 85%; CR: 45%; median PFS 11.8 mo. CRS: 76%, 6%
Neuro: 42%, 3%

(42)

2 128 Ide-cel (bb2121);
BCMA, 4-1BB

OR 73%; CR 33%; median PFS 8.8 mo. CRS: 84%, 5%
Neuro: 18%, 3%

(43)

1b/2 97 Cilta-cel; BCMA (two domains), 4-1BB OR: 97%; CR 67%; 1-year PFS 77% (median not reached at 12.4 mo.) CRS: 95%, 3%
Neuro: 21%, 9%

(44)

1 9 OriCAR-017; GPRCD OR: 100%; CR/sCR 38% CRS: 100%, 0%
Neuro: 0%

(45)

1 72 bb21217; BCMA, 4-1BB, PI3K inhibitor OR: 69%; CR/sCR 28%; median duration of response 17 mo. CRS: 75%, 4%
Neuro: 15%, 4%

(46)
frontiersi
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clearance or poor survival of the CAR T cells, and CAR T cell

exhaustion (50–53). In MM specifically, biallelic loss of BCMA

expression has been shown in a subset of patients with

recurrence after CAR T therapy (54, 55). One method to

combat BCMA loss is the use of g-secretase inhibitors to

increase membrane BCMA expression. g-secretase cleaves

membrane-bound BCMA to allow shedding from plasma cells,

and the resulting soluble BCMA can further limit CAR T cell

recognition of myeloma cells (56, 57). A phase 1 study of the g-
secretase inhibitor JSMD194 in conjunction with anti-BCMA

CAR T cells is currently underway (NCT03502577). Another

strategy to reduce effects of antigenic loss on efficacy is

development of CAR T cells simultaneously targeting multiple

tumor antigens, such as BCMA with CD38 (58, 59), CS1 (60), or

GPRC5D (49, 61, 62), as well as a novel approach of an anti-

BCMA CAR with a CD38 chimeric costimulatory receptor to

further drive lymphocyte activation (63), with continued

studies ongoing.

Another significant hurdle in durable response to CAR

therapy is limited survival of the CAR clone, and methods are

under investigation to promote the persistence of the CAR T

product, including optimizing manufacturing to increase

selection of stem and central memory T cell subpopulations

(64–66). As such, the bb21217 construct was created, which

contains the same CAR design as ide-cel with addition of the

PI3K inhibitor bb007, which increases the proportion of

memory-type T cells (46). In preliminary data presented at the

ASH 2021 national meeting from an ongoing phase 1 study

(NCT03274219), 72 patients treated with bb21217 showed an

OR rate of 69%, CR of 28%, and a median duration of response

of 17 months. Toxicity was similar to ide-cel with a CRS

incidence of 75% (4% grade ≥3) and neurotoxicity in 15% of

patients (4% grade ≥3). Significantly, the CAR T clone was

detectable in 81% and 60% of patients as 6 and 12 months,

respectively (46). Additional methods to improve CAR T cell

persistence and reduce functional exhaustion currently under

development in preclinical models include the use of fully

humanized variable chains to reduce immunogenicity and

rejection of cells containing the CAR construct (67–70),

combination costimulation with novel signaling pathways such

as ICOS (71), cytokine manipulation to promote T cell activation

and epitope spreading (72), combination therapy with

immunomodulatory agents such as lenalidomide (73, 74), and

blocking TGF-b responsiveness to inhibit tumor-induced

immunosuppression (75).

Finally, underlying dysfunction of patient-derived T cells may

limit clinical efficacy of the manufactured CAR T product. CAR T

therapy is primarily used in patients with R/R disease, and

autologous lymphocytes have therefore been exposed to the

tumor’s immunosuppressive milieu as well as multiple lines of

therapy prior to transducing the CAR construct (76). The

composition of endogenous T cells used in manufacturing the

CAR product, including the CD4:CD8 ratio and presence of
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central memory and stem cell memory T cells, has been shown

to affect CAR T expansion, anti-tumor activity, and clinical

response in myeloma and other B cell malignancies (77–79).

One strategy to combat this is collection of T cells for CAR

production at early stages of disease; in particular, one group

showed T cells isolated from G-CSF-treated patients at the time of

cell harvest for autologous stem cell transplant (SCT) showed

appropriate expansion and anti-tumor activity in vitro and in

mice (76).

In summary, the dramatic response rates observed following

BMCA-directed CAR T cell therapy has added a vital tool to the

treatment of patients with relapsed disease, and has had a

meaningful impact on survival of patients with refractory

myeloma. Limitations include lack of persistence of the CAR T

cell population and the emergence of antigen negative variants.

Strategies to overcome these mechanisms of resistance are a

major focus of ongoing research and include the development of

dual-targeting CARs and novel combinatorial approaches. In

addition, the time needed to generate autologous CAR T cell

products poses challenges to patients with aggressive advanced

disease. Allogeneic CARs have the potential to overcome this

limitation by providing an off the shelf product using allogeneic

lymphocytes from healthy donors, as discussed below.
Allogeneic CARs

Given the success of autologous CAR constructs, allogeneic

CAR T cells are being explored, with multiple possible

advantages over autologous cells. Allogeneic products address

multiple logistical challenges with manufacturing and quality

and can be immediately available as an “off-the-shelf” option for

therapeutic use in patients with unstable disease (80).

Additionally, allogeneic CARs rely on functional T cells from

healthy donors, which may avoid the challenges discussed above

of dysfunctional T cells derived from patients with R/R disease.

In preclinical studies, BCMA-targeted CAR T cells from healthy

donors showed increased T cell expansion and memory

populations, increased cytotoxicity in vitro, and decreased

checkpoint marker expression compared with cells generated

from patients with R/R disease (81). The primary drawback of

this approach is concern for rejection limiting the persistence of

the allogeneic CAR product as well as possible GVHD, and prior

attempts to reduce off-target effects have included deletion of the

native T cell receptor (TCR) or use of non-ab T cells (80). An

ongoing phase 1 trial (NCT04093596) for R/R myeloma treated

with ALLO-715, an allogeneic anti-BCMA CAR T cell with a

disrupted TCR and CD52 gene to reduce risk of GVHD, was

presented at the ASH 2021 national meeting. 26 patients treated

at higher cell doses had an OR rate of 62% at median follow up of

7.4 months with CRS incidence of 52% (2% grade 3) in the

overall cohort (82), though expanded studies with further follow

up are likely needed to assess the incidence and severity of
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GVHD. While allogeneic CAR T cells show promise as an off-

the-shelf immunotherapeutic for patients with MM, the risks of

GVHD, complexities of gene editing including the risk of genetic

mutations, and the host immune clearance of the allogeneic CAR

product limiting expansion and persistence in vivo remain

challenges to be overcome.
Marrow-infiltrating lymphocytes

Marrow-infiltrating lymphocytes (MILs) are T cells directly

exposed to malignant cells in the marrow microenvironment.

These cells home to and survive in the marrow and contain a high

proportion of tumor-specific cytotoxic lymphocytes (83). In an

initial trial in MM, MILs were harvested and expanded ex vivo

and reinfused in 25 patients after autologous SCT (84). Patients

showed an OR rate of 54% with 27% CR, with a significant

increase in PFS and OS in the subset of patients with significant

disease reduction (84). Further studies are underway of MILs in

combination with other standard and vaccine-based therapies.
TCR-modified T cells

TCR-modified T cells (TCR T cells) are native T cells with

edited TCRs to recognize a specific tumor antigen presented on

the major histocompatibility complex (85). While CAR T cells

exclusively bind cell surface proteins, TCR T cells allow for

targeting of both intracellular and extracellular antigens.

However, the major barrier to development is identification and

generalizability of appropriate targets, as they are specific to each

patient’s tumor antigens and HLA profile (85). In multiple

myeloma, TCR T cells have been developed primarily targeting

cancer testis antigens, such as NY-ESO-1, which is overexpressed

in about one third of myeloma patients (86). A phase 1/2 trial of

TCR T cells recognizing a shared peptide from NY-ESO-1 and the

testis antigen LAGE-1 presented on HLA-A*0201 was

administered to 20 patients after autologous SCT and showed

an 80% response rate, 70% near CR at 100 days, estimated PFS of

19.1 months, and no evidence of CRS (87). Cytotoxicity in this

model was shown to be further augmented in vitro with PD-1

blockade (88), and a phase 1 study of an NY-ESO-1/LAGE-1 T

cell with CRISPR deletion of the native TCR and endogenous PD-

1 gene showed initial feasibility (89). However, despite the lack of

CRS, off-target toxicity of TCR T cells towards similar epitopes

from other proteins as well as on-target/off-tumor toxicity

directed against shared tumor antigens in other tissues remains

a significant concern. Notably, an engineered affinity-enhanced

HLA-A*01-restricted MAGE-A3-targeted T cell induced

cardiogenic shock and death from myocardial infiltration in

both treated patients in an initial study, likely due to cross-

reactivity with epitopes from the native cardiac protein titin

(90). While TCR T cells may represent a promising avenue to
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target an expanded set of intracellular antigens in a subset of

patients with specific HLA phenotypes, further work is needed to

appropriately identify effective targets while limiting alloreactivity

towards normal tissues.
NK cells and NK CARs

Adoptive NK cell therapy represents an additional

promising avenue for anti-tumor immunity. NK cells possess

multiple advantages over T cells, including cytotoxic activity

without prior antigen exposure or HLA restriction and reduced

risk of GVHD. In a phase 1 study, 12 myeloma patients received

cord blood-derived NK cells in association with autologous SCT.

The study showed an OR of 83% and near CR in 67% of the

cohort, detectable NK cells in vivo at 6 months, and no evidence

of GVHD (91), with a phase 2 study underway (NCT01729091).

CRISPR-edited NK cells with reduced expression of the

inhibitory KLRC1 locus showed improved anti-myeloma

cytolytic activity in vitro, and further study is needed for the

clinical utility of ex vivo NK cell engineering in myeloma (92).

Additionally, CAR NK cells are being developed with modified

targeted antibodies bound to NK cell signaling proteins. Further,

NK cells from an allogeneic donor may allow for rapid

production of an off-the-shelf CAR NK cell product, do not

need to be individualized for each patient, and do not require

CRISPR gene editing as do allogeneic CAR T cells in order to

mitigate the risk of GVHD (93, 94). In murine models, CAR-NK

cells targeting CD138 and CS-1 have showed some efficacy, with

further preclinical work needed (95, 96).
Checkpoint inhibitors

Immune checkpoint blockade through the PD-1/PD-L1 or

CTLA4 axes has had remarkable clinical efficacy in other

malignancies in reducing immune dysregulation in the tumor

microenvironment and re-activating native adaptive immunity.

PD-L1 is highly expressed on malignant plasma cells and is

associated with resistance to therapy and relapse, suggesting it

may be an important pathway in mediating immune

dysregulation (7, 97–99). However, pharmacologic PD-1

blockade in R/R myeloma did not show clinical benefit when

used as monotherapy (100). Additionally, two phase 3

randomized trials of PD-1 blockade combined with

immunomodulatory agents (lenalidomide/pomalidomide) were

stopped prematurely due increased toxicity without a signal of

improved efficacy, and there are ongoing concerns about the

safety of checkpoint inhibitors in MM (101, 102). Further work

is needed to define the potential therapeutic role of checkpoint

inhibitors in myeloma, including in combination with other

immune-based therapies such as vaccines (103, 104) and

adoptive cell therapy (60, 105, 106).
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T cell engagers

To reduce immune evasion and dysregulation, bispecific T

cell engagers (BiTEs) have been developed in multiple

hematologic malignancies. These antibodies bind a specific

tumor antigen as well as CD3 to induce colocalization of T

cells with neoplastic cells in the context of T cell activation. BiTE

antibodies utilize the native T cell repertoire and can induce a

polyclonal response with expansion of memory populations;

however, they are therefore dependent on native T cell quality

and function, which may be impaired in the setting of

malignancy (9).

In MM, BiTE development has centered on BCMA as a

plasma cell marker. There are multiple CD3/BCMA constructs

currently under investigation, with some early evidence of efficacy

and durable response in phase 1 trials (107–112), and multiple

phase 1/2 trials ongoing (NCT03145181, NCT03287908,

NCT03933735, NCT03486067, NCT03761108). In a study of the

AMG 420 compound in 42 patients with R/R disease, the OR rate

was 70% with median response of 9 months in patients who

received the target dose, though with 48% of patients developing

grade 3 adverse events (107). A phase 1/2 trial of teclistamab in 165

patients showed an OR of 63%, CR of 39%, and median PFS of

11.3 months at median follow up of 14.1 months. Patients had a

72% incidence of CRS (0.6% grade ≥3) and 15% neurotoxicity (0

grade 3) (113). As noted above, g-secretase inhibitors increase

membrane BCMA expression, and they have been shown to

augment the efficacy of an anti-BCMA BiTE in vitro, suggesting

they may be effective as complementary agents (114). Multiple

other BiTE targets are under investigation in preclinical and early

clinical studies, including GPRC5D (NCT03399799) (115), FcRH5

(NCT03275103) (116), and CD38 (117). BiTEs represent a highly

exciting therapy, as evidenced by promising response rates in the

setting of advanced myeloma. Understanding how to best

incorporate BiTE therapy earlier in the disease course and how

to sequence various BCMA directed therapies is an area of

ongoing investigation. Importantly, using anti-BCMA BiTEs as a

partner in combination therapy, including with CAR T cells,

immunomodulatory drugs, and vaccines, has the potential to

further improve outcomes for patients with MM.
Vaccine therapy

Cancer vaccine therapy utilizes peptide or cell-based

methodologies to facilitate presentation of tumor-specific

antigenic targets with the goal of activating and expanding

cytotoxic T cells to target malignant cells. Vaccines have the

potential to induce a polyclonal response to capture the

heterogeneity of the tumor as well as induce a memory response

to mitigate risk of disease relapse (118, 119). Challenges in vaccine

development and clinical efficacy include identification of

appropriate antigenic targets that are sufficiently immunogenic
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and specific to the malignant clone as well as effective presentation

by antigen presenting cells in the context of costimulation (119).

Early efforts in immunization in myeloma have focused on

peptide-based vaccine strategies targeting upregulated or

aberrantly expressed proteins by the myeloma clone to induce

tumor-specific immunity, with selected trials highlighted in

Table 2. These vaccines have generally induced T cell and

interferon responses but have not markedly improved clinical

outcomes. An anti-MUC1 signal peptide vaccine, ImMucin, led to

myeloma-specific immunity and at least disease stabilization in

most patients (120). RHAMM-R3 peptide vaccination resulted in

immunologic and biochemical responses in patients with

myeloma overexpressing RHAMM (121, 122). Vaccination

against the anti-apoptotic Bcl-2 family proteins generated

immune responses in relapsed myeloma patients in a phase 1

clinical trial (123). Idiotypic DNA vaccines targeting the

myeloma-specific immunoglobulin were also noted to engender

immune responses in a phase 1 clinical trial (124). A recent phase

2 randomized study of an idiotype vaccine paired with adoptive

transfer of ex-vivo expanded, vaccine-specific autologous T cells

showed increased markers of functional immune activation and

memory generation, though without significant difference in CR

or 3-year PFS (125). Additionally, to decrease the risk of off-target

toxicity, cancer-testis antigens such as NY-ESO-1 and MAGE-A3,

proteins normally restricted to fetal development or germ cells but

aberrantly re-expressed in malignant cells, have been targeted,

with immunization leading to durable immune responses in

proof-of-concept studies (129, 130).

Despite some immune efficacy noted above, there are multiple

major limitations of antigen peptide-based vaccination, including

potential resistance by antigenic escape and downregulation of

target antigens. To combat this, multiepitope vaccines have been

trialed, and one such strategy targeting XBP1, CD138, and CS1

peptides in smoldering myeloma induced a robust myeloma-

specific immune response in vitro (131). In a nonrandomized

clinical trial, patients demonstrated a vaccine-specific T cell

response that was further enhanced when administered in

conjunction with lenalidomide, though with few significant

clinical responses (126). Another concern with peptide vaccines

is limited immunogenicity of self-antigens despite overexpression

by the tumor given thymic deletion of T cells with high affinity for

these antigens during development (132). As a note, this decreased

activity of the native T cell repertoire in response to self-antigens is

likely why vaccination against cancer testis antigens NY-ESO-1 or

MAGE-A3 is well tolerated, while infusion of ex-vivo engineered

TCR T cells targeting these same antigens led to significant

alloreactivity and toxicity, as discussed above. Alternatively, novel

protein sequences and foreign antigens created by tumor-specific

mutations, or neoantigens, may induce robust T cell recruitment

and anti-tumor immune response. Interestingly, neoantigen

burden in myeloma has been found to correlate with inferior

survival and associated upregulation of T-cell suppression pathway

genes, creating an opportunity for neoantigen-based vaccination as
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a vehicle for activation of suppressed T cells and host anti-tumor

immunity (133–135). While neoantigens may be patient or tumor-

specific, shared neoantigens can be identified from common

oncogenic driver mutations that can be feasibly targeted by

vaccines. In myeloma, common shared neoantigens such as

PKD1, PRKDC, and NRAS are being further characterized in

the laboratory, and in preclinical studies, a neoantigen-based

vaccine targeting MOPC315 has been shown to induce anti-

tumor immunity (136, 137). Further research is needed in

neoantigen identification and immunogenicity to determine the

potential of neoantigen-based vaccines as a therapeutic strategy

in myeloma.

In addition to selecting an optimal tumor-specific antigen,

promoting a method of antigen uptake and presentation is key in

inducing robust and durable anti-tumor immunity and

mitigating the effects of immune tolerance within the tumor

microenvironment. As such, a variety of DC-based vaccines

strategies have been developed to ensure antigen presentation in

the context of DC-mediated costimulation. In clinical trials,

these strategies most commonly involve reinfusion of ex vivo

DCs pulsed with tumor antigens, tumor cell lysate, or apoptotic

bodies, with the goal of DC loading with varied tumor antigens

to reduce risk of antigenic escape (138, 139). Idiotype-pulsed

DCs were associated with prolonged survival following

autologous SCT (127). Additionally, a study using DCs loaded

with irradiated autologous MM cells was well tolerated and

resulted in immune responses and disease stabilization in a

phase 1 trial of patients with R/R myeloma (128).

An additional approach is manipulation of patient-derived

tumor cells to express GM-CSF, thereby promoting DC

migration to the site of vaccination. This strategy, also known
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as GVAX, was initially applied in acute myeloid leukemia (140,

141). The GVAX platform has been employed in combination

with lenalidomide in myeloma patients in near complete

remission. In a proof-of-principle study, over 50% of treated

patients reached CR, with median PFS not yet reached at median

follow up of 5 years and with persistent immunologic responses

in all patients (142).

Our group has developed a personalized vaccine strategy

wherein autologous DCs are fused with patient-derived tumor

cells, which creates a hybridoma expressing a wide variety of

tumor-specific neoantigens in the context of increased

costimulation. In a phase 1 trial evaluating this DC/myeloma

fusion vaccine, vaccination was well tolerated and resulted in

expansion of CD4 and CD8 myeloma-reactive T cells and

disease stabilization in the majority of patients (143). In a

subsequent phase 2 trial following autologous SCT,

vaccination significantly increased CD4 and CD8 myeloma-

specific T cells, with a CR rate of 47% and a 2-year PFS of

57% (144). In light of these encouraging results, a randomized

multicenter trial of the DC/myeloma fusion vaccine versus

lenalidomide maintenance alone after autologous SCT is

currently in progress (NCT02728102).
Conclusions

Immune-based therapies have demonstrated exciting results

in patients with MM. Ongoing areas of research focus remain

understanding and overcoming mechanisms of resistance,

optimizing combinatorial approaches, and identifying

biomarkers of resistance and response. The potency of CAR T
TABLE 2 Selected clinical trials of peptide or pulsed/loaded dendritic cell vaccines in myeloma.

Phase Pts Target Immune Response Clinical Response Ref.

1/2 15 MUC1 T cell and antibody response and increased IFNg in all
patients

73% stable/improved disease, median PFS 17.5 mo. (120)

1 7 RHAMM-R3 CD8 T cell response in 71% of patients Reduced free light chains in 43% of patients (121,
122)

1 7 Bcl-2 family T cell response in all 6 patients with at least 2
vaccinations

No change (123)

1 14 Idiotype protein linked
to FrC of tetanus toxin

T cell response to idiotype in 29% of patients Ongoing CR/PR in 79%, median time to progression 38 mo. (124)

2 16 Idiotype protein linked
to KLH

Upregulated immune reconstitution genes in T cells of
treated patients

CR 50% vs 30% (p=.22), 3-yr PFS 56% vs 59% (p=.32) in
treated (n = 16) vs control (n = 20) patients

(125)

1/2a 22 XBP1, CD138, CS1
(PVX-410)

CD8 T cell and IFNg response in 95% of patients,
further increased in combination with lenalidomide

20% partial or minimal response, 50% stable disease (126)

2 27 Idiotype-pulsed DCs Not evaluated OS 5.3 vs 3.4 yrs (p=.02), no change in median PFS in
treated patients vs unmatched cohort from similar period

(127)

1 9 DCs loaded with
irradiated myeloma cells

T cell or IFNg response in 78% of patients treated at
higher dose

11% minimal response, 56% stable disease (128)
frontiers
FrC, fragment C; KLH, keyhole limpet hemocyanin; DC, dendritic cell; PFS, progression-free survival; CR, complete response; PR, partial response; OS, overall survival.
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cell therapy has been demonstrated in the setting of advanced

disease, and it is currently being investigated in the setting of

high-risk disease in the newly diagnosed setting. In newly

diagnosed disease, the current treatment landscape for

myeloma is such that with immunomodulatory agents,

proteasome inhibitors, and CD38-targeting antibodies, one can

achieve deep responses. Incorporating immune based therapy

has the potential to eradicate minimal residual disease to

promote immune surveillance and protect from relapse.

Understanding and addressing mechanisms of resistance and

biomarkers of response will be critical toward designing the

appropriate combinatorial approach, choosing the optimal

sequence of therapy, and ultimately, developing a curative

therapeutic approach to the treatment of MM.
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